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Abstract

A central problem in coding theory is to determine Aq(n, 2e + 1), the maximal
cardinality of a q-ary code of length n correcting up to e errors. When e is fixed and
n is large, the best upper bound for A(n, 2e+1) (the binary case) is the well-known
Johnson bound from 1962. This however simply reduces to the sphere-packing
bound if a Steiner system S(e + 1, 2e + 1, n) exists. Despite the fact that no such
system is known whenever e ≥ 5, they possibly exist for a set of values for n with
positive density. Therefore in these cases no non-trivial numerical upper bounds for
A(n, 2e + 1) are known.

In this paper the author presents a technique for upper-bounding Aq(n, 2e + 1),
which closes this gap in coding theory. The author extends his earlier work on the
system of linear inequalities satisfied by the number of elements of certain codes lying
in k-dimensional subspaces of the Hamming Space. The method suffices to give the
first proof, that the difference between the sphere-packing bound and Aq(n, 2e + 1)
approaches infinity with increasing n whenever q and e ≥ 2 are fixed. A similar
result holds for Kq(n,R), the minimal cardinality of a q-ary code of length n and
covering radius R. Moreover the author presents a new bound for A(n, 3) giving for
instance A(19, 3) ≤ 26168.

1 Introduction

In the whole paper let q denote an integer greater than one and Q a set with |Q| = q.
The Hamming distance d(λ, ρ) between λ = (x1, . . . , xn) ∈ Qn and ρ = (y1, . . . , yn) ∈ Qn

is defined by
d(λ, ρ) = |{i ∈ {1, . . . , n} : xi 6= yi}|.
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Let Bq(λ, e) denote the Hamming sphere with radius e centered on λ ∈ Qn,

Bq(λ, e) = {ρ ∈ Qn : d(ρ, λ) ≤ e}.

We set

Vq(n, e) = |Bq(λ, e)| =
∑

0≤i≤e

(

n

i

)

(q − 1)i

and
V q(n, e) = |{ρ ∈ Qn : d(ρ, λ) = e}|

for any λ ∈ Qn. Assume d and R are nonnegative integers. We say, that C ⊂ Qn has
minimum distance at least d, if

∀λ, ρ ∈ C (λ 6= ρ ⇒ d(λ, ρ) ≥ d)

holds. C ⊂ Qn has covering radius at most R, if

∀ρ ∈ Qn ∃λ ∈ C with d(ρ, λ) ≤ R

holds. Aq(n, d) denotes the maximal cardinality of a code C ⊂ Qn with minimal distance
at least d. Kq(n, R) denotes the minimal cardinality of a code C ⊂ Qn with covering
radius at most R. In the binary case q = 2 the subscript usually is omitted.

Aq(n, d) is the most important quantity in coding theory, since Aq(n, 2e + 1) is the
maximal size of a q-ary code of length n correcting up to e errors.

Much work has been done in the last decades to give bounds for Aq(n, d) and Kq(n, R)
(see [15], [3]). Updated internet tables are given by Brouwer [2] and Kéri [12]. Especially
well-known are the sphere-packing bound

Aq(n, 2e + 1) ≤
qn

Vq(n, e)

and the sphere-covering bound

Kq(n, R) ≥
qn

Vq(n, R)
.

When n and e are comparatively small, the best upper bounds on Aq(n, 2e + 1) usually
are obtained via optimization. The Linear Programming Bound (LP) was introduced by
Delsarte in (1972) [4]. Recently Schrijver [18] introduced an upper bound for A(n, d),
which refines the classical bound of Delsarte and is computed via semidefinite program-
ming. Even more recently, a new SDP bound for the nonbinary case was given in [5].
However, the computation of LP and SDP bounds is not tractable for large values of n.

In this case the best bound is the well-known Johnson bound [9] from 1962, which
improves on the sphere-packing bound. In the binary case q = 2 a new bound was
obtained by Mounits, Etzion and Litsyn [16], which always is at least as good as the
Johnson bound. This bound however (like the Johnson bound) reduces to the sphere-
packing bound iff a Steiner system S(e + 2, 2e + 2, n + 1) exists (see [15]). A Steiner
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system S(t, k, v) is a collection of k-subsets (blocks) of a v-set S, such that every t-subset
of S is contained in exactly one of the blocks. More information about Steiner systems
can be found in every monograph on design theory, see for instance [1].

Despite the fact, that no system S(e + 2, 2e + 2, n + 1) is known whenever e ≥ 4, they
possibly exist for a set of integers n of positive density when e is fixed (see [15]). Therefore
in these cases no nontrivial numerical upper bounds for A(n, 2e + 1) are known.

