On the failing cases of the Johnson bound for error-correcting codes

Wolfgang Haas

Albert-Ludwigs-Universität Mathematisches Institut Eckerstr. 1 79104 Freiburg, Germany

wolfgang_haas@gmx.net

Submitted: Mar 4, 2008; Accepted: Apr 4, 2008; Published: Apr 18, 2008 Mathematics Subject Classification: 94B25, 94B65

Abstract

A central problem in coding theory is to determine $A_q(n, 2e + 1)$, the maximal cardinality of a q-ary code of length n correcting up to e errors. When e is fixed and n is large, the best upper bound for A(n, 2e + 1) (the binary case) is the well-known Johnson bound from 1962. This however simply reduces to the sphere-packing bound if a Steiner system S(e + 1, 2e + 1, n) exists. Despite the fact that no such system is known whenever $e \ge 5$, they possibly exist for a set of values for n with positive density. Therefore in these cases no non-trivial numerical upper bounds for A(n, 2e + 1) are known.

In this paper the author presents a technique for upper-bounding $A_q(n, 2e + 1)$, which closes this gap in coding theory. The author extends his earlier work on the system of linear inequalities satisfied by the number of elements of certain codes lying in k-dimensional subspaces of the Hamming Space. The method suffices to give the first proof, that the difference between the sphere-packing bound and $A_q(n, 2e + 1)$ approaches infinity with increasing n whenever q and $e \ge 2$ are fixed. A similar result holds for $K_q(n, R)$, the minimal cardinality of a q-ary code of length n and covering radius R. Moreover the author presents a new bound for A(n, 3) giving for instance $A(19, 3) \le 26168$.

1 Introduction

In the whole paper let q denote an integer greater than one and Q a set with |Q| = q. The Hamming distance $d(\lambda, \rho)$ between $\lambda = (x_1, \ldots, x_n) \in Q^n$ and $\rho = (y_1, \ldots, y_n) \in Q^n$ is defined by

$$d(\lambda, \rho) = |\{i \in \{1, \dots, n\} : x_i \neq y_i\}|.$$

Let $B_q(\lambda, e)$ denote the Hamming sphere with radius e centered on $\lambda \in Q^n$,

$$B_q(\lambda, e) = \{ \rho \in Q^n : d(\rho, \lambda) \le e \}.$$

We set

$$V_q(n,e) = |B_q(\lambda,e)| = \sum_{0 \le i \le e} \binom{n}{i} (q-1)^i$$

and

$$\overline{V}_q(n,e) = |\{\rho \in Q^n : d(\rho,\lambda) = e\}|$$

for any $\lambda \in Q^n$. Assume d and R are nonnegative integers. We say, that $C \subset Q^n$ has minimum distance at least d, if

$$\forall \lambda, \rho \in C \ (\lambda \neq \rho \Rightarrow d(\lambda, \rho) \geq d)$$

holds. $C \subset Q^n$ has covering radius at most R, if

$$\forall \rho \in Q^n \; \exists \lambda \in C \quad \text{with} \quad d(\rho, \lambda) \leq \mathbf{R}$$

holds. $A_q(n, d)$ denotes the maximal cardinality of a code $C \subset Q^n$ with minimal distance at least d. $K_q(n, R)$ denotes the minimal cardinality of a code $C \subset Q^n$ with covering radius at most R. In the binary case q = 2 the subscript usually is omitted.

 $A_q(n,d)$ is the most important quantity in coding theory, since $A_q(n, 2e + 1)$ is the maximal size of a q-ary code of length n correcting up to e errors.

Much work has been done in the last decades to give bounds for $A_q(n, d)$ and $K_q(n, R)$ (see [15], [3]). Updated internet tables are given by Brouwer [2] and Kéri [12]. Especially well-known are the sphere-packing bound

$$A_q(n, 2e+1) \le \frac{q^n}{V_q(n, e)}$$

and the sphere-covering bound

$$K_q(n,R) \ge \frac{q^n}{V_q(n,R)}.$$

When n and e are comparatively small, the best upper bounds on $A_q(n, 2e + 1)$ usually are obtained via optimization. The Linear Programming Bound (LP) was introduced by Delsarte in (1972) [4]. Recently Schrijver [18] introduced an upper bound for A(n, d), which refines the classical bound of Delsarte and is computed via semidefinite programming. Even more recently, a new SDP bound for the nonbinary case was given in [5]. However, the computation of LP and SDP bounds is not tractable for large values of n.

