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Abstract

Let Fp be the field of residue classes modulo a prime number p. In this paper we
prove that if A,B ⊂ F

∗

p, then for any fixed ε > 0,

|A + A| + |AB| �
(

min
{

|B|,
p

|A|

})1/25−ε
|A|.

This quantifies Bourgain’s recent sum-product estimate.

1 Introduction

Let Fp be the field of residue classes modulo a prime number p and let A be a non-empty
subset of Fp. It is known from [4, 5] that if |A| < p1−δ, where δ > 0, then one has the
sum-product estimate

|A + A| + |AA| � |A|1+ε (1)

for some ε = ε(δ) > 0. This estimate and its proof has been quantified and simplified
in [3], [6]–[11]. Improving upon our earlier estimate from [6], Katz and Shen [11] have
shown that in the most nontrivial range 1 < |A| < p1/2 one has

|A + A| + |AA| � |A|14/13(log |A|)O(1).

A version of sum-product estimates with subsequent application to exponential sum
bounds is given in [3]. In particular, from [3] it follows that if 1 < |A| < p12/23, then

|A − A| + |AA| � |A|13/12(log |A|)O(1).
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We also mention that in the case |A| > p2/3 one has

max{|A + A|, |AA|} � p1/2|A|1/2,

which is optimal in general settings bound, apart from the value of the implied constant;
for the details, see [7].

Sum-product estimates in Fp for different subsets of incomparable sizes have been
obtained by Bourgain [1]. More recently, he has shown in [2] that if A, B ⊂ F

∗

p, then

|A + A| + |AB| �
(

min
{

|B|,
p

|A|

})c

|A| (2)

for some absolute positive constant c. In the present paper we prove the following explicit
version of this result.

Theorem 1. For any non-empty subsets A, B ⊂ F
∗

p and any ε > 0 we have

|A + A| + |AB| �
(

min
{

|B|,
p

|A|

})1/25−ε

|A|,

where the implied constant may depend only on ε.

Remark. One can expect that appropriate adaptation of techniques of [3] and [11] may
lead to quantitative improvement of the exponent 1/25.

2 Lemmas

Below in statements of lemmas all the subsets are assumed to be non-empty. The first
two lemmas are due to Ruzsa [12, 13]. They hold for subsets of any abelian group, but
here we state them only for subsets of Fp.

Lemma 1. For any subsets X, Y, Z of Fp we have

|X − Z| ≤
|X − Y ||Y − Z|

|Y |
.

Lemma 2. For any subsets X, B1, . . . , Bk of Fp we have

|B1 + . . . + Bk| ≤
|X + B1| . . . |X + Bk|

|X|k−1
.

In the proof of estimate (2) (as well as in the proofs of exponential sum bounds)
Bourgain used his result

|8XY − 8XY | ≥ 0.5{|X||Y |, p}

valid for any non-empty subsets X, Y ⊂ F
∗

p, see [2, Lemma 2]. In the proof of our
Theorem 1 we shall use the following lemma instead.
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Lemma 3. Let X, Y ⊂ F
∗

p, |Y | ≥ 2. Then there are elements x1, x2 ∈ X and y1, y2 ∈ Y
such that either

∣

∣

∣
(x1 − x2)Y + (y1 − y2)X + (y1 − y2)X

∣

∣

∣
≥

0.5|X|2|Y |

|XY |

or
∣

∣

∣
(x1 − x2)Y + (y1 − y2)X

∣

∣

∣
≥ 0.5p.

Thus, at the cost of a slight worsening of the right hand side, we simplify the expression
on the left hand side.

Proof. If |XY | = |X||Y | then we are done. Let |XY | < |X||Y |. Since

∑

x∈X

∑

y∈Y

|xY ∩ yX| ≥
|X|2|Y |2

|XY |
,

there are elements x0 ∈ X, y0 ∈ Y such that

|x0Y ∩ y0X| ≥
|X||Y |

|XY |
.

Let x0Y1 = x0Y ∩ y0X. Then,

Y1 ⊂ Y,
x0

y0
Y1 ⊂ X, |Y1| ≥

|X||Y |

|XY |
> 1.

If
X − X

Y1 − Y1

6= Fp,

then
X − X

Y1 − Y1
+

x0

y0
6=

X − X

Y1 − Y1
.

