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Abstract

A central problem in coding theory is to determine A4(n,2e + 1), the maximal
cardinality of a g-ary code of length n correcting up to e errors. When e is fixed and
n is large, the best upper bound for A(n,2e+ 1) (the binary case) is the well-known
Johnson bound from 1962. This however simply reduces to the sphere-packing
bound if a Steiner system S(e + 1,2e + 1,n) exists. Despite the fact that no such
system is known whenever e > 5, they possibly exist for a set of values for n with
positive density. Therefore in these cases no non-trivial numerical upper bounds for
A(n,2e + 1) are known.

In this paper the author presents a technique for upper-bounding A,(n,2e + 1),
which closes this gap in coding theory. The author extends his earlier work on the
system of linear inequalities satisfied by the number of elements of certain codes lying
in k-dimensional subspaces of the Hamming Space. The method suffices to give the
first proof, that the difference between the sphere-packing bound and A,(n,2e + 1)
approaches infinity with increasing n whenever ¢ and e > 2 are fixed. A similar
result holds for K,(n, R), the minimal cardinality of a g-ary code of length n and
covering radius R. Moreover the author presents a new bound for A(n, 3) giving for
instance A(19,3) < 26168.

1 Introduction

In the whole paper let ¢ denote an integer greater than one and @ a set with |Q| = ¢.
The Hamming distance d(\, p) between A = (z1,...,x,) € Q™ and p = (y1,...,Yn) € Q"
is defined by

dAp)={ie{l,....,n}:z; #yi}|
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Let B,(A, e) denote the Hamming sphere with radius e centered on A € Q",
By(\e) = {pe Q"+ dip\) < e},

We set
i e = 18,001 = 3 (1)@=
0<i<e
and
Vy(n,e) =H{p e Q" :d(p,\) = e}|
for any A € Q". Assume d and R are nonnegative integers. We say, that C' C Q" has
minimum distance at least d, if

VA, peC (A#p=d(Ap)>d)
holds. C' C Q™ has covering radius at most R, if
Vpe Q" INe C with d(p,\) <R

holds. A,(n,d) denotes the maximal cardinality of a code C' C Q" with minimal distance
at least d. K,(n,R) denotes the minimal cardinality of a code C' C Q" with covering
radius at most R. In the binary case ¢ = 2 the subscript usually is omitted.

A,(n,d) is the most important quantity in coding theory, since A,(n,2e + 1) is the
maximal size of a g-ary code of length n correcting up to e errors.

Much work has been done in the last decades to give bounds for A,(n, d) and K,(n, R)
(see [15], [3]). Updated internet tables are given by Brouwer [2] and Kéri [12]. Especially
well-known are the sphere-packing bound

Ay(n,2e +1) <

and the sphere-covering bound

q
K,(n,R) > W.

When n and e are comparatively small, the best upper bounds on A,(n,2e + 1) usually
are obtained via optimization. The Linear Programming Bound (LP) was introduced by
Delsarte in (1972) [4]. Recently Schrijver [18] introduced an upper bound for A(n,d),
which refines the classical bound of Delsarte and is computed via semidefinite program-
ming. Even more recently, a new SDP bound for the nonbinary case was given in [5].
However, the computation of LP and SDP bounds is not tractable for large values of n.
In this case the best bound is the well-known Johnson bound [9] from 1962, which
improves on the sphere-packing bound. In the binary case ¢ = 2 a new bound was
obtained by Mounits, Etzion and Litsyn [16], which always is at least as good as the
Johnson bound. This bound however (like the Johnson bound) reduces to the sphere-
packing bound iff a Steiner system S(e + 2,2e + 2,n + 1) exists (see [15]). A Steiner
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system S(t, k,v) is a collection of k-subsets (blocks) of a v-set .S, such that every ¢-subset
of S is contained in exactly one of the blocks. More information about Steiner systems
can be found in every monograph on design theory, see for instance [1].

Despite the fact, that no system S(e+2,2e+ 2, n+ 1) is known whenever e > 4, they
possibly exist for a set of integers n of positive density when e is fixed (see [15]). Therefore
in these cases no nontrivial numerical upper bounds for A(n,2e 4 1) are known.