In this case the best bound is the well-known Johnson bound [9] from 1962, which improves on the sphere-packing bound. In the binary case q = 2 a new bound was obtained by Mounits, Etzion and Litsyn [16], which always is at least as good as the Johnson bound. This bound however (like the Johnson bound) reduces to the spherepacking bound iff a Steiner system S(e + 2, 2e + 2, n + 1) exists (see [15]). A Steiner system S(t, k, v) is a collection of k-subsets (blocks) of a v-set S, such that every t-subset of S is contained in exactly one of the blocks. More information about Steiner systems can be found in every monograph on design theory, see for instance [1].

Despite the fact, that no system S(e+2, 2e+2, n+1) is known whenever $e \ge 4$, they possibly exist for a set of integers n of positive density when e is fixed (see [15]). Therefore in these cases no nontrivial numerical upper bounds for A(n, 2e+1) are known.

In this paper the author makes use of a third method for upper-bounding $A_q(n, 2e+1)$, which closes this gap in coding theory. The author extends his earlier work [6] on the system of linear inequalities satisfied by the number of elements of a code with covering radius one lying in k-dimensional subspaces of Q^n . In this paper the author applies a corresponding system for error-correcting codes, which in full generality is due to Quistorff [17]. The method was introduced in the late 1960s and early 1970s by Kamps, van Lint [11] and Horten, Kalbfleisch, Stanton [10], [20]. It was used in several papers, mainly for lower-bounding $K_q(n, R)$, see for instance Haas [6], [7], Habsieger [8], Quistorff [17] or Lang, Quistorff, Schneider [13]. Most papers deal with bounded values of k. Like in [6] we present an approach, where k is unlimited with increasing n. The method is strong enough to give the first proof (to the authors best knowledge) of the following theorem.

Theorem 1. Whenever q and $e \ge 2$ are fixed, then

$$\frac{q^n}{V_q(n,e)} - A_q(n,2e+1) \to \infty \text{ for } n \to \infty.$$

Since it is well-known, that $V_q(n, e)$ divides q^n at most for a finite set of values for n when q and $e \ge 2$ are fixed (a consequence of a classical theorem of Siegel [19] on Diophantine approximation, see also [15]), Theorem 1 immediately follows from

Theorem 2. If $V_q(n, e)$ does not divide q^n ,

$$n \ge \exp 96 \tag{1}$$

and

$$1 \le e \le \frac{\log n}{6(\log\log n + \log q)},\tag{2}$$

then

$$A_q(n, 2e+1) \le \frac{q^n}{V_q(n, e)} - \frac{1}{2}q^{\frac{1}{6q}n^{\frac{1}{2e}}}$$

The quantities $K_q(n, R)$ and $A_q(n, d)$ are connected by the well-known Lobstein-van Wee bound (see [14] and [21])

$$K_q(n,R) \ge \frac{q^n - A_q(n,2R+1)\binom{2R}{R}}{V_q(n,R) - \binom{2R}{R}}$$
(3)

whenever $n \ge 2R$, so that improved bounds on $A_q(n, 2e+1)$ may lead to improved bounds on $K_q(n, R)$. Using (3), from Theorem 2 we derive **Theorem 3.** If $V_q(n, R)$ does not divide q^n ,

 $n \ge \exp 96$

and

$$1 \le R \le \frac{\log n}{6(\log \log n + \log q)},$$

then

$$K_q(n,R) \ge \frac{q^n}{V_q(n,R)} + \frac{1}{2}q^{\frac{7}{48q}n^{\frac{1}{2R}}}$$

From this we get

Theorem 4. Whenever q and $R \ge 2$ are fixed, then

$$K_q(n,R) - \frac{q^n}{V_q(n,R)} \to \infty \text{ for } n \to \infty.$$

In the binary case q = 2 and e = 1 we modify Theorem 3 in [7] to get a new upper bound for A(n,3), which appears to be the best known in many cases, including the case n = 4p - 1 with a prime $p \ge 5$.