In this paper the author makes use of a third method for upper-bounding Aq(n, 2e+1),
which closes this gap in coding theory. The author extends his earlier work [6] on the
system of linear inequalities satisfied by the number of elements of a code with covering
radius one lying in k-dimensional subspaces of Qn. In this paper the author applies a
corresponding system for error-correcting codes, which in full generality is due to Quistorff
[17]. The method was introduced in the late 1960s and early 1970s by Kamps, van Lint
[11] and Horten, Kalbfleisch, Stanton [10], [20]. It was used in several papers, mainly for
lower-bounding Kq(n, R), see for instance Haas [6], [7], Habsieger [8], Quistorff [17] or
Lang, Quistorff, Schneider [13]. Most papers deal with bounded values of k. Like in [6]
we present an approach, where k is unlimited with increasing n. The method is strong
enough to give the first proof (to the authors best knowledge) of the following theorem.

Theorem 1. Whenever q and e ≥ 2 are fixed, then

qn

Vq(n, e)
− Aq(n, 2e + 1) → ∞ for n → ∞.

Since it is well-known, that Vq(n, e) divides qn at most for a finite set of values for
n when q and e ≥ 2 are fixed (a consequence of a classical theorem of Siegel [19] on
Diophantine approximation, see also [15]), Theorem 1 immediately follows from

Theorem 2. If Vq(n, e) does not divide qn,

n ≥ exp 96 (1)

and

1 ≤ e ≤
log n

6(log log n + log q)
, (2)

then

Aq(n, 2e + 1) ≤
qn

Vq(n, e)
−

1

2
q

1
6q

n
1
2e

.

The quantities Kq(n, R) and Aq(n, d) are connected by the well-known Lobstein-van
Wee bound (see [14] and [21])

Kq(n, R) ≥
qn − Aq(n, 2R + 1)

(

2R
R

)

Vq(n, R) −
(

2R
R

) (3)

whenever n ≥ 2R, so that improved bounds on Aq(n, 2e+1) may lead to improved bounds
on Kq(n, R). Using (3), from Theorem 2 we derive
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Theorem 3. If Vq(n, R) does not divide qn,

n ≥ exp 96

and

1 ≤ R ≤
log n

6(log log n + log q)
,

then

Kq(n, R) ≥
qn

Vq(n, R)
+

1

2
q

7
48q

n
1

2R
.

From this we get

Theorem 4. Whenever q and R ≥ 2 are fixed, then

Kq(n, R) −
qn

Vq(n, R)
→ ∞ for n → ∞.

In the binary case q = 2 and e = 1 we modify Theorem 3 in [7] to get a new upper
bound for A(n, 3), which appears to be the best known in many cases, including the case
n = 4p − 1 with a prime p ≥ 5.

Theorem 5. If 1 ≤ k ≤ n+1
2

, then

A(n, 3) ≤

(

2

⌈

2n−k + k

n + 1

⌉

− 1 −
s

k

)

2k−1

with

s = min

{⌈

2n−k + k

n + 1

⌉

(n + 1) − 2n−k − k; k

}

. (4)

Applying Theorem 5 with n = 19, k = 9 and n = 27, k = 13 gives the following

Corollary 1.

A(19, 3) ≤ 26168 (26208 [15]),

A(27, 3) ≤ 4792950 (4793472 [16]).

This paper is organized as follows. Section 2 contains some lemmas. In the sections
3, 4, 5 we prove the Theorems 2, 3, 5 respectively.

2 Some Lemmas

Lemma 1. For 1 ≤ e ≤ n we have

Vq(n, e) ≤ (qn)e.
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Proof. Since n − k ≤ (e − k)(n − e + 1) for 0 ≤ k ≤ e − 1, we get

Vq(n, e) =
∑

0≤i≤e

(

n

i

)

(q − 1)i ≤
∑

0≤i≤e

(

e

i

)

(q − 1)i(n − e + 1)i

= (1 + (q − 1)(n − e + 1))e ≤ (qn)e.

Lemma 2. For 1 ≤ e ≤ n
2

we have

Vq(n, e − 1) ≤
4e

qn
Vq(n, e).

Proof. Since q ≥ 2 and
(

n
i+1

)

/
(

n
i

)

= (n − i)/(i + 1) ≥ (n − e + 1)/e for 0 ≤ i ≤ e − 1, we
get

Vq(n, e) =
∑

0≤i≤e

(

n

i

)

(q − 1)i

≥
∑

0≤i≤e−1

(

n

i + 1

)

(q − 1)i+1

≥
(q − 1)(n − e + 1)

e
Vq(n, e − 1)

≥
qn

4e
Vq(n, e − 1).

