On the failing cases of the Johnson bound for error-correcting codes

Wolfgang Haas
Albert-Ludwigs-Universität
Mathematisches Institut
Eckerstr. 1
79104 Freiburg, Germany
wolfgang_haas@gmx.net

Submitted: Mar 4, 2008; Accepted: Apr 4, 2008; Published: Apr 18, 2008
Mathematics Subject Classification: 94B25, 94B65

Abstract

A central problem in coding theory is to determine $A_{q}(n, 2 e+1)$, the maximal cardinality of a q-ary code of length n correcting up to e errors. When e is fixed and n is large, the best upper bound for $A(n, 2 e+1)$ (the binary case) is the well-known Johnson bound from 1962. This however simply reduces to the sphere-packing bound if a Steiner system $S(e+1,2 e+1, n)$ exists. Despite the fact that no such system is known whenever $e \geq 5$, they possibly exist for a set of values for n with positive density. Therefore in these cases no non-trivial numerical upper bounds for $A(n, 2 e+1)$ are known.

In this paper the author presents a technique for upper-bounding $A_{q}(n, 2 e+1)$, which closes this gap in coding theory. The author extends his earlier work on the system of linear inequalities satisfied by the number of elements of certain codes lying in k-dimensional subspaces of the Hamming Space. The method suffices to give the first proof, that the difference between the sphere-packing bound and $A_{q}(n, 2 e+1)$ approaches infinity with increasing n whenever q and $e \geq 2$ are fixed. A similar result holds for $K_{q}(n, R)$, the minimal cardinality of a q-ary code of length n and covering radius R. Moreover the author presents a new bound for $A(n, 3)$ giving for instance $A(19,3) \leq 26168$.

1 Introduction

In the whole paper let q denote an integer greater than one and Q a set with $|Q|=q$. The Hamming distance $d(\lambda, \rho)$ between $\lambda=\left(x_{1}, \ldots, x_{n}\right) \in Q^{n}$ and $\rho=\left(y_{1}, \ldots, y_{n}\right) \in Q^{n}$ is defined by

$$
d(\lambda, \rho)=\left|\left\{i \in\{1, \ldots, n\}: x_{i} \neq y_{i}\right\}\right| .
$$

Let $B_{q}(\lambda, e)$ denote the Hamming sphere with radius e centered on $\lambda \in Q^{n}$,

$$
B_{q}(\lambda, e)=\left\{\rho \in Q^{n}: d(\rho, \lambda) \leq e\right\} .
$$

We set

$$
V_{q}(n, e)=\left|B_{q}(\lambda, e)\right|=\sum_{0 \leq i \leq e}\binom{n}{i}(q-1)^{i}
$$

and

$$
\bar{V}_{q}(n, e)=\left|\left\{\rho \in Q^{n}: d(\rho, \lambda)=e\right\}\right|
$$

for any $\lambda \in Q^{n}$. Assume d and R are nonnegative integers. We say, that $C \subset Q^{n}$ has minimum distance at least d, if

$$
\forall \lambda, \rho \in C(\lambda \neq \rho \Rightarrow d(\lambda, \rho) \geq d)
$$

holds. $C \subset Q^{n}$ has covering radius at most R, if

$$
\forall \rho \in Q^{n} \exists \lambda \in C \quad \text { with } \quad d(\rho, \lambda) \leq \mathrm{R}
$$

holds. $A_{q}(n, d)$ denotes the maximal cardinality of a code $C \subset Q^{n}$ with minimal distance at least d. $K_{q}(n, R)$ denotes the minimal cardinality of a code $C \subset Q^{n}$ with covering radius at most R. In the binary case $q=2$ the subscript usually is omitted.
$A_{q}(n, d)$ is the most important quantity in coding theory, since $A_{q}(n, 2 e+1)$ is the maximal size of a q-ary code of length n correcting up to e errors.

Much work has been done in the last decades to give bounds for $A_{q}(n, d)$ and $K_{q}(n, R)$ (see [15], [3]). Updated internet tables are given by Brouwer [2] and Kéri [12]. Especially well-known are the sphere-packing bound

$$
A_{q}(n, 2 e+1) \leq \frac{q^{n}}{V_{q}(n, e)}
$$

and the sphere-covering bound

$$
K_{q}(n, R) \geq \frac{q^{n}}{V_{q}(n, R)}
$$

When n and e are comparatively small, the best upper bounds on $A_{q}(n, 2 e+1)$ usually are obtained via optimization. The Linear Programming Bound (LP) was introduced by Delsarte in (1972) [4]. Recently Schrijver [18] introduced an upper bound for $A(n, d)$, which refines the classical bound of Delsarte and is computed via semidefinite programming. Even more recently, a new SDP bound for the nonbinary case was given in [5]. However, the computation of LP and SDP bounds is not tractable for large values of n.

