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Abstract

We exhibit a three parameter infinite family of quadratic recurrence relations
inspired by the well known Somos sequences. For one infinite subfamily we prove
that the recurrence generates an infinite sequence of integers by showing that the
same sequence is generated by a linear recurrence (with suitable initial conditions).
We also give conjectured relations among the three parameters so that the quadratic
recurrences generate sequences of integers.

1 Introduction

It is always the case that quadratic recurrence relations generate sequences of rational
numbers, given that the first finitely many terms are 1. That there exist quadratic recur-
rences which generate only integers is very surprising. Michael Somos, through investi-
gations of elliptic theta functions, discovered one such quadratic recurrence which began
a new wave of research into this phenomenon [4]. After Somos’ discovery [6] that the
recurrence

S(n) =

(

S(n − 1)S(n − 5) + S(n − 2)S(n − 4) + S(n − 3)2

)

/S(n − 6)

generated integers when given initial conditions S(i) = 1 for 0 ≤ i ≤ 5, a surge of
research began on related sequences. Most importantly for the goals of our problem was
the sequence discovered by Dana Scott defined by the recurrence

D(n) =

(

D(n − 1)D(n − 3) + D(n − 2)

)

/D(n − 4) (1)

with initial conditions D(i) = 1 for 0 ≤ i ≤ 3. This recurrence differs from Somos’ original
recurrence as it mixes quadratic and linear terms. However, it also defines a sequence
consisting only of integers.
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The above two sequences possess an even stronger property than integrality. If the
initial conditions are given as S(m) = xm (resp. D(m) = xm) for 0 ≤ m ≤ 5 (resp. 0 ≤
m ≤ 3), these recurrences produce Laurent polynomials. The set of Laurent polynomials
are defined in [7] as

R
[

t, t−1
]

=
{

∑

ait
i | i ∈ Z, ai 6= 0 for finitely many i ∈ Z

}

We will define Laurent polynomials in more than one variable in the same manner as
above. That is, the set of Laurent polynomials in the variables {xi}

n
i=1 is defined to be

R
[

{xi}
n
i=1, {x

−1

i }n
i=1

]

= (2)
{

∑

ai

( n
∏

j=1

x
nj

j

)

| i, nj ∈ Z, ai 6= 0 for finitely many i ∈ Z

}

This Laurent property is discussed in Fomin and Zelevinsky’s article [3], and has been
used to extract combinatorial information from sequences.

The work done by Dana Scott was important to our discovery since it gave us the idea
to probe for sequences defined by a mixture of quadratic and linear terms, rather than
just the Somos-like quadratic recurrences. Additionally, work done by Reid Barton [1] on
a similar sequence resulted in a combinatorial interpretation, which led us to believe that
a similar interpretation of our sequences exists.

2 Statement of Problem

While looking at the family of quadratic recurrences given by

a(n)a(n − k) = a(n − 1)a(n − k + 1) + a(n − (k − 1)/2) + a(n − (k + 1)/2) (3)

with initial conditions a(m) = 1 for m ≤ k we noticed that they seemed to produce a
sequence of integers for any odd value of k we chose. By substituting k = 2K + 1 we can
transform the recurrence so it is valid for any positive integer value of K. This defines
the following recurrence relation

a(n)a(n − (2K + 1)) = a(n − 1)a(n − 2K) + a(n − K) + a(n − K − 1) (4)

now with initial conditions a(m) = 1 for m ≤ 2K + 1.
For instance, when K = 1 the recurrence becomes

a(n)a(n − 3) = a(n − 1)a(n − 2) + a(n − 1) + a(n − 2)

generating the sequence {a(n)} = {1, 1, 1, 3, 7, 31, 85...}.
We have proven the integrality assertion by showing that the sequence produced by the

quadratic recurrence also satisfies a linear recurrence with integer coefficients and integer
initial conditions. It has also been shown that when the initial conditions are given as
formal variables the recurrences produce Laurent polynomials (see [5]). Our eventual
goal is to find a combinatorial interpretation (e.g. counting perfect matchings of certain
graphs).
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3 Proof of Integrality

In order to prove that the quadratic recurrence produces integers we show that the se-
quence also satisfies a linear recurrence with integer coefficients.

Theorem 1. The recurrence

a(n)a(n − (2K + 1)) = a(n − 1)a(n − 2K) + a(n − K) + a(n − K − 1)

with initial conditions a(m) = 1 for m ≤ 2K+1 generates an infinite sequence of integers.