The next Lemma generalizes Lemma 3 in [6]. Here ‖ξ‖ means the difference from ξ
to a nearest integer.

Lemma 3. Let n, s, e be integers with n ≥ 3, 1 ≤ e ≤ n and 3e log n + 1 ≤ s ≤ n.
If Vq(n, e) does not divide qn, then there exists an integer k with s − 3e log n ≤ k ≤ s
satisfying

∥

∥

∥

∥

qn−k

Vq(n, e)

∥

∥

∥

∥

≥
1

2q
. (5)

Proof. Since Vq(n, e) does not divide qn, we get

θ :=

∥

∥

∥

∥

qn−s

Vq(n, e)

∥

∥

∥

∥

> 0.

Let m be the smallest nonnegative integer satisfying qmθ ≥ 1/(2q). We have qmθ ≤ 1/2,
which is obvious if m = 0 and follows from the minimality of m otherwise. This implies

∥

∥

∥

∥

qn−k

Vq(n, e)

∥

∥

∥

∥

=

∥

∥

∥

∥

qm qn−s

Vq(n, e)

∥

∥

∥

∥

= ‖qmθ‖ = qmθ ≥
1

2q
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with k := s − m, proving (5). Lemma 1 implies

1

(qn)e
≤

1

Vq(n, e)
≤ θ ≤

1

2qm

and therefore

m ≤
e log(qn) − log 2

log q
< e

(

1 +
log n

log q

)

≤ 3e log n,

which means s − 3e log n ≤ k ≤ s.

Lemma 4. Let k, r, e be integers with 1 ≤ e ≤ k. Assume kσ is an integer for each

σ ∈ Qk. If for every σ ∈ Qk

min
µ∈Qk

d(µ,σ)≤e

kµ ≤ r − (kσ − r)Vq(k, e) (6)

is satisfied, then we have
∑

σ∈Qk

kσ ≤ rqk.

Proof. By (6) there is a function f defined on Qk, such that for each σ ∈ Qk the element
f(σ) = µ ∈ Qk satisfies d(µ, σ) ≤ e and

kµ ≤ r − (kσ − r)Vq(k, e). (7)

We set

A = {σ ∈ Qk : kσ > r},

B = {µ ∈ Qk : ∃σ ∈ A with f(σ) = µ}.

For µ ∈ B we have kµ ≤ r by (7) and thus A, B are disjoint. For µ ∈ B we set

Aµ = {σ ∈ A : f(σ) = µ} ∪ {µ}.

The sets Aµ, µ ∈ B are pairwise disjoint. For µ ∈ B we have Aµ ∩A 6= ∅. Thus for µ ∈ B
we may fix σµ ∈ Aµ ∩ A with kσµ

= maxσ∈Aµ∩A kσ. For µ ∈ B
∑

σ∈Aµ

kσ =
∑

σ∈Aµ∩A

kσ + kµ

≤ |Aµ ∩ A|kσµ
+ r − (kσµ

− r)Vq(k, e) by (7)

≤ |Aµ ∩ A|kσµ
+ r − (kσµ

− r)|Aµ ∩ A|

= r(1 + |Aµ ∩ A|)

= r|Aµ|.

By A ⊂ ∪µ∈BAµ we have kσ ≤ r for σ ∈ Qk −
⋃

µ∈B Aµ. Thus
∑

σ∈Qk

kσ =
∑

µ∈B

∑

σ∈Aµ

kσ +
∑

σ∈Qk−
S

µ∈B Aµ

kσ

≤ r
∑

µ∈B

|Aµ| + r(
∑

σ∈Qk

1 −
∑

µ∈B

|Aµ|)

= rqk.
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3 Proof of Theorem 2

Without proof we first state our main tool, Quistorff’s system of linear inequalities. As-
sume C ⊂ Qn. For σ ∈ Qk, 1 ≤ k ≤ n we define

Qn
σ = {(x1, . . . , xk, . . . , xn) ∈ Qn : (x1, . . . , xk) = σ}, (8)

kσ = |C ∩ Qn
σ|.

Theorem 6 (Quistorff [17]). Assume 1 ≤ e ≤ k < n. If C ⊂ Qn has minimal distance

at least 2e + 1, then for each σ ∈ Qk we have

∑

0≤i≤e

∑

µ∈Qk

d(µ,σ)=i

kµVq(n − k, e − i) ≤ qn−k.

For the proof of Theorem 2 let C ⊂ Qn be a code with minimal distance at least 2e+1
and |C| = Aq(n, 2e + 1). We set

s =

⌊

1

4q
n

1
2e

⌋

.

