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Abstract

We derive sufficient conditions for the existence of rainbow cycles of all lengths in
edge colourings of complete graphs. We also consider rainbow colorings of a certain
class of trees.

1 Introduction

Let the edges of the complete graph K,, be coloured so that no colour is used more than
max {b, 1} times. We refer to this as a b-bounded colouring. We say that a subset S of the
edges of K, is rainbow coloured if each edge of S is of a different colour. Various authors
have considered the question of how large can b = b(n) be so that any b-bounded edge
colouring contains a rainbow Hamilton cycle. It was shown by Albert, Frieze and Reed
[1] (see Rue [7] for a correction in the claimed constant) that b can be as large as n/64.
This confirmed a conjecture of Hahn and Thomassen [5]. Our first theorem discusses the
existence of rainbow cycles of all sizes. We give a kind of a pancyclic rainbow result.

Theorem 1 There exists an absolute constant ¢ > 0 such that if an edge colouring of K,
18 cn-bounded then there exist rainbow cycles of all sizes 3 < k < n.

Having dealt with cycles, we turn our attention to trees.

Theorem 2 Given a real constant € > 0 and a positive integer A\, there exists a constant
¢ = c(e, A) such that if an edge colouring of K,, is cn-bounded, then it contains a rainbow
copy of every tree T with at most (1 — &)n vertices and mazimum degree A.
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We conjecture that that there is a constant ¢ = ¢(A) such that every cn-bounded edge
colouring of K, contains a rainbow copy of every spanning tree of K,, which has maximum
degree at most A. We are far from proving this and give a small generalisation of the
known case where the tree in question is a Hamilton path. Let T be an arbitrary rooted
tree with 19 nodes. Assume that vy divides n and let v = n/vy. We define T'(1;) as
follows: It has a spine which is a path P = (xg,1,...,2,,-1) of length 14 — 1. We
then have vy vertex disjoint copies Ty, 711,...,7T,,—1 of T*, where T; is rooted at x; for
i=0,1,...,1n — 1. T(v) has n vertices. The edges of T'(v1) are of two types, spine-edges
in P and teeth-edges.

We state our theorem as

Theorem 3 If an edge colouring of K,, is k-bounded and (”12_2) > 16kn then there exists
a rainbow copy of every possible T'(vy).

2 Proof of Theorem 1

We will not attempt to maximise ¢ as we will be far from the optimum.

The following lemma is enough to prove the theorem:
Lemma 4

(a) Let co = 277 and suppose that n > 22, Then every 2con-bounded edge colouring of
K, contains rainbow cycles of length k, n/2 < k < n.

(b) If n > €% and cn > n?/? and an edge colouring of K, is cn-bounded, then there
exists a set S C [n] such that |S| = N =n/2 and the induced colouring of the edges
of S is d N-bounded where ¢ = c(1+1/(Inn)?).

We will first show that the lemma implies the theorem. Assume first that n > !9, We

let N; =27'n for 0 <i < r = |logy(ne 19| and note that N; > €% > 22! for all i < r.
Now define a sequence cg, ¢, Ca, ..., ¢ by

1
Cir1 = G (1+ W) .

Then for 7 > 1 we have:

" 1
i = 1
‘ COH( +(lnn—sln2)2)

s=1

i

1 1
S Coexp (Inn)? Z (1_ )2

s=1 5
logy n
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2 i
log, n
B COeXP{( Inn )

S=

1
< (logyn — 5)2} '

Then for all 0 <4 < r we have:

logyn\* o= 1 < 2.1
<¢g < — ¢ < 2.1 = — > < 2¢.
co < ¢ < cpexp { < o ) ; a( = Co €Xp /t:%t dt Co €Xp 50 [ S Co

Furthermore, for 0 <7 <7 we have n/2" > 22! and so

1/3
N3 > O 5
¢ 2i/3 ’

which implies that ¢;N; > Nf /3,

Assume now we are given a con-bounded coloring of K,, and that n > €!°°. Then by part
(a) of the lemma we can find rainbow cycles of length k, n/2 < k < n. By part (b) there
exists a subset 5, |S| = n/2 = N, such that the induced coloring on S is ¢;n-bounded.
Now we can apply part (a) of the lemma to the induced subgraph G[S] to find rainbow

cycles of length k, n/4 < k < n/2. We can continue this halving process for r steps, thus
finding rainbow cycles of length k, N, < k < n where !9 < N, < 21900,

To summarise: Assuming the truth of Lemma 4, if n > ¢!°° and ¢ < 277 then any
cn-bounded coloring of K, contains a rainbow cycle of length 2¢'0° < k < n.