Lemma 1. The initial 6K + 1 terms of the sequence given by the quadratic recurrence
relation (4) satisfy the following conditions:

a(i) = 1 1 ≤ i ≤ 2K + 1
a(2K + i) = −1 + 2i 2 ≤ i ≤ K + 1
a(3K + i) = 1 + 2K − 2i + 2i2 2 ≤ i ≤ K + 1
a(4K + i) = −3 − 8K + 2i − 2K2 + 12Ki + 2i2 + 4K2i 2 ≤ i ≤ K + 1
a(5K + i) = 3 + 10K − 10i + 16K2 − 16Ki + 8i2

+4K3 − 4K2i + 16Ki2 + 4K2i2 2 ≤ i ≤ K + 1

Proof. Notice that a(i) = 1 for 1 ≤ i ≤ 2K + 1 by definition. Each of the other relations
is proved independently by induction. All initial relations were originally conjectured and
proved via a computer program written by Doron Zeilberger [8]. We will now show the
proof for a(2K + i) = −1 + 2i with 2 ≤ i ≤ K + 1.

Base case i = 2: We need to verify that a(2K + 2) = 3. From the quadratic definition
of the sequence we have

a(2K + 2)a(1) = a(2K + 1)a(2) + a(K + 2) + a(K + 1)

a(2K + 2) · 1 = 1 · 1 + 1 + 1

⇒ a(2K + 2) = 3

Now we assume, as the inductive hypothesis, that a(2K + i) = −1+2i. We need to show
that a(2K + (i + 1)) = −1 + 2(i + 1) = 2i + 1 for 2 ≤ i ≤ K. We know that

a(2K + (i + 1))a(i) = a(2K + i)a(i + 1) + a(K + (i + 1)) + a(K + i)

Since 2 ≤ i ≤ K, we have

3 ≤ i + 1 ≤ K + 1

K + 3 ≤ K + (i + 1) ≤ 2K + 1

K + 2 ≤ K + i ≤ 2K

Therefore a(i + 1) = a(K + (i + 1)) = a(K + i) = 1.

a(2K + (i + 1)) · 1 = (−1 + 2i) · 1 + 1 + 1

⇒ a(2K + (i + 1)) = 2i + 1
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So by induction, a(2K + i) = −1 + 2i for 2 ≤ i ≤ K + 1.
Proofs of the other initial relations follow the same series of steps, and will therefore

be left up to the reader to verify.

Lemma 2. If the sequence {a(n)} is given by the quadratic recurrence (4), then it also
satisfies the linear recurrence given by

a(n) =
[

2K2 + 8K + 4
]

(a(n − 2K) − a(n − 4K)) + a(n − 6K) (5)

for all n ≥ 6K + 2, where the initial 6K + 1 values are taken to be the first 6K + 1 values
of the quadratic recurrence (4).

Proof. First note that by uniqueness, proving the converse (i.e.- that the sequence given
by the linear recurrence (5) satisfies the quadratic recurrence (4)) is equivalent to proving
that the statement itself. Thus we prove that the linear recurrence given by (5) satisfies
the quadratic recurrence given by (4) using strong induction. Define the sequence {a(n)}
recursively for all n ≥ 6K + 2 by (5) and let a(n) for 1 ≤ n ≤ 6K + 1 be defined by the
initial conditions given in Lemma 1. For simplicity in notation, let the term 2K2 +8K +4
be called A(K). The proof will use methods analogous to those used by Hal Canary [2]
to prove integrality of the Dana Scott recurrence (1).

Let

φ(n) = a(n)a(n − (2K + 1)) − a(n − 1)a(n − 2K) − a(n − K) − a(n − K − 1) (6)

We wish to prove by induction that φ(n) = 0 for all n ∈ Z
+. Clearly for 1 ≤ n ≤ 6K + 1,

φ(n) = 0 since the first 6K + 1 terms are defined to be the first terms given by (4).
For the base case we must prove that φ(6K + 2) = 0. This is nothing but algebraic

calculations easily verified by a computer algebra system such as Maple or Mathematica.