Theorem 5. If $1 \le k \le \frac{n+1}{2}$, then

$$A(n,3) \le \left(2\left\lceil\frac{2^{n-k}+k}{n+1}\right\rceil - 1 - \frac{s}{k}\right)2^{k-1}$$

with

$$s = \min\left\{ \left\lceil \frac{2^{n-k} + k}{n+1} \right\rceil (n+1) - 2^{n-k} - k; k \right\}.$$
 (4)

Applying Theorem 5 with n = 19, k = 9 and n = 27, k = 13 gives the following

Corollary 1.

$$\begin{array}{rcl} A(19,3) &\leq & 26168 & (26208 \ [15]), \\ A(27,3) &\leq & 4792950 & (4793472 \ [16]). \end{array}$$

This paper is organized as follows. Section 2 contains some lemmas. In the sections 3, 4, 5 we prove the Theorems 2, 3, 5 respectively.

2 Some Lemmas

Lemma 1. For $1 \le e \le n$ we have

$$V_q(n,e) \le (qn)^e.$$

Proof. Since $n - k \le (e - k)(n - e + 1)$ for $0 \le k \le e - 1$, we get

$$V_q(n,e) = \sum_{0 \le i \le e} \binom{n}{i} (q-1)^i \le \sum_{0 \le i \le e} \binom{e}{i} (q-1)^i (n-e+1)^i$$

= $(1+(q-1)(n-e+1))^e \le (qn)^e.$

Lemma 2. For $1 \le e \le \frac{n}{2}$ we have

$$V_q(n, e-1) \le \frac{4e}{qn} V_q(n, e).$$

Proof. Since $q \ge 2$ and $\binom{n}{i+1} / \binom{n}{i} = (n-i)/(i+1) \ge (n-e+1)/e$ for $0 \le i \le e-1$, we get

$$V_q(n,e) = \sum_{0 \le i \le e} {n \choose i} (q-1)^i$$

$$\geq \sum_{0 \le i \le e-1} {n \choose i+1} (q-1)^{i+1}$$

$$\geq \frac{(q-1)(n-e+1)}{e} V_q(n,e-1)$$

$$\geq \frac{qn}{4e} V_q(n,e-1).$$

The next Lemma generalizes Lemma 3 in [6]. Here $\|\xi\|$ means the difference from ξ to a nearest integer.

Lemma 3. Let n, s, e be integers with $n \ge 3$, $1 \le e \le n$ and $3e \log n + 1 \le s \le n$. If $V_q(n, e)$ does not divide q^n , then there exists an integer k with $s - 3e \log n \le k \le s$ satisfying

$$\left\|\frac{q^{n-k}}{V_q(n,e)}\right\| \ge \frac{1}{2q}.$$
(5)

Proof. Since $V_q(n, e)$ does not divide q^n , we get

$$\theta := \left\| \frac{q^{n-s}}{V_q(n,e)} \right\| > 0.$$

Let *m* be the smallest nonnegative integer satisfying $q^m \theta \ge 1/(2q)$. We have $q^m \theta \le 1/2$, which is obvious if m = 0 and follows from the minimality of *m* otherwise. This implies

$$\left\|\frac{q^{n-k}}{V_q(n,e)}\right\| = \left\|q^m \frac{q^{n-s}}{V_q(n,e)}\right\| = \|q^m\theta\| = q^m\theta \ge \frac{1}{2q}$$

with k := s - m, proving (5). Lemma 1 implies

$$\frac{1}{(qn)^e} \leq \frac{1}{V_q(n,e)} \leq \theta \leq \frac{1}{2q^m}$$

and therefore

$$m \le \frac{e\log(qn) - \log 2}{\log q} < e\left(1 + \frac{\log n}{\log q}\right) \le 3e\log n,$$

which means $s - 3e \log n \le k \le s$.

