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Abstract

An edge-colored graph G is rainbow connected if any two vertices are connected
by a path whose edges have distinct colors. The rainbow connection number of a
connected graph G, denoted rc(G), is the smallest number of colors that are needed
in order to make G rainbow connected. In this paper we prove several non-trivial
upper bounds for rc(G), as well as determine sufficient conditions that guarantee
rc(G) = 2. Among our results we prove that if G is a connected graph with n
vertices and with minimum degree 3 then rc(G) < 5n/6, and if the minimum degree
is δ then rc(G) ≤ ln δ

δ n(1 + oδ(1)). We also determine the threshold function for
a random graph to have rc(G) = 2 and make several conjectures concerning the
computational complexity of rainbow connection.

∗Research supported in part by the Hungarian Scientific Research Fund, OTKA grant T-049613

the electronic journal of combinatorics 15 (2008), #R57 1



1 Introduction

All graphs in this paper are finite, undirected and simple. We follow the notation and
terminology of [2]. Connectivity is perhaps the most fundamental graph-theoretic prop-
erty. There are many ways to strengthen the connectivity property, such as requiring
hamiltonicity, k-connectivity, imposing bounds on the diameter, requiring the existence
of edge-disjoint spanning trees, and so on.

A natural and interesting quantifiable way to strengthen the connectivity requirement
was recently introduced by Chartrand et al. in [6]. An edge-colored graph G is rainbow

connected if any two vertices are connected by a path whose edges have distinct colors.
Clearly, if a graph is rainbow connected, then it is also connected. Conversely, any
connected graph has a trivial edge coloring that makes it rainbow connected; just color
each edge with a distinct color. Thus, one can properly define the rainbow connection

number of a connected graph G, denoted rc(G), as the smallest number of colors that are
needed in order to make G rainbow connected. An easy observation is that if G has n
vertices then rc(G) ≤ n − 1, since one may color the edges of a given spanning tree with
distinct colors, and color the remaining edges with one of the already used colors or, as
we shall equivalently and conveniently assume throughout this paper, leave the remaining
edges uncolored. Chartrand et al. computed the precise rainbow connection number of
several graph classes including complete multipartite graphs [6]. We note also the trivial
fact that rc(G) = 1 if and only if G is a clique, the (almost) trivial fact that rc(G) = n−1
if and only if G is a tree, and the easy observation that a cycle with k > 3 vertices has
rainbow connection number dk/2e. Also notice that, clearly, rc(G) ≥ diam(G) where
diam(G) denotes the diameter of G.

Our goal in this paper is to study the extremal graph-theoretic behavior of rainbow
connection. Motivated by the fact that there are graphs with minimum degree 2 and with
rc(G) = n − 3 (just take two vertex-disjoint triangles and connect them by a path of
length n − 5), and by the fact that cliques have rc(G) = 1, it is interesting to study the
behavior of rc(G) with respect to the minimum degree δ(G). Our main results relate the
minimum degree of a graph with its rainbow connection number.

Is it true that minimum degree at least 3 guarantees rc(G) ≤ αn where α < 1 is
independent of n? This turns out to be correct, although certainly not trivial. Indeed,
we prove:

Theorem 1.1 If G is a connected graph with n vertices and δ(G) ≥ 3 then rc(G) < 5n/6.

The constant 5/6 appearing in the proof of Theorem 1.1 is not optimal, but we are
unable to improve it significantly. In fact, it provably cannot be replaced with a constant
smaller than 3/4, since, as we shall see, there are 3-regular connected graphs with rc(G) =
diam(G) = (3n − 10)/4. In fact, we conjecture:

Conjecture 1.2 If G is a connected graph with n vertices and δ(G) ≥ 3 then rc(G) <
3n/4.

We are able to assert Conjecture 1.2 in the case of 3-regular class-1 graphs (recall that a
graph G is class-1 if its chromatic index χ′(G) is equal to its maximum degree). This is
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a special case of the following theorem that improves the bound in Theorem 1.1 in many
cases.