φ(6K + 2) = a(6K + 2)a(4K + 1) − a(6K + 1)a(4K + 2) − a(5K + 2) − a(5K + 1)

where we can substitute the initial conditions for the linear recurrence for all but a(6K+2).

a(4K + 1) = a(3K + (K + 1)) = 2K2 + 4K + 1

a(6K + 1) = a(5K + (K + 1)) = 4K4 + 24K3 + 40K2 + 16K + 1

a(4K + 2) = 6K2 + 16K + 9

a(5K + 2) = 4K3 + 24K2 + 42K + 15

a(5K + 1) = a(4K + (K + 1)) = 4K3 + 6K2 + 10K + 1

And a(6K + 2) must be given by the linear recurrence (5)

a(6K + 2) = (2K2 + 8K + 4)(a(4K + 2) − a(2K + 2)) + a(2)

= (2K2 + 8K + 4)((6K2 + 16K + 9) − 3) + 1

= 12K4 + 80K3 + 164K2 + 112K + 25

the electronic journal of combinatorics 15 (2008), #R54 4



Now it is a matter of plugging this into your favorite computer algebra system and veri-
fying that φ(6K + 2) = 0.

Since the base case is verified we can proceed with the induction. We make the strong
induction assumption that φ(m) = 0 for m < n. We need to show that φ(n) = 0 given the
inductive hypothesis. Now, compute φ(n) by substituting for a(n), a(n − 1), a(n − K),
and a(n − K − 1) from the definition of {a(n)}.

a(n) = A(K)a(n − 2K) − A(K)a(n − 4K) + a(n − 6K)

a(n − 1) = A(K)a(n − 2K − 1) − A(K)a(n − 4K − 1) + a(n − 6K − 1)

a(n − K) = A(K)a(n − 3K) − A(K)a(n − 5K) + a(n − 7K)

a(n − K − 1) = A(K)a(n − 3K − 1) − A(K)a(n − 5K − 1) + a(n − 7K − 1)

After substituting into φ(n), expand and then simplify and we are left with

φ(n) = − A(K)a(n − 4K)a(n − 2K − 1) + A(K)a(n − 4K − 1)a(n − 2K)

− A(K)a(n − 3K) − A(K)a(n − 3K − 1) + a(n − 2K − 1)a(n − 6K)

− a(n − 2K)a(n − 6K − 1) + A(K)a(n − 5K) + A(K)a(n − 5K − 1)

− a(n − 7K) − a(n − 7K − 1)

You can see that

−A(K)a(n − 4K)a(n − 2K − 1) + A(K)a(n − 4K − 1)a(n − 2K)+

− A(K)a(n − 3K) − A(K)a(n − 3K − 1) = −A(K)φ(n − 2K)

which equals 0 by the induction hypothesis. Thus

φ(n) = a(n − 2K − 1)a(n − 6K) − a(n − 2K)a(n − 6K − 1)+

+ A(K)a(n − 5K) + A(K)a(n − 5K − 1) − a(n − 7K)+

− a(n − 7K − 1)

Substitute for a(n − 2K) and a(n − 2K − 1) from the definition of {a(n)}.

a(n − 2K) = A(K)a(n − 4K) − A(K)a(n − 6K) + a(n − 8K)

a(n − 2K − 1) = A(K)a(n − 4K − 1) − A(K)a(n − 6K − 1)+

+ a(n − 8K − 1)

Simplify again to obtain

φ(n) = A(K)a(n − 4K − 1)a(n − 6K) − A(K)a(n − 4K)a(n − 6K − 1)+

− A(K)a(n − 5K) − A(K)a(n − 5K − 1)+

+ a(n − 6K)a(n − 8K − 1) − a(n − 6K − 1)a(n − 8K)+

− a(n − 7K) − a(n − 7K − 1)

= − A(K)φ(n − 4K) + φ(n − 6K)

= 0

Thus by induction φ(n) = 0 for all n ∈ Z
+.
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Theorem 1 now follows directly from the two lemmas. The first 6K + 1 terms of the
sequence generated by the quadratic recurrence must be integers since they are given by
polynomials with integer coefficients in the variables K and i. The rest of the terms in the
sequence satisfy a linear recurrence with integer coefficients and integer initial conditions.
Thus the terms must all be integers.