In this paper the author makes use of a third method for upper-bounding A,(n, 2e+1),
which closes this gap in coding theory. The author extends his earlier work [6] on the
system of linear inequalities satisfied by the number of elements of a code with covering
radius one lying in k-dimensional subspaces of ()". In this paper the author applies a
corresponding system for error-correcting codes, which in full generality is due to Quistorff
[17]. The method was introduced in the late 1960s and early 1970s by Kamps, van Lint
[11] and Horten, Kalbfleisch, Stanton [10], [20]. It was used in several papers, mainly for
lower-bounding K, (n, R), see for instance Haas [6], [7], Habsieger [8], Quistorff [17] or
Lang, Quistorff, Schneider [13]. Most papers deal with bounded values of k. Like in [6]
we present an approach, where k is unlimited with increasing n. The method is strong
enough to give the first proof (to the authors best knowledge) of the following theorem.

Theorem 1. Whenever q and e > 2 are fized, then

n

q

W—Aq(n,2e+l)—>ooforn—>oo.

Since it is well-known, that V,(n,e) divides ¢™ at most for a finite set of values for
n when ¢ and e > 2 are fixed (a consequence of a classical theorem of Siegel [19] on
Diophantine approximation, see also [15]), Theorem 1 immediately follows from

Theorem 2. If V, (n,e) does not divide ¢",

n > exp 96 (1)
" 1<e< logn (2)
— 7 6(loglogn +logq)’
then 7 L
A,(n,2e+1) < o) — qu_q"%

The quantities K,(n, R) and A,(n,d) are connected by the well-known Lobstein-van
Wee bound (see [14] and [21])

(n.R) > q" — Ag(n, 2R + 1) (*F)
q )

T VR = (%)

(3)

whenever n > 2R, so that improved bounds on A,(n,2e+1) may lead to improved bounds
on K,(n,R). Using (3), from Theorem 2 we derive
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Theorem 3. If V,(n, R) does not divide q",

n > exp 96
and 1
| < ogn ’
~— 7 6(loglogn +logq)
then . ) )
q 7 _n32R
K R) > — (T8

From this we get

Theorem 4. Whenever g and R > 2 are fized, then

n

Bl = g

— 00 forn — oo.

In the binary case ¢ = 2 and e = 1 we modify Theorem 3 in [7] to get a new upper
bound for A(n, 3), which appears to be the best known in many cases, including the case
n = 4p — 1 with a prime p > 5.

Theorem 5. If1 <k < "TH, then

A(n,3) < (2 [ww —1- %) ok=1

n+1

s:min{[w—‘ (n+1)—2"‘k—k;k}. (4)

with
n+1
Applying Theorem 5 with n = 19, k =9 and n = 27, k = 13 gives the following
Corollary 1.

A(19,3)
A(27,3)

26168 (26208 [15]),

<
< 4792050 (4793472 [16)).

This paper is organized as follows. Section 2 contains some lemmas. In the sections
3, 4, 5 we prove the Theorems 2, 3, 5 respectively.

2 Some Lemmas
Lemma 1. For 1 <e <n we have

Vy(n,e) < (gn)°.
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Proof. Sincen —k<(e—k)(n—e+1)for0 <k <e—1, we get

a3 (Na-v= 3 (Oa-ve-cry

0<i<e

= (I+@@—-1Dn—e+1)°<(gn)"

Lemma 2. For1 <e < 3 we have

4e
1% -1 < —V .
Q(nve )— qn Q(n>€)

Proof. Since ¢ > 2 and (Zfl)/(?) =n—1)/(i+1)>n—e+1)/efor0<i<e—1, we
get

e = Y (7)a-v

0<:<e
n .
> Z ( )(q_1>z+1
0<i<e—1 i+1
-1 — 1
e
qan
Z ZE‘G(H,G—-ly

O

The next Lemma generalizes Lemma 3 in [6]. Here ||£|| means the difference from ¢
to a nearest integer.

Lemma 3. Let n,s,e be integers with n > 3, 1 < e < n and 3elogn +1 < s < n.
If Vy(n,e) does not divide q", then there exists an integer k with s — 3elogn < k < s
satisfying

Proof. Since V,(n,e) does not divide ¢", we get

qn—k

Vo) ©)

1
> —
‘_Qq

n—s

q
Vo(n,e)

9::‘

‘>O.

Let m be the smallest nonnegative integer satisfying ¢™6 > 1/(2q). We have ¢"8 < 1/2,
which is obvious if m = 0 and follows from the minimality of m otherwise. This implies

i
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n—k

Vi(n,e)

m q
Vo(n,e)

1
7n9 7n9:>
= |l¢"™0| = ¢™0 > _2q

n—s H

q



with k£ := s — m, proving (5). Lemma 1 implies
1 < 1 <f< 1
(gn)e = Vy(n,e) = 7 2¢™

and therefore

1 —log 2 1
m < ¢ log(qn) — log <el|ll+ oen < 3elogn,
log g log g
which means s — 3elogn < k < s. O