Theorem 1.3 Suppose G is a connected graph with n vertices, and assume that there is

a set of vertex-disjoint cycles that cover all but s vertices of G. Then rc(G) < 3n/4 +
s/4 − 1/2. In particular:

1. If G has a 2-factor then rc(G) < 3n/4.

2. If G is k-regular and k is even then rc(G) < 3n/4.

3. If G is k-regular and χ′(G) = k then rc(G) < 3n/4.

Not surprisingly, as the minimum degree increases, the rainbow connection number
decreases. Specifically, we can prove the following upper bound.

Theorem 1.4 Let G be a connected graph with n vertices and minimum degree δ. Then,

rc(G) ≤ min{ n
ln δ

δ
(1 + oδ(1)) , n

4 ln δ + 3

δ
}.

Already for δ = 18, Theorem 1.4 gives a better bound 0.81 for rc(G) than the bound
0.833 from Theorem 1.1. We do not know how far Theorem 1.4 is from being tight, but
in any case it cannot be improved below 3n

δ+1
− δ+7

δ+1
as there are connected n-vertex graphs

with minimum degree δ and this diameter.
Our next two results give non-trivial sufficient conditions for having rc(G) = 2. As

noted earlier, having diameter 2 is a necessary requirement for having rc(G) = 2, although
certainly not sufficient (e.g., consider a star). Clearly, if δ(G) ≥ n/2 then diam(G) = 2,
but we do not know if this guarantees rc(G) = 2. The next theorem shows that by slightly
increasing the minimum degree assumption, rc(G) = 2 follows.

Theorem 1.5 Any non-complete graph with δ(G) ≥ n/2 + log n has rc(G) = 2.

Another intriguing question is the random graph setting. Let G = G(n, p) denote,
as usual, the random graph with n vertices and edge probability p. In the extensive
study of the properties of random graphs, many researchers observed that there are sharp
threshold functions for various natural graph properties. For a graph property A and for
a function p = p(n), we say that G(n, p) satisfies A almost surely if the probability that
G(n, p(n)) satisfies A tends to 1 as n tends to infinity. We say that a function f(n) is a
sharp threshold function for the property A if there are two positive constants c and C
so that G(n, cf(n)) almost surely does not satisfy A and G(n, p) satisfies A almost surely
for all p ≥ Cf(n). It is well known that all monotone graph properties have a sharp
threshold (see [3] and [7]). Since having rc(G) ≤ 2 is a monotone graph property (adding
edges does not destroy this property), it has a sharp threshold function. The following
theorem establishes it.

Theorem 1.6 p =
√

log n/n is a sharp threshold function for the property rc(G(n, p)) ≤
2.
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The rest of this paper is organized as follows. The next section is devoted to the proofs
relating minimum degree with the rainbow connection number. In particular, Theorems
1.1, 1.3, and 1.4 are proved. Section 3 consists of the proofs of Theorems 1.5 and 1.6. The
final section contains some concluding remarks and open problems, mainly concerning the
computational complexity aspects of rainbow connection.

2 Bounded degree graphs

2.1 Minimum degree 3

In this subsection we prove Theorem 1.1. We start with a simple lemma that will be
useful in many of the results of this paper.

Lemma 2.1 If G is a connected graph and H1, . . . , Hk is a partition of the vertex set of

G into connected subgraphs then rc(G) ≤ k − 1 +
∑k

i=1 rc(Hi).

Proof: Contracting each Hi to a single vertex we obtain a connected minor of G with
k vertices. This minor has rainbow connection number at most k − 1. We color each
edge connecting vertices in distinct Hi with the color of the corresponding minor edge.
For each i = 1, . . . , k, the edges inside each Hi are colored with a dedicated set of rc(Hi)
colors.

Notice that in Lemma 2.1 we allow the Hi to be singletons (and the rainbow connection
number of singletons is 0).

The following proposition is an important ingredient in the proof of Theorem 1.1.

Proposition 2.2 If G is a 2-connected graph with n vertices then rc(G) ≤ 2n/3.

Proof: If G is a 5-cycle then rc(G) = 3 so the proposition clearly holds in this case.
Otherwise, let H be a maximal connected subgraph of G having the property that rc(H) ≤
2h/3− 2/3, where h is the number of vertices of H. We first claim that H exists. Indeed,
if G has a triangle then already taking H to be a triangle we obtain rc(H) = 1 ≤ 2− 2/3.
Otherwise, if G has any cycle of length k ≥ 4 and k 6= 5, then already taking H to be
such a cycle we obtain rc(H) = dk/2e ≤ 2k/3− 2/3. Otherwise, if each cycle of G is a C5

then taking H to be a C5 attached to one additional edge we obtain rc(H) = 3, h = 6,
and 3 ≤ 4 − 2/3.