By (1) and (2) we have log 4 ≤ log 1
24

+ log log n and e ≤ log n. Thus

log 4 + log e + log log n ≤ log 4 + 2 log log n

≤ log
1

24
+ 3 log log n

≤ log
1

24
− log q + 3(log log n + log q)

≤ log
1

24
− log q +

1

2e
log n by (2).

Exponentiation yields

3e log n + 1 ≤ 4e log n ≤
1

24q
n

1
2e ≤

1

4q
n

1
2e − 1 ≤ s ≤

n

2
. (9)

We therefore may apply Lemma 3 and find an integer k in the interval [s− 3e log n, s],
such that (5) is satisfied. By (9) we have

k − 1 ≥ s − 3e log n − 1 (10)

≥
1

4q
n

1
2e − 2(3e log n + 1)

≥
1

6q
n

1
2e

and
1 ≤ e ≤ k ≤ s ≤

n

2
. (11)
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Moreover, since (16e)1/(2e) is decreasing for e ≥ 1,

k ≤ s ≤
1

4q
n

1
2e ≤

1

(16e)1/(2e)q
n

1
2e ,

which by Lemma 1 implies

n ≥ 16e(qk)2e ≥ 16eV 2
q (k, e). (12)

We now set

r =

⌊

qn−k

Vq(n, e)

⌋

.

From (5) follows

r +
1

2q
≤

qn−k

Vq(n, e)
≤ r + 1 −

1

2q
. (13)

Now consider the numbers kσ, σ ∈ Qk defined in (8). We fix σ ∈ Qk and set

N = min
µ∈Qk

d(µ,σ)≤e

kµ ≤ kσ.

By (11) we may apply Theorem 6 to get

qn−k ≥
∑

0≤i≤e

∑

µ∈Qk

d(µ,σ)=i

kµVq(n − k, e − i)

≥ kσVq(n − k, e) + N
∑

1≤i≤e

V q(k, i)Vq(n − k, e − i)

= kσVq(n, e) − (kσ − N)
∑

1≤i≤e

V q(k, i)Vq(n − k, e − i)

≥ kσVq(n, e) − (kσ − N)Vq(k, e)Vq(n, e − 1)

≥ kσVq(n, e) − (kσ − N)
4e

qn
Vq(k, e)Vq(n, e) by Lemma 2

≥ kσVq(n, e) − (kσ − N)
Vq(n, e)

4qVq(k, e)
by (12)

and thus

r + 1 −
1

2q
≥

qn−k

Vq(n, e)
≥ kσ −

kσ − N

4qVq(k, e)
.

by (13). We now apply Lemma 4. Assume kσ > r. Then

kσ − r

2q
≤ kσ − r − 1 +

1

2q
≤

kσ − N

4qVq(k, e)
,
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which is equivalent to

min
µ∈Qk

d(µ,σ)≤e

kµ = N ≤ kσ − 2(kσ − r)Vq(k, e)

= r + (kσ − r) − 2(kσ − r)Vq(k, e)

≤ r − (kσ − r)Vq(k, e).

Therefore the proposition (6) in Lemma 4 is satisfied for the numbers kσ defined in (8)
(the case kσ ≤ r is trivial). An application of Lemma 4 now yields

Aq(n, 2e + 1) = |C| =
∑

σ∈Qk

kσ

≤ rqk

≤

(

qn−k

Vq(n, e)
−

1

2q

)

qk by (13)

=
qn

Vq(n, e)
−

1

2
qk−1

≤
qn

Vq(n, e)
−

1

2
q

1
6q

n
1
2e

by (10),

completing the proof of Theorem 2.

4 Proof of Theorem 3

The propositions of Theorem 2 are satisfied for e = R and we get

Aq(n, 2R + 1) ≤
qn

Vq(n, R)
−

1

2
q

1
6q

n
1

2R
.

This inserted in (3) yields

Kq(n, R) ≥
qn

Vq(n, R)
+

q
1
6q

n
1

2R

2Vq(n, R)
.

By Lemma 1 we have

Vq(n, R) ≤ (qn)R

= exp(R log qn)

≤ exp(2R log q log n)

≤ exp

(

1

48q
n

1
2R log q

)

by (9) (with e = R)

= q
1

48q
n

1
2R

and Theorem 3 follows.
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5 Proof of Theorem 5

Let F = {0, 1} denote the finite field with two elements. We start with

Lemma 5. Let k, l, r and s be integers with 1 ≤ k ≤ l and 0 ≤ s ≤ k. Assume the

integers xσ, σ ∈ F
k satisfy

lxσ +
∑

µ∈F
k ,d(µ,σ)=1

xµ ≤ l(r + 1) + kr − s (14)

for each σ ∈ F
k. Then

∑

σ∈F
k

xσ ≤
(

2r + 1 −
s

k

)

2k−1. (15)

Proof. Put
B = {σ ∈ Fk : xσ > r}, N = |B|.