Lemma 4. Let k,r,e be integers with 1 < e < k. Assume k, is an integer for each
o € QF. If for every o € Q*

min ki, <7 — (ko —7)Vq(k, ) (6)
d(p,0)<e

is satisfied, then we have

Proof. By (6) there is a function f defined on QF, such that for each o € Q* the element
f(o) = € QF satisfies d(u,0) < e and

kp <7 — (ke —1)Vg(k,e). (7)
We set
A = {oecQ Kk, >r),
B = {p€Q":30c Awith f(o) = u}.
For ;1 € B we have k, < r by (7) and thus A, B are disjoint. For ;1 € B we set
Ay={o€A: flo) =p}u{n}

The sets A, u € B are pairwise disjoint. For u € B we have A, N A # (). Thus for y € B
we may fix o, € A, N A with k,, = max,ca,na ko. For p € B

>k, > kot ky

oEA, cEA,NA

< AN Alk,, +1r— (k,, —7)Vo(k,e) by (7)
< A NAlk,, +1— (ks, —7)[Au N A
= r(1+]A,NA])

r|A,l

By A C U,epA, we have k, <r for o € Q" — UueB A,. Thus

Sh= XYkt Xk

cEQF HEBoEA, Uer_UMEB Ay
< TZ|AM|+T(21_Z|AM|)
neB oeQk neB
= qu. ]
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3 Proof of Theorem 2

Without proof we first state our main tool, Quistorff’s system of linear inequalities. As-
sume C' C Q™. For o € Q%, 1 < k < n we define

QY = {(z1,.. ., Tpy. .y xn) €EQ": (21,...,31) =0}, (8)
k, = |CNQY.

Theorem 6 (Quistorff [17]). Assume 1 <e <k <n. If C C Q™ has minimal distance
at least 2e + 1, then for each o € Q* we have

Y>> kVin—ke—i)<q

0<i<e peqk
d(p,0)=i

For the proof of Theorem 2 let C' C Q" be a code with minimal distance at least 2e+ 1
and |C| = A,(n,2e +1). We set
I LS
5= 4qn .

By (1) and (2) we have log4 < log 5; + loglogn and e < logn. Thus

log4 +loge +loglogn < log4+ 2loglogn
1
< log — + 3loglogn

- 24
1
< log i log g 4+ 3(loglogn + log q)
1 1
< — — .
< log 51 log q + 5 logn by (2)

Exponentiation yields

% < LI 1
nz < —n2 —
q 4q

IN

s <

: (9)

1
delogn +1 <4elogn < o

o3

We therefore may apply Lemma 3 and find an integer & in the interval [s —3elogn, s],
such that (5) is satisfied. By (9) we have

k—1 > s—3elogn—1 (10)

1

> 4—qni —2(3elogn + 1)

> Lok
—1n2e

= %

and n
1§e§k5§s§§ (11)
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Moreover, since (16¢)'/(¢) is decreasing for e > 1,

k< <1 3% < 1 2
SO RS vy

which by Lemma 1 implies
n > 16e(gk)* > 16eV;(k,e).

We now set

From (5) follows

1 1
i SRR A R
r+2q_Vq(n,6)_r+ 2q

Now consider the numbers k., € Q* defined in (8). We fix o € Q* and set

N = min k, <k,.
neQk
d(p,0)<e

By (11) we may apply Theorem 6 to get

> > RV —ke—i)

0<i<e peqk

d(p,o)=i
> ke Vyn—k,e)+ N > Vlk,i)Vy(n—k,e—i)
1<i<e
= koVy(n,e) = (ke — N) Y Vy(k,i)Vy(n — ke — i)
1<i<e
= kffv:](”? 6) - (kU - N)V;l(kv 6)‘/;1(’)’1,, € — 1)
4
> koVy(n,e) — (k, — N)—ZV:](/{, e)Vy(n,e) by Lemma 2
q
Vy(n,e)
> kVi(n,e) — (ky — N)—L 8 ho (19
and thus i LN
1 q" . —
1——> >k — 2
rE 2¢ — Vy(n,e) — 4qV,(k, e)
by (13). We now apply Lemma 4. Assume k, > r. Then
k, —r 1 k, — N
i <kyj—r—1+—< 2
2¢ ~ e 2q ~ 4qVy(k,e)
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which is equivalent to

min k=N <k, — 20k —r)Vy(k,e)
pneQr
d(p,0)<e

= 1+ (ke —7) = 2(ky —1)V,(k, )
< 1= (ke —7)Vy(k,e).