We next claim that h ≥ n − 2. Indeed, assume first that there are three distinct
vertices outside of H, say x1, x2, x3, each having two neighbors in H (the neighbors of xi

do not have to be distinct from the neighbors of xj). We can add x1, x2, x3 to H and form
a larger subgraph H ′ with h + 3 vertices. Suppose ei, fi are two edges connecting xi with
H. We use only two new colors to color the 6 designated edges; e1, e2, e3 all get the same
color and f1, f2, f3 all get the same color. We now have

rc(H ′) ≤ rc(H) + 2 ≤ 2h/3 − 2/3 + 2 = 2(h + 3)/3 − 2/3
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contradicting the maximality of H. It follows that if there are three vertices outside of
H then at least one of these vertices, say x, has the property that a shortest path from
H to H passing through x has length at least 3 (notice that there must be such a path
as the graph is 2-connected). Let, therefore, a, x1, . . . , xt, b be a path with a, b ∈ H, with
x1, . . . , xt /∈ H, and t ≥ 2. We can add x1, . . . , xt to H and form a larger subgraph H ′

with h + t vertices. If t is odd we can color the t + 1 edges of the path with (t + 1)/2 new
colors. In the first half of the path the colors are all distinct, and the same ordering of
colors is repeated in the second half of the path. It is straightforward to verify that H ′ is
rainbow connected. If t is even, we can color the t + 1 edges of the path with t/2 colors
as follows. The middle edge (xt/2, xt/2+1) receives any color that already appears in H.
The first t/2 edges of the path all receive distinct new colors and in the last t/2 edges of
the path this coloring is repeated in the same order. Again, it is straightforward to verify
that H ′ is rainbow connected. We now have

rc(H ′) ≤ rc(H) + dt/2e ≤ 2h/3 − 2/3 + dt/2e ≤ 2(h + t)/3 − 2/3

contradicting the maximality of H.
Having proved that h ≥ n−2 we now clearly have rc(G) ≤ 2(n−2)/3−2/3+2 = 2n/3

as claimed.

Although the following asymptotic improvement of Proposition 2.2 does not yield a
better bound for Theorem 1.1 it does yield the best possible coefficient of n if we look for
an upper bound of the form cn + o(n) on rc(G) for 2-connected graphs.

Theorem 2.3 If G is a 2-connected graph on n vertices, then rc(G) ≤ n/2 + O(
√

n).

Proof: A suitable edge coloring of G will be constructed sequentially, starting with a cycle
on some number n0 of vertices and making it rainbow connected with dn0/2e ≤ n0/2+1/2
colors. We assume that until the current stage of the procedure, a subgraph G′ of G has
been made rainbow connected, with n′ vertices and n′/2 + c colors.

We have seen in the proof of Proposition 2.2 that if a path P of length t has both
endpoints in G′ but is internally disjoint from G′, then the t edges of P require as few
as bt/2c new colors to make G′ ∪ P rainbow connected. This step keeps the value of c
unchanged if t is odd, and increases c with 1/2 if t is even. Our goal is to prove that
c = O(

√
n) holds when the entire G is edge-colored.

The key idea is to proceed with adding paths in non-increasing order of length.
Let t denote the maximum path length that can currently be added, and let P =
a, x1, . . . , xt−1, b be such a path, having its endpoints a, b in G′ and its internal vertices
xi outside G′. Observe that no path of length t (or more) and being internally disjoint
from G′ ∪ P can join any xi to any vertex of G′ ∪ P , otherwise t would not be maximum.
Consequently, inserted paths of the same length are internally vertex-disjoint, and once
we finish with t, we can never return to length t or more.

If t is odd, the value of c remains the same after path insertion. Suppose that t is
even. If just one or two paths of length t can be added before we continue the procedure
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with length t − 1, then, applying the coloring pattern described earlier, the value of c
increases with 1/2 or 1, respectively. If three or more paths of length t are added, we
multicolor all those paths with the same t new colors (in the same order). In this way a
rainbow-connected subgraph is obtained. For three or more paths we insert at least 3t−3
internal vertices, but use just t < (3t − 3)/2 colors if t ≥ 4, what makes c decrease. If
t = 2, c does not increase unless three paths are inserted, in which case c increases with
1/2.