Thus, for some (x1, x2, y1, y2) ∈ X2 × Y 2
1 ,

x1 − x2

y1 − y2
+

x0

y0
6∈

X − X

Y1 − Y1
.

Hence,
∣

∣

∣

(x1 − x2

y1 − y2
+

x0

y0

)

Y1 + X
∣

∣

∣
= |X||Y1|.

Since
x0

y0
Y1 ⊂ X,

we conclude that

∣

∣

∣
(x1 − x2)Y1 + (y1 − y2)X + (y1 − y2)X

∣

∣

∣
≥ |X||Y1| ≥

|X|2|Y |

|XY |
.
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If
X − X

Y1 − Y1

= Fp,

then we use the well-known fact that for some z ∈ Fp we have

|X + zY1| ≥ 0.5 min{|X||Y1|, p}.

This implies that for some (x1, x2, y1, y2) ∈ X2 × Y 2
1 ,

|(x1 − x2)Y1 + (y1 − y2)X| ≥ 0.5 min{|X||Y1|, p}.

The following statement follows from the aforementioned work [7]. We shall only use
it in order to avoid a minor inconvenience that may arise when p/|A| is as small as a fixed
power of log |B|.

Lemma 4. Let A, B, C ⊂ F
∗

p. Then

|A + C||AB| � min
{

p|A|,
|A|2|B||C|

p

}

.

3 Proof of Theorem 1

If G ⊂ X × Y then for a given x ∈ X we denote by G(x) the set of all elements y ∈ Y for
which (x, y) ∈ G. The notation E+(X, Y ) is used to denote the additive energy between
X and Y, that is the number of solutions of the equation

x1 + y1 = x2 + y2, (x1, x2, y1, y2) ∈ X2 × Y 2.

We can assume that |A| > 10, |B| > 10. In view of Lemma 4, we can also assume that
p/|A| > (log |B|)100.

Let
|A + A| + |AB| = |A|∆.

Then,
∑

b∈B

∑

b′∈B

|bA ∩ b′A| ≥
|A|2|B|2

|AB|
≥

|A||B|2

∆
.

Hence, for some fixed b0 ∈ B,

∑

b∈B

|bA ∩ b0A| ≥
|A||B|

∆
. (3)

Define

B1 =
{

b ∈ B : |bA ∩ b0A| ≥
|A|

2∆

}

. (4)
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From Ruzsa’s triangle inequalities (Lemma 1 and Lemma 2 with k = 2),

|bA ± b0A| ≤
|bA + (bA ∩ b0A)| · |(bA ∩ b0A) + b0A|

|bA ∩ b0A|
≤

|A + A|2

|bA ∩ b0A|
,

which, in view of (4), implies that

|bA ± b0A| ≤
2|A + A|2∆

|A|
≤ 2|A|∆3 for any b ∈ B1. (5)

For a given a ∈ A let aB1(a) = aB1 ∩ b0A. From (3) and (4) it follows that

∑

a∈A

|B1(a)| =
∑

a∈A

|aB1 ∩ b0A| =
∑

b∈B1

|bA ∩ b0A| ≥
|A||B|

2∆
.

Obviously, we can assume that |B1| ≥ 2, since otherwise the statement is trivial from
2|B1|∆ ≥ |B|. We allot the values of |B1(a)| into duadic intervals and derive that for
some subset A0 ⊂ A and for some number N ≥ 1,

N |A0| ≥
|A||B|

8∆ log |B|
(6)

and
N ≤ |B1(a)| ≤ 2N for any a ∈ A0. (7)

In what follows, up to the inequality (10), is based on Bourgain’s idea from [2]. We
have

∑

(a,a′)∈A2

0

|B1(a) ∩ B1(a
′)| ≥

1

|B1|

(

∑

a∈A0

|B1(a)|
)2

≥
N2|A0|

2

|B1|
.

We allot the values of |B1(a) ∩ B1(a
′)| into duadic intervals and get that for some G ⊂

A0 × A0 and some number M ≥ 1,

M ≤ |B1(a) ∩ B1(a
′)| ≤ 2M for any (a, a′) ∈ G

and

M |G| ≥
N2|A0|

2

10|B1| · log |B|
.

In particular,

M ≥
N2

10|B1| · log |B|
. (8)

Let

A1 =
{

a ∈ A0 : |G(a)| ≥
N2|A0|

20M |B1| · log |B|

}

.