Therefore the proposition (6) in Lemma 4 is satisfied for the numbers k, defined in (8)
(the case k, < r is trivial). An application of Lemma 4 now yields

Ay(n,2e+1)=1C| = >k,
oeQk
< g
qn—k 1 L
< - — by (13
a (Vq(n,e) QQ)q v (1)
_ q" _lqk—l
Vy(n,e) 2
q" L o1,
< — —qoa by (10
S Ve 2! y (10),

completing the proof of Theorem 2.

4 Proof of Theorem 3

The propositions of Theorem 2 are satisfied for e = R and we get

q" L Lyom
A 2R+1) < — —(5q
This inserted in (3) yields
¢ g

K R) > .
S e R TATw )

By Lemma 1 we have

Vy(n, R)

IA

(qn)™
= exp(Rlogqgn)

IN

exp(2Rlog qlogn)

1
exp 18

1 L
— qan2R

IN

qni log q) by (9) (with e = R)

and Theorem 3 follows.
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5 Proof of Theorem 5

Let F = {0, 1} denote the finite field with two elements. We start with

Lemma 5. Let k, [, v and s be integers with 1 < k <[ and 0 < s < k. Assume the
integers x,, o € F* satisfy

lx, + Z r, <Illr+1)+kr—s (14)
uEFk,d(u,J)zl

for each o € F*. Then
s
< _ 5\ gk-1
E Ty < <2T+ 1 k> 2 (15)

cEF*

Proof. Put
B={occF":2,>r}, N=|B|.

ForaEFk,1§i§kand0§j§2wedeﬁne

L = {L(o,i):0 € F* 1<i<k}
L; = {LeLl:|LNB|=j},
yi = L4l

L(o,i) = {p€F":pand o differ at most in the ith coordinate},

One easily gets |L| =2 for L € £ and |£| = k27!, Thus we have

k251 = |L| = yo + y1 + va. (16)
Moreover for each o € FF
Y 1=k (17)
LeLl,oceLl

Finally we define a function g on £ by
g(L)=> az,—(2r+1) for LeL. (18)
neL
We have

doaly= Y > gL (19)

LeL 0<j<2 LeL;

D 30D SRR SRS SPTla

1<j<2 LeL; Lely LEeLy

) D M (IR SFTIS RS SPII]

oc€B LeL,ceL Lely LeLy
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because in the sum > 5>, . ; 9(L) every g(L) with L € L and [LNB| =3 (j €
{1,2}) is counted exactly j times. We now estimate the sums occurring at the right-hand
side of (19). If L € Ly we have g(L) < 2r — (2r + 1) = —1 and thus

Z 9(L) < —yo. (20)

LeLy

If o0 € B then
> gLy = > D a,—(2r+1k by (17) and (18)
LeL,oceLl LeLl,oel pel
= kz, + Z z, — (2r+ 1)k
pEF® d(p,0)=1

= lz, + Z z,— (I =k)xe — 2r+ 1)k
neFF d(p,0)=1
< lr+)+kr—s—(10=k)@r+1)—2r+1k
by (14),{ > k and z, > r+ 1 for o0 € B

= -5

implying

> ) g(L) < —Ns. (21)

oc€EB LEL,cEL

Furthermore, if 0 € B and L € £\ £, with ¢ € L, then L € £, implying g(L) > 0. Thus

SNg)=>" > gr)<> > g(L)<—Ns

Lely oc€B LeLy, o€l oceB LeL,oel

by (21). Inserting this, (20) and (21) in (19) we get

ZQ(L) < —=Ns—1p.

Lel

EN=>" Y 1=y +2p.

oc€B LeL,ocEL

Moreover by (17)

Thus by (16) and 0 < s < k

kNs s 2s s _
> glL) < T W= Yo i e S —E(yo +yr +yo) = —s287N
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By (16) we now have

kao = sz"

scFk LeL o€l
= D (9(L)+2r+1)
Lel
= Y g(L)+ (2r+ k2"
Lel
< —s2F (20 4 1)E2F!

and (15) follows. O

Proof of Theorem 5. Assume C' C F" is a binary code of length n with minimal distance
at least three and |C| = A(n,3). By Theorem 6 the numbers k,, o € F* defined in (8)
satisfy

(n—k+Dke+ > k,<2vh

pweFF d(u,0)=1

We now apply Lemma 5. An easy calculation shows, that (14) is satisfied for the
integers ky,, 0 € F¥ with l =n —k+1,

[2"—’“+lﬂ
r=|2—2 -1
n+1

and s defined in (4). k <1 holds by k < 2+, Now by (15) we have

An,3)=1C1= 3"k, ( F:%ﬂ —1- %) 9k=1

ocFk
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