The worst case for counting this upper bound on rc(G)− n/2 is when each even path
length 2, 4, . . . , ` occurs precisely two times (and no odd lengths). Even then, rc(G) −
n/2 ≤ `/2 holds. Since

∑`/2

i=1(2i−1) < n/2 is valid for this particular sequence, we obtain
` = O(

√
n) and the theorem follows.

Recall that a graph is bridgeless if the removal of an edge does not increase the number
of connected components.

Proposition 2.4 If G is a connected bridgeless graph with n vertices then rc(G) ≤ 4n/5−
1.

Proof: Consider first the case where G is 2-connected. By Proposition 2.2, rc(G) ≤
b2n/3c ≤ 4n/5 − 1 for all n ≥ 7. Since a 2-connected graph contains a cycle we have by
Lemma 2.1 that rc(G) ≤ n− 2 and notice that n− 2 ≤ 4n/5− 1 for n = 3, 4, 5. The only
remaining case is, therefore n = 6, and we need to show that rc(G) ≤ 3 in this case. If
the longest cycle in G has length 6 then rc(G) ≤ 3. If the longest cycle has length 5 then
G is the graph consisting of the 5-cycle and another vertex of degree 2 whose neighbors
are two non-adjacent vertices of the cycle. It is straightforward to check that this graph
has rc(G) = 3. If the longest cycle has length 4 then G is K2,4 which has rc(G) = 2. A
2-connected graph with 6 vertices always has a cycle of length at least 4.

Having proved the proposition for 2-connected graphs, we prove it for connected
bridgeless graphs by induction on the number of 2-connected components. Let X be
the set of vertices of a 2-connected component of G so that X contains only one cut-
vertex, say x (recall that such a 2-connected component always exists). Consider the
subgraph H of G induced by (V (G) \ X) ∪ {x}. It has n − |X| + 1 vertices and is
connected, bridgeless, and with one less 2-connected component. By the induction hy-
pothesis, rc(H) ≤ 4(n − |X| + 1)/5 − 1. Since X induces a 2-connected graph, we have
rc(X) ≤ 4|X|/5− 1. Hence, rc(G) ≤ 4n/5− 2 +4/5 < 4n/5− 1, completing the proof.

Proof of Theorem 1.1: We are given a connected graph G = (V, E) with n vertices
and minimum degree at least 3. Let B ⊂ E denote the set of bridges of G. If B = ∅
we are done by Proposition 2.4. Thus, we may assume B 6= ∅. Let C denote the set of
connected components of G′ = (V, E \ B). Notice that C contains at least two elements.
There are two types of elements in C, singletons and connected bridgeless subgraphs of
G. Let S ⊂ C denote the singletons and let D = C \ S. Each element of S is, therefore, a
vertex, and each element of D is a subset of vertices that induces a connected bridgeless
subgraph.
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We construct a rooted tree T whose nodes are the elements of C using the following
standard recursive definition. The root of T is some arbitrarily chosen element of C. The
children of a node C are all the elements of C that are reachable from C via a single
bridge, other than the parent of C in T (the root of T is the only node without a parent).
The leaves of T are the nodes without children. Notice that since C contains at least
two elements, so does T , and hence the root is not a leaf. For convenience, we order the
children of a node C from left to right and denote by `(C) the leftmost child and by r(C)
the rightmost child. It may be that `(C) = r(C) if C has only one child, and for leaves
we define `(C) = r(C) = ∅. Finally, we define L(C) to be the leftmost leaf in the subtree
of T rooted at C (if C is a leaf then L(C) = C).

Let L ⊂ C denote the set of leaves of T . Notice that L is, in fact, a subset of D
because each singleton in S is incident with at least three bridges, while the leaves of T
are incident with only one bridge; the bridge connecting them to their parent in T . The
same reasoning shows that for s ∈ S, we have that s has at least two children in T and
hence `(s) 6= r(s). It now follows that |S| ≤ |L|. Indeed, the mapping s → L(r(s)) is
one-to-one from S to L.