In this case the best bound is the well-known Johnson bound [9] from 1962, which improves on the sphere-packing bound. In the binary case $q=2$ a new bound was obtained by Mounits, Etzion and Litsyn [16], which always is at least as good as the Johnson bound. This bound however (like the Johnson bound) reduces to the spherepacking bound iff a Steiner system $S(e+2,2 e+2, n+1)$ exists (see [15]). A Steiner
system $S(t, k, v)$ is a collection of k-subsets (blocks) of a v-set S, such that every t-subset of S is contained in exactly one of the blocks. More information about Steiner systems can be found in every monograph on design theory, see for instance [1].

Despite the fact, that no system $S(e+2,2 e+2, n+1)$ is known whenever $e \geq 4$, they possibly exist for a set of integers n of positive density when e is fixed (see [15]). Therefore in these cases no nontrivial numerical upper bounds for $A(n, 2 e+1)$ are known.

In this paper the author makes use of a third method for upper-bounding $A_{q}(n, 2 e+1)$, which closes this gap in coding theory. The author extends his earlier work [6] on the system of linear inequalities satisfied by the number of elements of a code with covering radius one lying in k-dimensional subspaces of Q^{n}. In this paper the author applies a corresponding system for error-correcting codes, which in full generality is due to Quistorff [17]. The method was introduced in the late 1960s and early 1970s by Kamps, van Lint [11] and Horten, Kalbfleisch, Stanton [10], [20]. It was used in several papers, mainly for lower-bounding $K_{q}(n, R)$, see for instance Haas [6], [7], Habsieger [8], Quistorff [17] or Lang, Quistorff, Schneider [13]. Most papers deal with bounded values of k. Like in [6] we present an approach, where k is unlimited with increasing n. The method is strong enough to give the first proof (to the authors best knowledge) of the following theorem.

Theorem 1. Whenever q and $e \geq 2$ are fixed, then

$$
\frac{q^{n}}{V_{q}(n, e)}-A_{q}(n, 2 e+1) \rightarrow \infty \text { for } n \rightarrow \infty
$$

Since it is well-known, that $V_{q}(n, e)$ divides q^{n} at most for a finite set of values for n when q and $e \geq 2$ are fixed (a consequence of a classical theorem of Siegel [19] on Diophantine approximation, see also [15]), Theorem 1 immediately follows from

Theorem 2. If $V_{q}(n, e)$ does not divide q^{n},

$$
\begin{equation*}
n \geq \exp 96 \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
1 \leq e \leq \frac{\log n}{6(\log \log n+\log q)} \tag{2}
\end{equation*}
$$

then

$$
A_{q}(n, 2 e+1) \leq \frac{q^{n}}{V_{q}(n, e)}-\frac{1}{2} q^{\frac{1}{6 q} n^{\frac{1}{2 e}}}
$$

The quantities $K_{q}(n, R)$ and $A_{q}(n, d)$ are connected by the well-known Lobstein-van Wee bound (see [14] and [21])

$$
\begin{equation*}
K_{q}(n, R) \geq \frac{q^{n}-A_{q}(n, 2 R+1)\binom{2 R}{R}}{V_{q}(n, R)-\binom{2 R}{R}} \tag{3}
\end{equation*}
$$

whenever $n \geq 2 R$, so that improved bounds on $A_{q}(n, 2 e+1)$ may lead to improved bounds on $K_{q}(n, R)$. Using (3), from Theorem 2 we derive

Theorem 3. If $V_{q}(n, R)$ does not divide q^{n},

$$
n \geq \exp 96
$$

and

$$
1 \leq R \leq \frac{\log n}{6(\log \log n+\log q)}
$$

then

$$
K_{q}(n, R) \geq \frac{q^{n}}{V_{q}(n, R)}+\frac{1}{2} q^{\frac{7}{48 q} n \frac{1}{2 R}}
$$

From this we get
Theorem 4. Whenever q and $R \geq 2$ are fixed, then

$$
K_{q}(n, R)-\frac{q^{n}}{V_{q}(n, R)} \rightarrow \infty \text { for } n \rightarrow \infty
$$

In the binary case $q=2$ and $e=1$ we modify Theorem 3 in [7] to get a new upper bound for $A(n, 3)$, which appears to be the best known in many cases, including the case $n=4 p-1$ with a prime $p \geq 5$.