Lemma 4. Let k, r, e be integers with $1 \leq e \leq k$. Assume k_{σ} is an integer for each $\sigma \in Q^k$. If for every $\sigma \in Q^k$

$$\min_{\substack{\mu \in Q^k \\ d(\mu,\sigma) \le e}} k_{\mu} \le r - (k_{\sigma} - r) V_q(k, e)$$
(6)

is satisfied, then we have

$$\sum_{\sigma \in Q^k} k_\sigma \le rq^k$$

Proof. By (6) there is a function f defined on Q^k , such that for each $\sigma \in Q^k$ the element $f(\sigma) = \mu \in Q^k$ satisfies $d(\mu, \sigma) \leq e$ and

$$k_{\mu} \le r - (k_{\sigma} - r)V_q(k, e). \tag{7}$$

We set

$$A = \{ \sigma \in Q^k : k_{\sigma} > r \}, \\ B = \{ \mu \in Q^k : \exists \sigma \in A \text{ with } f(\sigma) = \mu \}.$$

For $\mu \in B$ we have $k_{\mu} \leq r$ by (7) and thus A, B are disjoint. For $\mu \in B$ we set

$$A_{\mu} = \{ \sigma \in A : f(\sigma) = \mu \} \cup \{ \mu \}.$$

The sets $A_{\mu}, \mu \in B$ are pairwise disjoint. For $\mu \in B$ we have $A_{\mu} \cap A \neq \emptyset$. Thus for $\mu \in B$ we may fix $\sigma_{\mu} \in A_{\mu} \cap A$ with $k_{\sigma_{\mu}} = \max_{\sigma \in A_{\mu} \cap A} k_{\sigma}$. For $\mu \in B$

$$\sum_{\sigma \in A_{\mu}} k_{\sigma} = \sum_{\sigma \in A_{\mu} \cap A} k_{\sigma} + k_{\mu}$$

$$\leq |A_{\mu} \cap A| k_{\sigma_{\mu}} + r - (k_{\sigma_{\mu}} - r) V_q(k, e) \quad \text{by (7)}$$

$$\leq |A_{\mu} \cap A| k_{\sigma_{\mu}} + r - (k_{\sigma_{\mu}} - r) |A_{\mu} \cap A|$$

$$= r(1 + |A_{\mu} \cap A|)$$

$$= r|A_{\mu}|.$$

By $A \subset \bigcup_{\mu \in B} A_{\mu}$ we have $k_{\sigma} \leq r$ for $\sigma \in Q^k - \bigcup_{\mu \in B} A_{\mu}$. Thus

$$\sum_{\sigma \in Q^k} k_\sigma = \sum_{\mu \in B} \sum_{\sigma \in A_\mu} k_\sigma + \sum_{\sigma \in Q^k - \bigcup_{\mu \in B} A_\mu} k_\sigma$$
$$\leq r \sum_{\mu \in B} |A_\mu| + r(\sum_{\sigma \in Q^k} 1 - \sum_{\mu \in B} |A_\mu|)$$
$$= rq^k.$$

The electronic journal of combinatorics 15 (2008), #R55

3 Proof of Theorem 2

Without proof we first state our main tool, Quistorff's system of linear inequalities. Assume $C \subset Q^n$. For $\sigma \in Q^k$, $1 \le k \le n$ we define

$$Q_{\sigma}^{n} = \{(x_{1}, \dots, x_{k}, \dots, x_{n}) \in Q^{n} : (x_{1}, \dots, x_{k}) = \sigma\},$$

$$k_{\sigma} = |C \cap Q_{\sigma}^{n}|.$$

$$(8)$$

Theorem 6 (Quistorff [17]). Assume $1 \le e \le k < n$. If $C \subset Q^n$ has minimal distance at least 2e + 1, then for each $\sigma \in Q^k$ we have

$$\sum_{\substack{0 \le i \le e \\ d(\mu,\sigma)=i}} \sum_{\substack{\mu \in Q^k \\ d(\mu,\sigma)=i}} k_{\mu} V_q(n-k, e-i) \le q^{n-k}.$$

For the proof of Theorem 2 let $C \subset Q^n$ be a code with minimal distance at least 2e+1and $|C| = A_q(n, 2e+1)$. We set

$$s = \left\lfloor \frac{1}{4q} n^{\frac{1}{2e}} \right\rfloor.$$

By (1) and (2) we have $\log 4 \leq \log \frac{1}{24} + \log \log n$ and $e \leq \log n$. Thus

$$\begin{aligned} \log 4 + \log e + \log \log n &\leq \log 4 + 2 \log \log n \\ &\leq \log \frac{1}{24} + 3 \log \log n \\ &\leq \log \frac{1}{24} - \log q + 3 (\log \log n + \log q) \\ &\leq \log \frac{1}{24} - \log q + \frac{1}{2e} \log n \quad \text{by (2).} \end{aligned}$$