Another important feature of the elements of L is that they each contain at least four
vertices. Indeed, if X ∈ L then X is a connected bridgeless subgraph of G that is incident
with only one bridge. Any vertex of X other than the one incident with that bridge has
all of its neighbors in X, and as G has minimum degree at least 3, we have |X| ≥ 4.
We further partition S into two parts, S ′ are all those singletons s for which L(r(s)) has
cardinality 4, and S ′′ are all those singletons s for which L(r(s)) has cardinality at least
5. We now have:

|S| + 4|S ′| + 5|S ′′| = 5|S ′| + 6|S ′′| ≤ n. (1)

We now color E making G rainbow connected. The edges of each element X ∈ D are
colored using 4|X|/5 − 1 dedicated colors. This can be achieved using Proposition 2.4.
We also color the unique bridge connecting X to its parent in T (unless X is the root of
T ) using one dedicated color, altogether using 4|X|/5 colors. Likewise, for each s ∈ S we
color the unique bridge connecting s to its parent in T (unless X is the root of T ) using
one dedicated color. Notice that this process colors all the edges of G. Altogether we
have used at most

|S| − 1 +
4

5

∑

X∈D

|X| =
4

5
n +

1

5
|S| − 1

colors. There is, however, some spare in the estimate above. Recall that there are at
least |S ′| elements of D that have cardinality 4. Since 2-connected graphs with cardinality
|X| = 4 can be rainbow connected using only two colors, we actually do not use 4|X|/5−1
colors in this case; rather, we use only 4|X|/5 − 6/5 colors, sparing an additional 1/5 in
the above calculation at least |S ′| times. It follows that

rc(G) ≤ 4

5
n +

1

5
|S ′′| − 1.

By (1), |S ′′| ≤ n/6. It follows that rc(G) < 5n/6, as claimed.
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2.2 General minimum degree

Proof of Theorem 1.4: A set of vertices S of G is called a connected 2-dominating set

if S induces a connected subgraph of G, and, furthermore, each vertex outside of S has at
least two neighbors in S. Let γ2c(G) denote the smallest size of a connected 2-dominating
set of G. Notice that the parameter is well-defined since, trivially, V (G) is a connected
2-dominating set of G; hence γ2c(G) ≤ n.

We claim that rc(G) ≤ γ2c(G)+1. Indeed, let S be a connected 2-dominating set with
|S| = γ2c(G). As S induces a connected subgraph, we have rc(S) ≤ γ2c(G) − 1. Using
two additional colors, say, red and blue, we can color the rest of the graph. For a vertex
v ∈ V \ S, let (v, x) and (v, y) be two distinct edges with x, y ∈ S. We color (v, x) red
and (v, y) blue, and do the same for each v ∈ V \ S. The resulting coloring clearly makes
G rainbow connected.

A special case of the main result in [5], which was also implicitly proved earlier in
[4] asserts that γ2c(G) ≤ n ln δ

δ
(1 + oδ(1)). Together with the argument in the previous

paragraph we have that rc(G) ≤ n ln δ
δ

(1 + oδ(1)), as required.
For the second, non-asymptotic part of the theorem, consider the following proba-

bilistic argument (see, e.g. [1]). We create a subset of vertices X by randomly and
independently choosing each vertex to X with probability p. Hence, the expected number
of elements of X is E[|X|] = np. Let Y be the set of vertices not belonging to X and
having no neighbor in X. The probability that v ∈ Y is at most (1 − p)δ+1. Hence,
E[|Y |] ≤ n(1 − p)δ+1. Let Z be the set of vertices not belonging to X and having pre-
cisely one neighbor in X. The probability that v ∈ Z is at most δp(1 − p)δ. Hence,
E[|Z|] ≤ nδp(1 − p)δ. Notice that W = X ∪ Y ∪ Z is a 2-dominating set, although not
necessarily a connected one. However, notice that the number of connected components
in W is at most |X| + |Y | (vertices of Z already have neighbors in X so they do not
contribute additional connected components). Now, to make W connected, notice that
it suffices to add just 2(|X| + |Y | − 1) additional vertices to W , forming a connected
2-dominating set S of G. The expected size of S is, henceforth,

E[|S|] ≤ 3np + 3n(1 − p)δ+1 + nδp(1 − p)δ − 2.