Theorem 5. If $1 \leq k \leq \frac{n+1}{2}$, then

$$
A(n, 3) \leq\left(2\left\lceil\frac{2^{n-k}+k}{n+1}\right\rceil-1-\frac{s}{k}\right) 2^{k-1}
$$

with

$$
\begin{equation*}
s=\min \left\{\left\lceil\frac{2^{n-k}+k}{n+1}\right\rceil(n+1)-2^{n-k}-k ; k\right\} . \tag{4}
\end{equation*}
$$

Applying Theorem 5 with $n=19, k=9$ and $n=27, k=13$ gives the following

Corollary 1.

$$
\begin{aligned}
& A(19,3) \leq 26168 \quad(26208[15]) \\
& A(27,3) \leq 4792950 \quad(4793472[16])
\end{aligned}
$$

This paper is organized as follows. Section 2 contains some lemmas. In the sections $3,4,5$ we prove the Theorems 2, 3, 5 respectively.

2 Some Lemmas

Lemma 1. For $1 \leq e \leq n$ we have

$$
V_{q}(n, e) \leq(q n)^{e}
$$

Proof. Since $n-k \leq(e-k)(n-e+1)$ for $0 \leq k \leq e-1$, we get

$$
\begin{aligned}
V_{q}(n, e) & =\sum_{0 \leq i \leq e}\binom{n}{i}(q-1)^{i} \leq \sum_{0 \leq i \leq e}\binom{e}{i}(q-1)^{i}(n-e+1)^{i} \\
& =(1+(q-1)(n-e+1))^{e} \leq(q n)^{e} .
\end{aligned}
$$

Lemma 2. For $1 \leq e \leq \frac{n}{2}$ we have

$$
V_{q}(n, e-1) \leq \frac{4 e}{q n} V_{q}(n, e) .
$$

Proof. Since $q \geq 2$ and $\binom{n}{i+1} /\binom{n}{i}=(n-i) /(i+1) \geq(n-e+1) / e$ for $0 \leq i \leq e-1$, we get

$$
\begin{aligned}
V_{q}(n, e) & =\sum_{0 \leq i \leq e}\binom{n}{i}(q-1)^{i} \\
& \geq \sum_{0 \leq i \leq e-1}\binom{n}{i+1}(q-1)^{i+1} \\
& \geq \frac{(q-1)(n-e+1)}{e} V_{q}(n, e-1) \\
& \geq \frac{q n}{4 e} V_{q}(n, e-1) .
\end{aligned}
$$

The next Lemma generalizes Lemma 3 in [6]. Here $\|\xi\|$ means the difference from ξ to a nearest integer.

Lemma 3. Let n, s, e be integers with $n \geq 3,1 \leq e \leq n$ and $3 e \log n+1 \leq s \leq n$. If $V_{q}(n, e)$ does not divide q^{n}, then there exists an integer k with $s-3 e \log n \leq k \leq s$ satisfying

$$
\begin{equation*}
\left\|\frac{q^{n-k}}{V_{q}(n, e)}\right\| \geq \frac{1}{2 q} . \tag{5}
\end{equation*}
$$

Proof. Since $V_{q}(n, e)$ does not divide q^{n}, we get

$$
\theta:=\left\|\frac{q^{n-s}}{V_{q}(n, e)}\right\|>0 .
$$

Let m be the smallest nonnegative integer satisfying $q^{m} \theta \geq 1 /(2 q)$. We have $q^{m} \theta \leq 1 / 2$, which is obvious if $m=0$ and follows from the minimality of m otherwise. This implies

$$
\left\|\frac{q^{n-k}}{V_{q}(n, e)}\right\|=\left\|q^{m} \frac{q^{n-s}}{V_{q}(n, e)}\right\|=\left\|q^{m} \theta\right\|=q^{m} \theta \geq \frac{1}{2 q}
$$

with $k:=s-m$, proving (5). Lemma 1 implies

$$
\frac{1}{(q n)^{e}} \leq \frac{1}{V_{q}(n, e)} \leq \theta \leq \frac{1}{2 q^{m}}
$$

and therefore

$$
m \leq \frac{e \log (q n)-\log 2}{\log q}<e\left(1+\frac{\log n}{\log q}\right) \leq 3 e \log n
$$

which means $s-3 e \log n \leq k \leq s$.
Lemma 4. Let k, r, e be integers with $1 \leq e \leq k$. Assume k_{σ} is an integer for each $\sigma \in Q^{k}$. If for every $\sigma \in Q^{k}$

$$
\begin{equation*}
\min _{\substack{\mu \in Q^{k} \\ d(\mu, \sigma) \leq e}} k_{\mu} \leq r-\left(k_{\sigma}-r\right) V_{q}(k, e) \tag{6}
\end{equation*}
$$

is satisfied, then we have

$$
\sum_{\sigma \in Q^{k}} k_{\sigma} \leq r q^{k}
$$

Proof. By (6) there is a function f defined on Q^{k}, such that for each $\sigma \in Q^{k}$ the element $f(\sigma)=\mu \in Q^{k}$ satisfies $d(\mu, \sigma) \leq e$ and

$$
\begin{equation*}
k_{\mu} \leq r-\left(k_{\sigma}-r\right) V_{q}(k, e) . \tag{7}
\end{equation*}
$$