Exponentiation yields

$$3e\log n + 1 \le 4e\log n \le \frac{1}{24q}n^{\frac{1}{2e}} \le \frac{1}{4q}n^{\frac{1}{2e}} - 1 \le s \le \frac{n}{2}.$$
(9)

We therefore may apply Lemma 3 and find an integer k in the interval $[s - 3e \log n, s]$, such that (5) is satisfied. By (9) we have

$$k-1 \geq s - 3e \log n - 1$$

$$\geq \frac{1}{4q} n^{\frac{1}{2e}} - 2(3e \log n + 1)$$

$$\geq \frac{1}{6q} n^{\frac{1}{2e}}$$

$$(10)$$

and

$$1 \le e \le k \le s \le \frac{n}{2}.\tag{11}$$

Moreover, since $(16e)^{1/(2e)}$ is decreasing for $e \ge 1$,

$$k \le s \le \frac{1}{4q} n^{\frac{1}{2e}} \le \frac{1}{(16e)^{1/(2e)}q} n^{\frac{1}{2e}},$$

which by Lemma 1 implies

$$n \ge 16e(qk)^{2e} \ge 16eV_q^2(k,e).$$
 (12)

We now set

$$r = \left\lfloor \frac{q^{n-k}}{V_q(n,e)} \right\rfloor.$$

From (5) follows

$$r + \frac{1}{2q} \le \frac{q^{n-k}}{V_q(n,e)} \le r + 1 - \frac{1}{2q}.$$
(13)

Now consider the numbers $k_{\sigma}, \sigma \in Q^k$ defined in (8). We fix $\sigma \in Q^k$ and set

$$N = \min_{\substack{\mu \in Q^k \\ d(\mu,\sigma) \le e}} k_{\mu} \le k_{\sigma}.$$

By (11) we may apply Theorem 6 to get

$$q^{n-k} \geq \sum_{0 \leq i \leq e} \sum_{\substack{\mu \in Q^k \\ d(\mu,\sigma)=i}} k_{\mu} V_q(n-k,e-i)$$

$$\geq k_{\sigma} V_q(n-k,e) + N \sum_{1 \leq i \leq e} \overline{V}_q(k,i) V_q(n-k,e-i)$$

$$= k_{\sigma} V_q(n,e) - (k_{\sigma} - N) \sum_{1 \leq i \leq e} \overline{V}_q(k,i) V_q(n-k,e-i)$$

$$\geq k_{\sigma} V_q(n,e) - (k_{\sigma} - N) V_q(k,e) V_q(n,e-1)$$

$$\geq k_{\sigma} V_q(n,e) - (k_{\sigma} - N) \frac{4e}{qn} V_q(k,e) V_q(n,e) \quad \text{by Lemma 2}$$

$$\geq k_{\sigma} V_q(n,e) - (k_{\sigma} - N) \frac{V_q(n,e)}{4q V_q(k,e)} \quad \text{by (12)}$$

and thus

$$r+1-\frac{1}{2q} \ge \frac{q^{n-k}}{V_q(n,e)} \ge k_{\sigma} - \frac{k_{\sigma} - N}{4qV_q(k,e)}.$$

by (13). We now apply Lemma 4. Assume $k_{\sigma} > r$. Then

$$\frac{k_{\sigma}-r}{2q} \le k_{\sigma}-r-1+\frac{1}{2q} \le \frac{k_{\sigma}-N}{4qV_q(k,e)},$$

which is equivalent to

$$\min_{\substack{\mu \in Q^k \\ d(\mu,\sigma) \le e}} k_{\mu} = N \le k_{\sigma} - 2(k_{\sigma} - r)V_q(k, e)$$

$$= r + (k_{\sigma} - r) - 2(k_{\sigma} - r)V_q(k, e)$$

$$\le r - (k_{\sigma} - r)V_q(k, e).$$

Therefore the proposition (6) in Lemma 4 is satisfied for the numbers k_{σ} defined in (8) (the case $k_{\sigma} \leq r$ is trivial). An application of Lemma 4 now yields

$$\begin{aligned} A_{q}(n, 2e+1) &= |C| &= \sum_{\sigma \in Q^{k}} k_{\sigma} \\ &\leq rq^{k} \\ &\leq \left(\frac{q^{n-k}}{V_{q}(n, e)} - \frac{1}{2q}\right) q^{k} \quad \text{by (13)} \\ &= \frac{q^{n}}{V_{q}(n, e)} - \frac{1}{2}q^{k-1} \\ &\leq \frac{q^{n}}{V_{q}(n, e)} - \frac{1}{2}q^{\frac{1}{6q}n^{\frac{1}{2e}}} \quad \text{by (10),} \end{aligned}$$

completing the proof of Theorem 2.