Since γ2c(G) ≤ E[|S|] we have that

rc(G) ≤ 3np + 3n(1 − p)δ+1 + nδp(1 − p)δ.

Choosing p = ln δ/δ we get that

rc(G) <
n

δ
(4 ln δ + 3).

As noted in the introduction, Theorem 1.4 cannot be improved below 3n
δ+1

− δ+7
δ+1

. To
see this, we construct a connected n-vertex graph with minimum degree δ and diameter
3n

δ+1
− δ+7

δ+1
. Take m copies of Kδ+1, denoted X1, . . . , Xm and label the vertices of Xi
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with xi,1, . . . , xi,δ+1. Take two copies of Kδ+2, denoted X0, Xm+1 and similarly label their
vertices. Now, connect xi,2 with xi+1,1 for i = 0, . . . , m with an edge, and delete the edges
(xi,1, xi,2) for i = 0, . . . , m + 1. The obtained graph has n = (m + 2)(δ + 1) + 2 vertices,
and minimum degree δ (and maximum degree δ + 1). It is straightforward to verify that
a shortest path from x0,1 to xm+1,2 has length 3m + 5 = 3n

δ+1
− δ+7

δ+1
. If δ is odd, we can,

in fact, make the graph regular. Just delete a maximum matching within X0 where the
only non-matched vertex is x0,1 and delete a maximum matching within Xm+1 where the
only non-matched vertex is xm+1,2.

2.3 Regular graphs

Proof of Theorem 1.3: We are given a connected graph G with n vertices, and a set
of pairwise vertex-disjoint cycles C1, . . . , Ct that cover n − s vertices. Let ci denote the
length of Ci for i = 1, . . . , t. As in Lemma 2.1 we notice that by adding to the set of
cycles an additional set of s + t− 1 edges we obtain a connected spanning subgraph of G
that contains t cycles and s+ t− 1 bridges. We color the bridges using s+ t− 1 dedicated
colors. Also, each even cycle of length ci is colored using ci/2 dedicated colors and each
Ci which is a triangle is colored using one dedicated color. Now, let us arbitrarily pair
the odd cycles of length at least 5. Without loss of generality assume that C1, . . . , Cp are
the odd cycles of length at least 5. We pair C2i−1 with C2i for i = 1, . . . , bp/2c (if p is
odd then Cp remains unpaired, and we color it using (cp + 1)/2 dedicated colors). We
will color these pairs of odd cycles using the following procedure. While there remains
at least one pair that is yet uncolored, pick a pair (C2i−1, C2i) with the property that
there is an already colored path between a vertex x of C2i−1 and a vertex y of C2i (there
must be at least one such pair). Let e be the unique edge of C2i−1 opposite to x (in an
odd cycle each vertex has a unique edge opposite to it). Let f be the unique edge of C2i

opposite to y. Assign to e and f the same dedicated color, assign (c2i−1 − 1)/2 dedicated
colors to properly color the remaining c2i−1 − 1 edges of C2i−1, and assign (c2i − 1)/2
dedicated colors to properly color the remaining c2i − 1 edges of C2i. Notice that we used
(c2i−1 + c2i)/2 new colors to color this pair, and that after this coloring every connected
component of the subgraph of colored edges is properly rainbow connected.

Altogether, if we let ` denote the number of triangles in our set of cycles we have that
the number of colors used to rainbow-connect G is

` +
t−
∑̀

i=1

ci/2 + s + t − 1/2 = ` +
1

2
(n − s − 3`) + s + t − 1/2.

(If p is even then we even have 1 instead of 1/2 in both sides of the last equality.) Now,
since t ≤ ` + (n − s − 3`)/4 we have, together with the last equality, that

rc(G) < 3n/4 + s/4 − 1/2

and the result follows. For the specific parts of the theorem notice that the first case follows
from the fact that in a graph with a 2-factor we can assume s = 0 in the last inequality.
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For the second and third cases we recall Petersen’s Theorem [8], which states that if k
is even, every k-regular graph is the union of k/2 2-factors. Recalling the definition of
the chromatic index, if a k-regular graph has χ′(G) = k then it is the union of k perfect
matchings, and, in particular, the union of any two perfect matchings is a 2-factor.

2.4 Small graphs

We begin this subsection with the following proposition, which, although asymptotically
inferior to the result of Theorem 1.1, is more useful for small graphs.