We set

$$
\begin{aligned}
& A=\left\{\sigma \in Q^{k}: k_{\sigma}>r\right\} \\
& B=\left\{\mu \in Q^{k}: \exists \sigma \in A \text { with } f(\sigma)=\mu\right\} .
\end{aligned}
$$

For $\mu \in B$ we have $k_{\mu} \leq r$ by (7) and thus A, B are disjoint. For $\mu \in B$ we set

$$
A_{\mu}=\{\sigma \in A: f(\sigma)=\mu\} \cup\{\mu\}
$$

The sets $A_{\mu}, \mu \in B$ are pairwise disjoint. For $\mu \in B$ we have $A_{\mu} \cap A \neq \emptyset$. Thus for $\mu \in B$ we may fix $\sigma_{\mu} \in A_{\mu} \cap A$ with $k_{\sigma_{\mu}}=\max _{\sigma \in A_{\mu} \cap A} k_{\sigma}$. For $\mu \in B$

$$
\begin{aligned}
\sum_{\sigma \in A_{\mu}} k_{\sigma} & =\sum_{\sigma \in A_{\mu} \cap A} k_{\sigma}+k_{\mu} \\
& \leq\left|A_{\mu} \cap A\right| k_{\sigma_{\mu}}+r-\left(k_{\sigma_{\mu}}-r\right) V_{q}(k, e) \quad \text { by }(7) \\
& \leq\left|A_{\mu} \cap A\right| k_{\sigma_{\mu}}+r-\left(k_{\sigma_{\mu}}-r\right)\left|A_{\mu} \cap A\right| \\
& =r\left(1+\left|A_{\mu} \cap A\right|\right) \\
& =r\left|A_{\mu}\right| .
\end{aligned}
$$

By $A \subset \cup_{\mu \in B} A_{\mu}$ we have $k_{\sigma} \leq r$ for $\sigma \in Q^{k}-\bigcup_{\mu \in B} A_{\mu}$. Thus

$$
\begin{aligned}
\sum_{\sigma \in Q^{k}} k_{\sigma} & =\sum_{\mu \in B} \sum_{\sigma \in A_{\mu}} k_{\sigma}+\sum_{\sigma \in Q^{k}-\bigcup_{\mu \in B} A_{\mu}} k_{\sigma} \\
& \leq r \sum_{\mu \in B}\left|A_{\mu}\right|+r\left(\sum_{\sigma \in Q^{k}} 1-\sum_{\mu \in B}\left|A_{\mu}\right|\right) \\
& =r q^{k}
\end{aligned}
$$

3 Proof of Theorem 2

Without proof we first state our main tool, Quistorff's system of linear inequalities. Assume $C \subset Q^{n}$. For $\sigma \in Q^{k}, 1 \leq k \leq n$ we define

$$
\begin{align*}
Q_{\sigma}^{n} & =\left\{\left(x_{1}, \ldots, x_{k}, \ldots, x_{n}\right) \in Q^{n}:\left(x_{1}, \ldots, x_{k}\right)=\sigma\right\}, \tag{8}\\
k_{\sigma} & =\left|C \cap Q_{\sigma}^{n}\right| .
\end{align*}
$$

Theorem 6 (Quistorff [17]). Assume $1 \leq e \leq k<n$. If $C \subset Q^{n}$ has minimal distance at least $2 e+1$, then for each $\sigma \in Q^{k}$ we have

$$
\sum_{\substack{0 \leq i \leq e}} \sum_{\substack{\mu \in Q^{k} \\ d(\mu, \sigma)=i}} k_{\mu} V_{q}(n-k, e-i) \leq q^{n-k}
$$

For the proof of Theorem 2 let $C \subset Q^{n}$ be a code with minimal distance at least $2 e+1$ and $|C|=A_{q}(n, 2 e+1)$. We set

$$
s=\left\lfloor\frac{1}{4 q} n^{\frac{1}{2 e}}\right\rfloor .
$$

By (1) and (2) we have $\log 4 \leq \log \frac{1}{24}+\log \log n$ and $e \leq \log n$. Thus

$$
\begin{aligned}
\log 4+\log e+\log \log n & \leq \log 4+2 \log \log n \\
& \leq \log \frac{1}{24}+3 \log \log n \\
& \leq \log \frac{1}{24}-\log q+3(\log \log n+\log q) \\
& \leq \log \frac{1}{24}-\log q+\frac{1}{2 e} \log n \quad \text { by }(2)
\end{aligned}
$$