4 Proof of Theorem 3

The propositions of Theorem 2 are satisfied for e = R and we get

$$A_q(n, 2R+1) \le \frac{q^n}{V_q(n, R)} - \frac{1}{2}q^{\frac{1}{6q}n^{\frac{1}{2R}}}.$$

This inserted in (3) yields

$$K_q(n,R) \ge \frac{q^n}{V_q(n,R)} + \frac{q^{\frac{1}{6q}n^{\frac{1}{2R}}}}{2V_q(n,R)}.$$

By Lemma 1 we have

$$V_q(n, R) \leq (qn)^R$$

= exp(R log qn)
$$\leq exp(2R \log q \log n)$$

$$\leq exp\left(\frac{1}{48q}n^{\frac{1}{2R}}\log q\right) \qquad \text{by (9) (with } e = R)$$

= $q^{\frac{1}{48q}n^{\frac{1}{2R}}}$

and Theorem 3 follows.

The electronic journal of combinatorics 15 (2008), #R55

5 Proof of Theorem 5

Let $\mathbf{F} = \{0, 1\}$ denote the finite field with two elements. We start with

Lemma 5. Let k, l, r and s be integers with $1 \le k \le l$ and $0 \le s \le k$. Assume the integers $x_{\sigma}, \sigma \in \mathbf{F}^k$ satisfy

$$lx_{\sigma} + \sum_{\mu \in \mathbf{F}^{k}, d(\mu, \sigma) = 1} x_{\mu} \le l(r+1) + kr - s$$
(14)

for each $\sigma \in \mathbf{F}^k$. Then

$$\sum_{\sigma \in \mathbf{F}^k} x_{\sigma} \le \left(2r + 1 - \frac{s}{k}\right) 2^{k-1}.$$
(15)

Proof. Put

$$B = \{ \sigma \in \mathbf{F}^k : x_\sigma > r \}, \quad N = |B|.$$

For $\sigma \in \mathbf{F}^k$, $1 \le i \le k$ and $0 \le j \le 2$ we define

$$L(\sigma, i) = \{ \mu \in \mathbf{F}^k : \mu \text{ and } \sigma \text{ differ at most in the } i\text{th coordinate} \},$$

$$\mathcal{L} = \{ L(\sigma, i) : \sigma \in \mathbf{F}^k, \ 1 \le i \le k \},$$

$$\mathcal{L}_j = \{ L \in \mathcal{L} : |L \cap B| = j \},$$

$$y_j = |\mathcal{L}_j|.$$

One easily gets |L| = 2 for $L \in \mathcal{L}$ and $|\mathcal{L}| = k2^{k-1}$. Thus we have

$$k2^{k-1} = |\mathcal{L}| = y_0 + y_1 + y_2. \tag{16}$$

Moreover for each $\sigma \in \mathbf{F}^k$

$$\sum_{L \in \mathcal{L}, \sigma \in L} 1 = k.$$
(17)

Finally we define a function g on \mathcal{L} by

$$g(L) = \sum_{\mu \in L} x_{\mu} - (2r+1) \quad \text{for } L \in \mathcal{L}.$$
(18)