Proposition 2.5 If G is a connected graph with minimum degree δ then rc(G) ≤ n − δ.

Proof: The proof is trivial in the case δ = 1. Fixing δ, we prove the proposition
by induction on n where the base case n = δ + 1 is trivial since cliques have rainbow
connection number 1. So, we assume n > δ + 1.

Le K be a maximal clique of G consisting only of vertices whose degree is δ. Since there
is at least one vertex with degree δ and since G is connected we we have 1 ≤ k = |K| ≤ δ.

Consider the graph G′ obtained from G by deleting the vertices of K. Suppose the
connected components of G′ are G1, . . . , Gt where Gi has ni vertices and minimum degree
δi for i = 1, . . . , t. Let Ki ⊂ K be the vertices of K with a neighbor in Gi, and assume
that |K1| ≥ |Ki| for i = 2, . . . , t (notice that it may be that t = 1 and G′ is connected).
Consider first the case where K1 = K. By the induction hypothesis, rc(Gi) ≤ ni − δi.
Clearly, we may give the edges of K and the edges from K to G1 the same color. Hence,

rc(G) ≤ t +

t
∑

i=1

(ni − δi) = t + n − k −
t
∑

i=1

δi.

By the maximality of K, each vertex of Gi has degree at least δ − k + 1 in Gi. Hence,
δi ≥ δ − k + 1, and therefore

rc(G) ≤ t + n − k − tδ + tk − t ≤ n − tδ + (t − 1)k ≤ n − δ.

Now assume that K1 ( K but that |K1| = k1 > 1. By contracting K1 to a single
vertex v, we obtain a contraction G∗ of G with n − k1 + 1 vertices and minimum degree
δ − k1 + 1, so by induction rc(G∗) ≤ n − δ. Now, going back to G, any edge with both
endpoints not in K1 receives the same color it had in G∗. Any edge with one endpoint in
K1 receives the color of the edge of G∗ from v to that other endpoint. Any edge with both
endpoints in K1 receives the color of an edge of G∗ from v to another vertex in K \ K1.
The resulting coloring makes G rainbow connected and rc(G) ≤ n − δ.

Finally, if k1 = 1 (and since K1 ( K we have k ≥ 2), contract all of K into a single
vertex v and notice that the contracted graph G∗ also has minimum degree δ, and n−k+1
vertices. Hence, by induction, rc(G∗) ≤ n − k − δ + 1. Going back to G and coloring the
edges of the clique K with another new color, we obtain rc(G) ≤ n− k− δ +2 ≤ n− δ.
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Corollary 2.6 If G is a connected graph with n vertices and average degree d ≥ 2 then

rc(G) ≤ n − d/2 − 1.

Proof: It is well known (see, e.g., [2]) that a graph G with average degree d ≥ 2 has
a connected subgraph H with minimum degree at least d/2 + 1. By proposition 2.5,
rc(H) ≤ |H| − d/2 − 1. By Lemma 2.1, rc(G) ≤ n − |H| + rc(H) ≤ n − d/2 − 1.

3 Ensuring 2-rainbow-connection

3.1 Dense graphs

Proof of Theorem 1.5: Given a graph G with n vertices and δ(G) ≥ n/2 + log n,
we randomly color the edges with two colors, red and blue. We show that with positive
probability, such a random coloring makes G rainbow connected. Consider two non-
adjacent vertices x, y. The minimum degree requirement forces x and y to have more
than 2 log n common neighbors. Now, for each such common neighbor z, the probability
that the path x, z, y is not a rainbow path is precisely 1/2. Since the paths corresponding
to distinct common neighbors are edge-disjoint, the probability that all these paths are
not rainbow is less than (1/2)2 log n = 1/n2. Since there are less than

(

n
2

)

pairs x, y to
consider, it follows from the union bound that with positive probability, each pair of
non-adjacent vertices are connected by a rainbow path.

A bipartite graph which is not complete has diameter at least 3. A proof similar to
the proof of Theorem 1.5 gives the following result.

Theorem 3.1 Let c = 1/ log(9/7). If G is a non-complete bipartite graph with n vertices

and any two vertices in the same vertex class have at least 2c log n common neighbors in

the other vertex class, then rc(G) = 3.