Exponentiation yields

$$
\begin{equation*}
3 e \log n+1 \leq 4 e \log n \leq \frac{1}{24 q} n^{\frac{1}{2 e}} \leq \frac{1}{4 q} n^{\frac{1}{2 e}}-1 \leq s \leq \frac{n}{2} \tag{9}
\end{equation*}
$$

We therefore may apply Lemma 3 and find an integer k in the interval $[s-3 e \log n, s]$, such that (5) is satisfied. By (9) we have

$$
\begin{align*}
k-1 & \geq s-3 e \log n-1 \tag{10}\\
& \geq \frac{1}{4 q} n^{\frac{1}{2 e}}-2(3 e \log n+1) \\
& \geq \frac{1}{6 q} n^{\frac{1}{2 e}}
\end{align*}
$$

and

$$
\begin{equation*}
1 \leq e \leq k \leq s \leq \frac{n}{2} \tag{11}
\end{equation*}
$$

Moreover, since $(16 e)^{1 /(2 e)}$ is decreasing for $e \geq 1$,

$$
k \leq s \leq \frac{1}{4 q} n^{\frac{1}{2 e}} \leq \frac{1}{(16 e)^{1 /(2 e)} q} n^{\frac{1}{2 e}}
$$

which by Lemma 1 implies

$$
\begin{equation*}
n \geq 16 e(q k)^{2 e} \geq 16 e V_{q}^{2}(k, e) \tag{12}
\end{equation*}
$$

We now set

$$
r=\left\lfloor\frac{q^{n-k}}{V_{q}(n, e)}\right\rfloor .
$$

From (5) follows

$$
\begin{equation*}
r+\frac{1}{2 q} \leq \frac{q^{n-k}}{V_{q}(n, e)} \leq r+1-\frac{1}{2 q} \tag{13}
\end{equation*}
$$

Now consider the numbers $k_{\sigma}, \sigma \in Q^{k}$ defined in (8). We fix $\sigma \in Q^{k}$ and set

$$
N=\min _{\substack{\mu \in Q^{k} \\ d(\mu, \sigma) \leq e}} k_{\mu} \leq k_{\sigma} .
$$

By (11) we may apply Theorem 6 to get

$$
\begin{align*}
q^{n-k} & \geq \sum_{0 \leq i \leq e} \sum_{\substack{\mu \in Q^{k} \\
d(\mu, \sigma)=i}} k_{\mu} V_{q}(n-k, e-i) \\
& \geq k_{\sigma} V_{q}(n-k, e)+N \sum_{1 \leq i \leq e} \bar{V}_{q}(k, i) V_{q}(n-k, e-i) \\
& =k_{\sigma} V_{q}(n, e)-\left(k_{\sigma}-N\right) \sum_{1 \leq i \leq e} \bar{V}_{q}(k, i) V_{q}(n-k, e-i) \\
& \geq k_{\sigma} V_{q}(n, e)-\left(k_{\sigma}-N\right) V_{q}(k, e) V_{q}(n, e-1) \\
& \geq k_{\sigma} V_{q}(n, e)-\left(k_{\sigma}-N\right) \frac{4 e}{q n} V_{q}(k, e) V_{q}(n, e) \quad \text { by Lemma } 2 \\
& \geq k_{\sigma} V_{q}(n, e)-\left(k_{\sigma}-N\right) \frac{V_{q}(n, e)}{4 q V_{q}(k, e)} \quad \text { by }(12) \tag{12}
\end{align*}
$$

and thus

$$
r+1-\frac{1}{2 q} \geq \frac{q^{n-k}}{V_{q}(n, e)} \geq k_{\sigma}-\frac{k_{\sigma}-N}{4 q V_{q}(k, e)}
$$

by (13). We now apply Lemma 4 . Assume $k_{\sigma}>r$. Then

$$
\frac{k_{\sigma}-r}{2 q} \leq k_{\sigma}-r-1+\frac{1}{2 q} \leq \frac{k_{\sigma}-N}{4 q V_{q}(k, e)}
$$

which is equivalent to

$$
\begin{aligned}
\min _{\substack{\mu \in \ell^{k} \\
d(\mu, \sigma) \leq e}} k_{\mu}=N & \leq k_{\sigma}-2\left(k_{\sigma}-r\right) V_{q}(k, e) \\
& =r+\left(k_{\sigma}-r\right)-2\left(k_{\sigma}-r\right) V_{q}(k, e) \\
& \leq r-\left(k_{\sigma}-r\right) V_{q}(k, e) .
\end{aligned}
$$