We have

$$\sum_{L \in \mathcal{L}} g(L) = \sum_{0 \le j \le 2} \sum_{L \in \mathcal{L}_j} g(L)$$

$$= \frac{1}{2} \sum_{1 \le j \le 2} j \sum_{L \in \mathcal{L}_j} g(L) + \frac{1}{2} \sum_{L \in \mathcal{L}_1} g(L) + \sum_{L \in \mathcal{L}_0} g(L)$$

$$= \frac{1}{2} \sum_{\sigma \in B} \sum_{L \in \mathcal{L}, \sigma \in L} g(L) + \frac{1}{2} \sum_{L \in \mathcal{L}_1} g(L) + \sum_{L \in \mathcal{L}_0} g(L),$$
(19)

because in the sum $\sum_{\sigma \in B} \sum_{L \in \mathcal{L}, \sigma \in L} g(L)$ every g(L) with $L \in \mathcal{L}$ and $|L \cap B| = j$ $(j \in \{1, 2\})$ is counted exactly j times. We now estimate the sums occurring at the right-hand side of (19). If $L \in \mathcal{L}_0$ we have $g(L) \leq 2r - (2r + 1) = -1$ and thus

$$\sum_{L \in \mathcal{L}_0} g(L) \le -y_0.$$
⁽²⁰⁾

If $\sigma \in B$ then

$$\sum_{L \in \mathcal{L}, \sigma \in L} g(L) = \sum_{L \in \mathcal{L}, \sigma \in L} \sum_{\mu \in L} x_{\mu} - (2r+1)k \text{ by (17) and (18)}$$

= $kx_{\sigma} + \sum_{\mu \in \mathbf{F}^{k}, d(\mu, \sigma) = 1} x_{\mu} - (2r+1)k$
= $lx_{\sigma} + \sum_{\mu \in \mathbf{F}^{k}, d(\mu, \sigma) = 1} x_{\mu} - (l-k)x_{\sigma} - (2r+1)k$
 $\leq l(r+1) + kr - s - (l-k)(r+1) - (2r+1)k$
by (14), $l \geq k$ and $x_{\sigma} \geq r+1$ for $\sigma \in B$
= $-s$

implying

$$\sum_{\sigma \in B} \sum_{L \in \mathcal{L}, \sigma \in L} g(L) \le -Ns.$$
(21)

Furthermore, if $\sigma \in B$ and $L \in \mathcal{L} \setminus \mathcal{L}_1$ with $\sigma \in L$, then $L \in \mathcal{L}_2$ implying g(L) > 0. Thus

$$\sum_{L \in \mathcal{L}_1} g(L) = \sum_{\sigma \in B} \sum_{L \in \mathcal{L}_1, \sigma \in L} g(L) \le \sum_{\sigma \in B} \sum_{L \in \mathcal{L}, \sigma \in L} g(L) \le -Ns$$

by (21). Inserting this, (20) and (21) in (19) we get

$$\sum_{L \in \mathcal{L}} g(L) \le -Ns - y_0.$$

Moreover by (17)

$$kN = \sum_{\sigma \in B} \sum_{L \in \mathcal{L}, \sigma \in L} 1 = y_1 + 2y_2$$

Thus by (16) and $0 \leq s \leq k$

$$\sum_{L \in \mathcal{L}} g(L) \le -\frac{kNs}{k} - y_0 = -y_0 - \frac{s}{k}y_1 - \frac{2s}{k}y_2 \le -\frac{s}{k}(y_0 + y_1 + y_2) = -s2^{k-1}.$$

The electronic journal of combinatorics 15 (2008), #R55

By (16) we now have

$$k \sum_{\sigma \in \mathbf{F}^{k}} x_{\sigma} = \sum_{L \in \mathcal{L}} \sum_{\sigma \in L} x_{\sigma}$$
$$= \sum_{L \in \mathcal{L}} (g(L) + 2r + 1)$$
$$= \sum_{L \in \mathcal{L}} g(L) + (2r + 1)k2^{k-1}$$
$$\leq -s2^{k-1} + (2r + 1)k2^{k-1}$$

and (15) follows.

Proof of Theorem 5. Assume $C \subset \mathbf{F}^n$ is a binary code of length n with minimal distance at least three and |C| = A(n, 3). By Theorem 6 the numbers $k_{\sigma}, \sigma \in \mathbf{F}^k$ defined in (8) satisfy

$$(n-k+1)k_{\sigma} + \sum_{\mu \in \mathbf{F}^k, d(\mu,\sigma)=1} k_{\mu} \le 2^{n-k}.$$