Proof: The only modification needed is that now the edges are colored with three colors.
For two vertices with distance 2 the probability that a common neighbor is the center of
a non-rainbow path is only 1/3. For two vertices with distance 3 (clearly the diameter is
at most 3), say, x, y, fixing a neighbor z of x, and the color c of (x, z), the probability
that a common neighbor of y and z is the center of a non-rainbow path, or a path that
contains c, is only 7/9. Since (7/9)2c log n = 1/n2 the result follows as before.

3.2 Random graphs

Proof of Theorem 1.6: For the first part of the theorem, we need to prove that for a
sufficiently large constant C, the random graph G(n, p) with p = C

√

log n/n almost surely
has rc(G(n, p)) = 2. By the proof of theorem 1.5, it suffices to show that almost surely
any two vertices of G(n, p) have at least 2 log n common neighbors. By the union bound,
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it suffices to prove that a fixed pair of vertices does not have at least 2 log n common
neighbors with probability o(1/n2). Fixing a pair x, y, the probability of the event that
z is a common neighbor is C2 log n/n. Thus, the expected number of common neighbors
is n−2

n
(C2 log n) > 0.5c2 log n, and this is the sum of n − 2 indicator random variables of

independent events. By the standard Chernoff estimates (cf. [1] Theorem A.1.13), the
probability that the number of common neighbors is less than half of its expectation (in
this case, less than 0.25c2 log n) is o(1/n2) for C sufficiently large.

For the other direction, it suffices to prove that for a sufficiently small constant c, the
random graph G(n, p) with p = c

√

log n/n almost surely does not have diameter two. Fix
a set X of n1/5 vertices (we may and will assume that n1/5 is an even integer), and let Y
be the remaining n−n1/5 vertices. Let A be the event that X induces an independent set,
and let B be the event that there exists a pair of vertices of X with no common neighbor
in Y . Clearly, if both A and B occur then the diameter is at least 3. Hence, it suffices
to prove (separately) that for a small c, A occurs with probability approaching 1 and B
occurs with probability approaching 1.

We start with A first. For c sufficiently small we indeed have:

Pr[A] = (1 − p)(
n1/5

2 ) = (1 − c
√

log n/n)(
n1/5

2 ) = 1 − on(1).

To estimate B, let us first partition X into n1/5/2 pairs, arbitrarily. For a pair x, y, the
probability that x, y have a common neighbor in Y is precisely

1 −
(

1 − c2 log n

n

)n−n1/5

.

Thus, for c sufficiently small, the probability that all |X|/2 pairs have a common neighbor
is

(

1 −
(

1 − c2 log n

n

)n−n1/5
)n1/5/2

= on(1).

We use here the fact that the event that a pair x, y has a common neighbor in Y is
independent of all the events that other pairs have common neighbors in Y . Since the last
inequality is on(1) we have that with probability 1 − on(1) at least one of the pairs does
not have a common neighbor in Y , and, in particular, B holds.

4 Concluding remarks and open problems

• The computational status of rainbow connection is not yet determined. In fact, we
do not even know whether deciding if rc(G) = 2 is polynomial or is NP-complete.
Recall that it is straightforward to determine the diameter of a graph in polynomial
time. The main difficulty, however, lies in the fact that even if we know that
diam(G) = 2 (and, in particular, know that any two non-adjacent vertices have at
least one common neighbor), we still cannot even use this fact to bound the rainbow
connection number. We do conjecture the following:
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Conjecture 4.1 The following decision problem is NP-Complete: “Given an input

graph G, determine if rc(G) = 2”.

Notice that the problem trivially belongs to NP. More general, and therefore perhaps
easier, is the following conjecture:

Conjecture 4.2 Computing rc(G) is NP-hard.

• Theorem 1.5 asserts that minimum degree n/2+log n guarantees rc(G) = 2. Clearly,
minimum degree n/2 − 1 does not, as there are connected graphs with minimum
degree n/2 − 1 and diameter 3 (just take two vertex-disjoint cliques of order n/2
each and connect them by a single edge. It is therefore interesting to raise:

Problem 4.3 Determine the minimum degree threshold that guarantees rc(G) = 2.

• As noted in Section 2, finding the optimal bound for rc(G) given that a graph has
minimum degree k seems to be an intriguing open problem.
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