Therefore the proposition (6) in Lemma 4 is satisfied for the numbers k_{σ} defined in (8) (the case $k_{\sigma} \leq r$ is trivial). An application of Lemma 4 now yields

$$
\begin{aligned}
A_{q}(n, 2 e+1)=|C| & =\sum_{\sigma \in Q^{k}} k_{\sigma} \\
& \leq r q^{k} \\
& \leq\left(\frac{q^{n-k}}{V_{q}(n, e)}-\frac{1}{2 q}\right) q^{k} \quad \text { by }(13) \\
& =\frac{q^{n}}{V_{q}(n, e)}-\frac{1}{2} q^{k-1} \\
& \leq \frac{q^{n}}{V_{q}(n, e)}-\frac{1}{2} q^{\frac{1}{6 q} n^{\frac{1}{2 e}}} \quad \text { by }(10),
\end{aligned}
$$

completing the proof of Theorem 2.

4 Proof of Theorem 3

The propositions of Theorem 2 are satisfied for $e=R$ and we get

$$
A_{q}(n, 2 R+1) \leq \frac{q^{n}}{V_{q}(n, R)}-\frac{1}{2} q^{\frac{1}{6 q} \frac{1}{2 R}}
$$

This inserted in (3) yields

$$
K_{q}(n, R) \geq \frac{q^{n}}{V_{q}(n, R)}+\frac{q^{\frac{1}{6 q} n \frac{1}{2 R}}}{2 V_{q}(n, R)} .
$$

By Lemma 1 we have

$$
\begin{aligned}
V_{q}(n, R) & \leq(q n)^{R} \\
& =\exp (R \log q n) \\
& \leq \exp (2 R \log q \log n) \\
& \leq \exp \left(\frac{1}{48 q} n^{\frac{1}{2 R}} \log q\right) \quad \text { by }(9)(\text { with } e=R) \\
& =q^{\frac{1}{48 q}} \frac{1}{2 R}
\end{aligned}
$$

and Theorem 3 follows.

5 Proof of Theorem 5

Let $\mathbf{F}=\{0,1\}$ denote the finite field with two elements. We start with
Lemma 5. Let k, l, r and s be integers with $1 \leq k \leq l$ and $0 \leq s \leq k$. Assume the integers $x_{\sigma}, \sigma \in \boldsymbol{F}^{k}$ satisfy

$$
\begin{equation*}
l x_{\sigma}+\sum_{\mu \in \boldsymbol{F}^{k}, d(\mu, \sigma)=1} x_{\mu} \leq l(r+1)+k r-s \tag{14}
\end{equation*}
$$

for each $\sigma \in \boldsymbol{F}^{k}$. Then

$$
\begin{equation*}
\sum_{\sigma \in \boldsymbol{F}^{k}} x_{\sigma} \leq\left(2 r+1-\frac{s}{k}\right) 2^{k-1} \tag{15}
\end{equation*}
$$

Proof. Put

$$
B=\left\{\sigma \in \mathbf{F}^{k}: x_{\sigma}>r\right\}, \quad N=|B| .
$$

For $\sigma \in \mathbf{F}^{k}, 1 \leq i \leq k$ and $0 \leq j \leq 2$ we define

$$
\begin{aligned}
L(\sigma, i) & =\left\{\mu \in \mathbf{F}^{k}: \mu \text { and } \sigma \text { differ at most in the } i \text { th coordinate }\right\} \\
\mathcal{L} & =\left\{L(\sigma, i): \sigma \in \mathbf{F}^{k}, 1 \leq i \leq k\right\} \\
\mathcal{L}_{j} & =\{L \in \mathcal{L}:|L \cap B|=j\} \\
y_{j} & =\left|\mathcal{L}_{j}\right|
\end{aligned}
$$

One easily gets $|L|=2$ for $L \in \mathcal{L}$ and $|\mathcal{L}|=k 2^{k-1}$. Thus we have

$$
\begin{equation*}
k 2^{k-1}=|\mathcal{L}|=y_{0}+y_{1}+y_{2} . \tag{16}
\end{equation*}
$$

Moreover for each $\sigma \in \mathbf{F}^{k}$

$$
\begin{equation*}
\sum_{L \in \mathcal{L}, \sigma \in L} 1=k \tag{17}
\end{equation*}
$$

Finally we define a function g on \mathcal{L} by

$$
\begin{equation*}
g(L)=\sum_{\mu \in L} x_{\mu}-(2 r+1) \quad \text { for } L \in \mathcal{L} \tag{18}
\end{equation*}
$$