We now apply Lemma 5. An easy calculation shows, that (14) is satisfied for the integers $k_{\sigma}, \sigma \in \mathbf{F}^k$ with l = n - k + 1,

$$r = \left\lceil \frac{2^{n-k} + k}{n+1} \right\rceil - 1$$

and s defined in (4). $k \leq l$ holds by $k \leq \frac{n+1}{2}$. Now by (15) we have

$$A(n,3) = |C| = \sum_{\sigma \in \mathbf{F}^k} k_{\sigma} \le \left(2 \left\lceil \frac{2^{n-k} + k}{n+1} \right\rceil - 1 - \frac{s}{k} \right) 2^{k-1}.$$

14		

Acknowledgement

I wish to thank Jörn Quistorff (Berlin), who informed me on his important system of linear inequalities for error-correcting codes [17], and Laurent Habsieger (Lyon), whose fine paper [8] inspired me to the present work. I am also grateful to anonymous referees for valuable remarks concerning the history of the problem and technical improvements as well as simplifications for section 2.

References

 T. BETH, D. JUNGNICKEL, H. LENZ, *Design Theory*, Cambridge University Press, 1999, 2nd edition.

- [2] A. BROUWER, Tables of general binary codes, http://www.win.tue.nl/~aeb/codes/binary-1.html.
- [3] G. COHEN, I.S. HONKALA, S. LITSYN, A. LOBSTEIN, *Covering codes*, North Holland Mathematical Library, vol 54, 1997, Elsevier.
- [4] PH. DELSARTE, Bounds for unrestricted codes, by linear programming, Philips Res. Repts. 27 (1972), 272-289.
- [5] D. GIJSWIJT, A. SCHRIJVER, H. TANAKA, New upper bounds for nonbinary codes based on the Terwilliger algebra and semidefinite programming, J. Comb. Theory, Ser. A 113 (8) (2006), 1719-1731.
- [6] W. HAAS, Lower bounds for q-ary codes of covering radius one, Discr. Mathematics 219 (2000), 97-106.
- [7] W. HAAS, Binary and ternary codes with covering radius one: Some new lower bounds, Discr. Mathematics 256 (2002), 161-178.
- [8] L. HABSIEGER, Lower bounds for q-ary coverings by spheres of radius one, J. Comb. Theory Ser. A 67 (1994), 199-222.
- S. M. JOHNSON, A new upper bound for error-correcting codes, IEEE Trans. Inform. Th. 8 (1962), 203-207.
- [10] J. G. KALBFLEISCH, R. G. STANTON, J. D. HORTEN, On covering sets and errorcorrecting codes, J. Comb. Theory 11 (1971), 233-250.
- [11] H. J. L. KAMPS, J. H. VAN LINT, The football pool problem for 5 matches, J. Comb. Theory 3 (1967), 315-325.
- [12] G. KÉRI, Tables for Covering Codes, http://www.sztaki.hu/~ keri/codes/.
- [13] W. LANG, J. QUISTORFF, E. SCHNEIDER, New Results on Integer Programming for Codes, Cong. Numer. 188 (2007), 97-107.
- [14] A. C. LOBSTEIN, Contributions au codage combinatoire; ordres additifs, rayon de recouvrements, Thesè, Télékom, France, (1985), 163 pp.
- [15] F.J. MACWILLIAMS, N.J.A. SLOANE, The Theory of Error-Correcting Codes, Amsterdam, North-Holland, 1977.
- [16] B. MOUNITS, T. ETZION, S. LITSYN, Improved Upper Bounds on Sizes of Codes, IEEE Trans. Inform. Th. 48 (2002), 880-886.
- [17] J. QUISTORFF, Improved Sphere Bounds in Finite Metric Spaces, Bull. of the ICA 46 (2006), 69-80.
- [18] A. SCHRIJVER, New code upper bounds from the Terwilliger algebra and semidefinite programming, IEEE Trans. Inform. Th. 51 (2005), 2859-2866.
- [19] C. L. SIEGEL, Approximation algebraischer Zahlen, Math. Zeit. 10 (1921), 173-213.
- [20] R. G. STANTON, J. G. KALBFLEISCH, Intersection inequalities for the covering problem, SIAM J. Appl. Math. 17 (1969), 1311-1316.
- [21] G. J. M. VAN WEE, Some new lower bounds for binary and ternary covering codes, IEEE Trans. Inform. Th. 39 (1993), 1422-1424.