4 Laurentness

Now, instead of declaring that the initial conditions of a recurrence, r(n), be all 1, we will
set r(i) to be the variable xi for the first sufficiently many terms. If all terms in a sequence
are Laurent polynomials in the initial variables {xi} then we say that the sequence (or
the recurrence producing the sequence) has the Laurent property. In Section 1, we gave
examples of some sequences which were conjectured to be integers, and that have been
shown to possess the Laurent property. Notice that a sequence having the Laurent prop-
erty immediately proves integrality of that sequence. Since definition (2) is equivalent to
defining the set of Laurent polynomials to be the subset of rational functions in which
the denominator is a monomial, setting all variables equal to 1 in a Laurent polynomial
clearly produces an integer. For this reason, and because the Laurent property has been
helpful in producing a combinatorial proof of integrality in some cases, many people pre-
fer proofs of Laurentness versus other proofs of integrality. In [3], Fomin and Zelevinsky
give easily verifiable sufficient conditions for a recurrence to possess the Laurent property.
Using these conditions one can prove that the sequence given by (4) with initial conditions
a(i) = xi for 1 ≤ i ≤ 2K + 1 has the Laurent property. For the proof see [5]. We do
not include the proof here because the machinery used, namely Fomin and Zelevinsky’s
conditions via cluster algebras, are more advanced than our proof via linear recurrence.
The technique of showing that a sequence generated by a quadratic recurrence also sat-
isfies a linear recurrence, as in the proof from Section 3, has the potential to be applied
in instances where the recurrence in question does not satisfy Fomin and Zelevinsky’s
conditions but still possesses the Laurent property, or even when the recurrence satisfies
integrality without Laurentness.

5 Generalization of this Family of Quadratic Recur-

rences

There is evidence to suggest that an even broader family of quadratic recurrence relations
produces integer sequences. Let the sequence {b(n)}∞n=1 be generated by the following
recurrence.

b(n)b(n − k) = b(n − i)b(n − k + i) + b(n − j) + b(n − k + j) (7)

with the conditions that i < k − i < k, j < k − j < k, and b(l) = 1 for all l < k. With
certain constraints on k, i, and j, the sequence {b(n)}∞n=1 is conjectured to be an integer
sequence.
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Conjecture 1. Consider the general form of the quadratic recurrence (7) with initial
terms b(l) = 1 for 0 ≤ l ≤ k.

• In the case where k is even:

– If i is odd, then j = k
2

defines a recurrence that generates only integers.

– If i is even, then j = i
2
, j = k

2
, and j = k−i

2
define recurrences that generate

only integers.

• In the case where k is odd:

– If i is odd then j = k−i
2

defines a recurrence that generates only integers.

– If i is even then j = i
2

defines a recurrence that generates only integers.

Furthermore, all other values of j do not define a recurrence that gives integers exclusively.

For example, the recurrence (4) is a special case of the generalization (7) where k is
odd, i = 1, and j = k−1

2
in agreement with Conjecture 1.

6 Lifting the recurrences to 2-dimensional space

As mentioned in Section 4, these recurrences satisfy even stronger conditions than in-
tegrality. However, the Laurent polynomials which are produced will have increasingly
large coefficients. For the purposes of extracting combinatorics, it is preferable to modify
these recurrences so that the sequences are Laurent polynomials with all coefficients of
1 (which we will call faithful polynomials) so that each term counts some object (e.g. a
perfect matching).

Conjecture 2. For all conjectured families of recurrences in section 4 except for the case
where k is even and j = k

2
, the two dimensional recurrence

T (n, k)T (n − k, k) = T (n − i, k + 2)T (n − k + i, k − 2)+

+ T (n − j, k + 1) + T (n − k + j, k − 1)

with initial terms T (i, j) = xi,j for all i < 0 will generate faithful Laurent polynomials in
xi,j.

Note that when k is even and j = k
2
, we still obtain a Laurent polynomial with this

method, but by combining linear terms one can see immediately that it is not faithful.
Though it is not entirely clear what this lifting process will give us, it has been a

means for finding combinatorics in similar sequences such as the Reid Barton and Dana
Scott recurrences [1].
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7 Conclusion

The integrality proof given here only sheds light on a small fraction of this new family
of quadratic recurrences. It is our hope to eventually prove that all of the sequences
generated by the quadratic recurrences in Conjecture 1 satisfy linear recurrences, and
thus are integer sequences. The fact that the Laurent property is also satisfied in this
special case (and possibly in the other cases of Conjecture 1) may lead to the discovery of
some family of combinatorial objects which are counted by this family of integer sequences.
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