We have

$$
\begin{align*}
& \sum_{L \in \mathcal{L}} g(L)=\sum_{0 \leq j \leq 2} \sum_{L \in \mathcal{L}_{j}} g(L) \tag{19}\\
= & \frac{1}{2} \sum_{1 \leq j \leq 2} j \sum_{L \in \mathcal{L}_{j}} g(L)+\frac{1}{2} \sum_{L \in \mathcal{L}_{1}} g(L)+\sum_{L \in \mathcal{L}_{0}} g(L) \\
= & \frac{1}{2} \sum_{\sigma \in B} \sum_{L \in \mathcal{L}, \sigma \in L} g(L)+\frac{1}{2} \sum_{L \in \mathcal{L}_{1}} g(L)+\sum_{L \in \mathcal{L}_{0}} g(L),
\end{align*}
$$

because in the sum $\sum_{\sigma \in B} \sum_{L \in \mathcal{L}, \sigma \in L} g(L)$ every $g(L)$ with $L \in \mathcal{L}$ and $|L \cap B|=j(j \in$ $\{1,2\})$ is counted exactly j times. We now estimate the sums occurring at the right-hand side of (19). If $L \in \mathcal{L}_{0}$ we have $g(L) \leq 2 r-(2 r+1)=-1$ and thus

$$
\begin{equation*}
\sum_{L \in \mathcal{L}_{0}} g(L) \leq-y_{0} \tag{20}
\end{equation*}
$$

If $\sigma \in B$ then

$$
\begin{aligned}
\sum_{L \in \mathcal{L}, \sigma \in L} g(L) & =\sum_{L \in \mathcal{L}, \sigma \in L} \sum_{\mu \in L} x_{\mu}-(2 r+1) k \quad \text { by }(17) \text { and }(18) \\
& =k x_{\sigma}+\sum_{\mu \in \mathbf{F}^{k}, d(\mu, \sigma)=1} x_{\mu}-(2 r+1) k \\
& =l x_{\sigma}+\sum_{\mu \in \mathbf{F}^{k}, d(\mu, \sigma)=1} x_{\mu}-(l-k) x_{\sigma}-(2 r+1) k \\
\leq & l(r+1)+k r-s-(l-k)(r+1)-(2 r+1) k \\
& \text { by }(14), l \geq k \text { and } x_{\sigma} \geq r+1 \text { for } \sigma \in B \\
& =-s
\end{aligned}
$$

implying

$$
\begin{equation*}
\sum_{\sigma \in B} \sum_{L \in \mathcal{L}, \sigma \in L} g(L) \leq-N s \tag{21}
\end{equation*}
$$

Furthermore, if $\sigma \in B$ and $L \in \mathcal{L} \backslash \mathcal{L}_{1}$ with $\sigma \in L$, then $L \in \mathcal{L}_{2}$ implying $g(L)>0$. Thus

$$
\sum_{L \in \mathcal{L}_{1}} g(L)=\sum_{\sigma \in B} \sum_{L \in \mathcal{\mathcal { L } _ { 1 }}, \sigma \in L} g(L) \leq \sum_{\sigma \in B} \sum_{L \in \mathcal{L}, \sigma \in L} g(L) \leq-N s
$$

by (21). Inserting this, (20) and (21) in (19) we get

$$
\sum_{L \in \mathcal{L}} g(L) \leq-N s-y_{0}
$$

Moreover by (17)

$$
k N=\sum_{\sigma \in B} \sum_{L \in \mathcal{L}, \sigma \in L} 1=y_{1}+2 y_{2} .
$$

Thus by (16) and $0 \leq s \leq k$

$$
\sum_{L \in \mathcal{L}} g(L) \leq-\frac{k N s}{k}-y_{0}=-y_{0}-\frac{s}{k} y_{1}-\frac{2 s}{k} y_{2} \leq-\frac{s}{k}\left(y_{0}+y_{1}+y_{2}\right)=-s 2^{k-1}
$$

By (16) we now have

$$
\begin{aligned}
k \sum_{\sigma \in \mathbf{F}^{k}} x_{\sigma} & =\sum_{L \in \mathcal{L}} \sum_{\sigma \in L} x_{\sigma} \\
& =\sum_{L \in \mathcal{L}}(g(L)+2 r+1) \\
& =\sum_{L \in \mathcal{L}} g(L)+(2 r+1) k 2^{k-1} \\
& \leq-s 2^{k-1}+(2 r+1) k 2^{k-1}
\end{aligned}
$$

and (15) follows.
Proof of Theorem 5. Assume $C \subset \mathbf{F}^{n}$ is a binary code of length n with minimal distance at least three and $|C|=A(n, 3)$. By Theorem 6 the numbers $k_{\sigma}, \sigma \in \mathbf{F}^{k}$ defined in (8) satisfy

$$
(n-k+1) k_{\sigma}+\sum_{\mu \in \mathbf{F}^{k}, d(\mu, \sigma)=1} k_{\mu} \leq 2^{n-k} .
$$