For σ ∈ Fk, 1 ≤ i ≤ k and 0 ≤ j ≤ 2 we define

L(σ, i) = {µ ∈ Fk : µ and σ differ at most in the ith coordinate},

L = {L(σ, i) : σ ∈ Fk, 1 ≤ i ≤ k},

Lj = {L ∈ L : |L ∩ B| = j},

yj = |Lj|.

One easily gets |L| = 2 for L ∈ L and |L| = k2k−1. Thus we have

k2k−1 = |L| = y0 + y1 + y2. (16)

Moreover for each σ ∈ Fk
∑

L∈L,σ∈L

1 = k. (17)

Finally we define a function g on L by

g(L) =
∑

µ∈L

xµ − (2r + 1) for L ∈ L. (18)

We have

∑

L∈L

g(L) =
∑

0≤j≤2

∑

L∈Lj

g(L) (19)

=
1

2

∑

1≤j≤2

j
∑

L∈Lj

g(L) +
1

2

∑

L∈L1

g(L) +
∑

L∈L0

g(L)

=
1

2

∑

σ∈B

∑

L∈L,σ∈L

g(L) +
1

2

∑

L∈L1

g(L) +
∑

L∈L0

g(L),
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because in the sum
∑

σ∈B

∑

L∈L,σ∈L g(L) every g(L) with L ∈ L and |L ∩ B| = j (j ∈
{1, 2}) is counted exactly j times. We now estimate the sums occurring at the right-hand
side of (19). If L ∈ L0 we have g(L) ≤ 2r − (2r + 1) = −1 and thus

∑

L∈L0

g(L) ≤ −y0. (20)

If σ ∈ B then

∑

L∈L,σ∈L

g(L) =
∑

L∈L,σ∈L

∑

µ∈L

xµ − (2r + 1)k by (17) and (18)

= kxσ +
∑

µ∈F
k,d(µ,σ)=1

xµ − (2r + 1)k

= lxσ +
∑

µ∈F
k,d(µ,σ)=1

xµ − (l − k)xσ − (2r + 1)k

≤ l(r + 1) + kr − s − (l − k)(r + 1) − (2r + 1)k

by (14), l ≥ k and xσ ≥ r + 1 for σ ∈ B

= −s

implying
∑

σ∈B

∑

L∈L,σ∈L

g(L) ≤ −Ns. (21)

Furthermore, if σ ∈ B and L ∈ L \L1 with σ ∈ L, then L ∈ L2 implying g(L) > 0. Thus

∑

L∈L1

g(L) =
∑

σ∈B

∑

L∈L1,σ∈L

g(L) ≤
∑

σ∈B

∑

L∈L,σ∈L

g(L) ≤ −Ns

by (21). Inserting this, (20) and (21) in (19) we get

∑

L∈L

g(L) ≤ −Ns − y0.

Moreover by (17)

kN =
∑

σ∈B

∑

L∈L,σ∈L

1 = y1 + 2y2.

Thus by (16) and 0 ≤ s ≤ k

∑

L∈L

g(L) ≤ −
kNs

k
− y0 = −y0 −

s

k
y1 −

2s

k
y2 ≤ −

s

k
(y0 + y1 + y2) = −s2k−1.
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By (16) we now have

k
∑

σ∈F
k

xσ =
∑

L∈L

∑

σ∈L

xσ

=
∑

L∈L

(g(L) + 2r + 1)

=
∑

L∈L

g(L) + (2r + 1)k2k−1

≤ −s2k−1 + (2r + 1)k2k−1

and (15) follows.

Proof of Theorem 5. Assume C ⊂ Fn is a binary code of length n with minimal distance
at least three and |C| = A(n, 3). By Theorem 6 the numbers kσ, σ ∈ Fk defined in (8)
satisfy

(n − k + 1)kσ +
∑

µ∈F
k,d(µ,σ)=1

kµ ≤ 2n−k.

We now apply Lemma 5. An easy calculation shows, that (14) is satisfied for the
integers kσ, σ ∈ Fk with l = n − k + 1 ,

r =

⌈

2n−k + k

n + 1

⌉

− 1

and s defined in (4). k ≤ l holds by k ≤ n+1
2

. Now by (15) we have

A(n, 3) = |C| =
∑

σ∈F
k

kσ ≤

(

2

⌈

2n−k + k

n + 1

⌉

− 1 −
s

k

)

2k−1.
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