From
∑

a∈A0

|G(a)| = |G| ≥
N2|A0|

2

10M |B1| · log |B|
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it follows

|A1| ≥
N2|A0|

20M |B1| · log |B|
. (9)

For a given a1 ∈ A1 we shall estimate |a1B1 ± b0G(a1)| for any choice of the symbol
“± ”. Let δ ∈ {−1, 1}. To each element x ∈ a1B1 + δb0G(a1) we assign one representation

x = a1b + δb0a
′

1, b ∈ B1, a′

1 ∈ G(a1)

and define B11(x) = B1(a1) ∩ B1(a
′

1). Then

δb2
0A + xB11(x) ⊂ δb2

0A + ba1B1(a1) + δb0a
′

1B1(a
′) ⊂ b0(bA + δb0A + δb0A),

whence, by Lemma 2 with k = 3 and estimate (5),

|δb2
0A + xB11(x)| ≤

|bA + δb0A| · |A + A|2

|A|2
≤ 2|A|∆5.

Hence, for a given x ∈ a1B1 + δb0G(a1), we have

E+(b2
0A, xB1(a1)) ≥ E+(b2

0A, xB11(x)) ≥
|A|2M2

2|A|∆5
=

|A|M2

2∆5
.

Summing up this inequality over x ∈ a1B1 + δb0G(a1) and observing that the number of
solutions of the equation

b2
0a

′ + xb′ = b2
0a

′′ + xb′′, a′, a′′ ∈ A; b′, b′′ ∈ B1(a1); x ∈ a1B1 + δb0G(a1)

is not greater than 2N |A| · |a1B1 + δb0G(a1)| + 4N2|A|2, we get

|A|M2

2∆5
|a1B1 + δb0G(a1)| ≤ 2N |A| · |a1B1 + δb0G(a1)| + 4N2|A|2.

If |A|M2 ≤ 10|A|N∆5, then we are done in view of (8) and (6). Therefore, we can assume
that

|a1B1 ± b0G(a1)| �
|A|N2∆5

M2
for any a1 ∈ A1. (10)

By Lemma 3, for some a1, a11 ∈ A1 and b1, b11 ∈ B1, either

∣

∣

∣
(a1 − a11)B1 + (b1 − b11)A + (b1 − b11)A

∣

∣

∣
�

|A1|
2|B1|

|A1B1|
�

|A1|
2|B1|

∆|A|

or
∣

∣

∣
(a1 − a11)B1 + (b1 − b11)A

∣

∣

∣
� p.

In the first case, by Lemma 2 with k = 3 and X = (b1 − b11)A,

∣

∣

∣
(a1 − a11)B1 + (b1 − b11)A

∣

∣

∣
|A|∆3 � |A1|

2|B1|.
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Again by Lemma 2 with k = 4 and X = b0A, and by (5),

|a1B1 + b0A| · |a11B1 − b0A|∆9 � |A1|
2|B1|.

To each of the cardinalities on the left hand side we again apply Lemma 2, with k = 2 and
X = b0G(a1) or X = −b0G(a11), and recalling the lower bound for |G(a)| when a ∈ A1,
we deduce

|a1B1 + b0G(a1)| · |a11B1 − b0G(a11)| · |A|2∆11 � |A1|
2|B1|

( N2|A0|

M |B1| · log |B|

)2

.

Combining this with (10), we get

|A|4∆21 �
M2|A1|

2|A0|
2

|B1| · log2 |B|
.

Using (9) to substitute M |A1|, and then (6) to substitute N |A0|, we obtain

|A|4∆21 �
|A|4|B|4

∆4|B1|3 log8 |B|
�

|A|4|B|

∆4 log8 |B|
.

This proves our assertion in the first case.
In the second case we have

∣

∣

∣
(a1 − a11)B1 + (b1 − b11)A

∣

∣

∣
� p,

which implies
|a1B1 + b0A| · |a11B1 − b0A|∆6 � p|A|.

Then as in the first case,

|A|2∆18 �
p|A0|

2M2

|A||B1|2 log2 |B|
.

Using (8) and then (6), we get

∆22 �
p

|A| log8 |B|

and the result follows in view of the assumption p/|A| > (log |B|)100.
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