We now apply Lemma 5. An easy calculation shows, that (14) is satisfied for the integers $k_{\sigma}, \sigma \in \mathbf{F}^{k}$ with $l=n-k+1$,

$$
r=\left\lceil\frac{2^{n-k}+k}{n+1}\right\rceil-1
$$

and s defined in (4). $k \leq l$ holds by $k \leq \frac{n+1}{2}$. Now by (15) we have

$$
A(n, 3)=|C|=\sum_{\sigma \in \mathbf{F}^{k}} k_{\sigma} \leq\left(2\left\lceil\frac{2^{n-k}+k}{n+1}\right\rceil-1-\frac{s}{k}\right) 2^{k-1}
$$

Acknowledgement

I wish to thank Jörn Quistorff (Berlin), who informed me on his important system of linear inequalities for error-correcting codes [17], and Laurent Habsieger (Lyon), whose fine paper [8] inspired me to the present work. I am also grateful to anonymous referees for valuable remarks concerning the history of the problem and technical improvements as well as simplifications for section 2.

References

[1] T. Beth, D. Jungnickel, H. Lenz, Design Theory, Cambridge University Press, 1999, 2nd edition.
[2] A. Brouwer, Tables of general binary codes, http://www.win.tue.nl/~aeb/codes/binary-1.html.
[3] G. Cohen, I.S. Honkala, S. Litsyn, A. Lobstein, Covering codes, North Holland Mathematical Library, vol 54, 1997, Elsevier.
[4] Ph. Delsarte, Bounds for unrestricted codes, by linear programming, Philips Res. Repts. 27 (1972), 272-289.
[5] D. Gijswijt, A. Schrijver, H. tanaka, New upper bounds for nonbinary codes based on the Terwilliger algebra and semidefinite programming, J. Comb. Theory, Ser. A 113 (8) (2006), 1719-1731.
[6] W. HaAs, Lower bounds for q-ary codes of covering radius one, Discr. Mathematics 219 (2000), 97-106.
[7] W. HaAs, Binary and ternary codes with covering radius one: Some new lower bounds, Discr. Mathematics 256 (2002), 161-178.
[8] L. HABSIEGER, Lower bounds for q-ary coverings by spheres of radius one, J. Comb. Theory Ser. A 67 (1994), 199-222.
[9] S. M. Johnson, A new upper bound for error-correcting codes, IEEE Trans. Inform. Th. 8 (1962), 203-207.
[10] J. G. Kalbfleisch, R. G. Stanton, J. D. Horten, On covering sets and errorcorrecting codes, J. Comb. Theory 11 (1971), 233-250.
[11] H. J. L. Kamps, J. H. van Lint, The football pool problem for 5 matches, J. Comb. Theory 3 (1967), 315-325.
[12] G. KÉri, Tables for Covering Codes, http://www.sztaki.hu/~ keri/codes/.
[13] W. Lang, J. Quistorff, E. Schneider, New Results on Integer Programming for Codes, Cong. Numer. 188 (2007), 97-107.
[14] A. C. Lobstein, Contributions au codage combinatoire; ordres additifs, rayon de recouvrements, Thesè, Télékom, France, (1985), 163 pp.
[15] F.J. MacWilliams, N.J.A. Sloane, The Theory of Error-Correcting Codes, Amsterdam, North-Holland, 1977.
[16] B. Mounits, T. Etzion, S. Litsyn, Improved Upper Bounds on Sizes of Codes, IEEE Trans. Inform. Th. 48 (2002), 880-886.
[17] J. Quistorff, Improved Sphere Bounds in Finite Metric Spaces, Bull. of the ICA 46 (2006), 69-80.
[18] A. Schrijver, New code upper bounds from the Terwilliger algebra and semidefinite programming, IEEE Trans. Inform. Th. 51 (2005), 2859-2866.
[19] C. L. Siegel, Approximation algebraischer Zahlen, Math. Zeit. 10 (1921), 173-213.
[20] R. G. Stanton, J. G. Kalbfleisch, Intersection inequalities for the covering problem, SIAM J. Appl. Math. 17 (1969), 1311-1316.
[21] G. J. M. van Wee, Some new lower bounds for binary and ternary covering codes, IEEE Trans. Inform. Th. 39 (1993), 1422-1424.