Up to this point, the value of ¢ is quite reasonable. We now choose a very small value of
¢ in order to finish the proof without too much more effort.

Suppose now that ¢ < e300 n > !9 and 3 < k < min {2¢1°° n}. Suppose that K, is
edge colored with ¢ colors and that color 7 is used m; < c¢n times. Choose a set S of k
vertices. Let £ be the event S contains two edges of the same color. at random. Then,

e < ()5 (1) < ()5
< (= (5) 00
ck?

<
- n—1+4
< 1.

(1)

The two sums in (1) correspond to having two disjoint edges with the same color and to
two edges of the same color sharing a vertex, respectively.

All that is left is the case n < e'%% but now c is so small that cn < 1 and all edges have
distinct colors.
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2.1 Proof of Lemma 4

Part (a) follows immediately from [1] (n > 2% is easily large enough for the result there
to hold). We can apply the main theorem of that paper to any subset of [n] with at least
n/2 vertices.

We now prove part (b). Let S be a random n/2-subset of [n]. Now for each colour i we
orient the i-coloured edges of K, so that for each v € [n],

| (v) = d; (v)] < 1

where d;f (v) (resp. d; (v)) is the out-degree (resp. in-degree) of v in the digraph D; =
([n], £;) induced by the edges of colour i. Now fix a colour ¢ and let

Li={v: df(v) > (Inn)®}.
Then with (v, w) denoting an edge oriented from v to w we let

A = {(v,w) € E;: ve L}
Ay = {(v,w) €E;: v¢ Li,we€ L; and 3> (Inn)® edges of colour i from L; to w}
Ag - Ez \ (Al U Ag)

Let |A;| = a;n where ag + ag + a5 < c.

Let Z;,7 = 1,2,3, be the number of edges of A; which are entirely contained in S and let
Z =71+ Zy+ Z3. We write
7= liesXiy

veL;
where X , is the number of neighbours of v in D; that are included in S.
Now ] ] )
Pr(X;, > id;r(v) + ialzr(v)l/2 Inn) < e~ (nm?/24,
This follows from the Chernoff bounds (more precisely, using Hoeffding’s lemma [6] about
sampling without replacement).
Note that

L. Lo i/2 Lo+ 1
Zd: —d: < —d; .
2d2 (v) + 4dl (v)7*Inn < de (v) 1+ Mnn)?

1000 we see that with probability at least

So, on using n > e
1— ne—(lnn)2/24 —1— nl—(lnn)/24 Z 9/10

we have

1 1
Zi < =am (14—
= 20‘1”( +2(lnn)2)
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The edges of A, are dealt with in exactly the same manner and we have that with

probability at least 9/10,
1 1
Ly < — 14+ ——=.
2= e ( * 2(lnn)2>

To deal with Z3 we observe that if we delete a vertex v of S then Z3 can change by at
most 2(Inn)%. This is because the digraph induced by As has maximum in-degree and
out-degree bounded by (Inn)®. Applying a version of Azuma’s inequality that deals with

sampling without replacement (see for example Lemma 11 of [4]) we see that for ¢t > 0,

P Z3 > - 3 t < p —72
r « + exX .

So, putting t = n*° and using n > €% and en > n?? we see that with probability at
least 9/10,

1 1 1 1
(o1 + az)n (1 + 7) + Zagn +n® < icn (1 + 7) )

Z <
- 2(Inn)? 4 (Inn)?

!
2
So, with probability at least 7/10 the colouring of the edges of S is ¢(1 + 1/(Inn)?)n/2-
bounded and Lemma 4 is proved. O

3 Proof of Theorem 2

We proceed as follows. We choose a large d = d(g,A) > 0 and a small ¢ < 1/d?
and consider a cn-bounded edge colouring of K,,. We then define G; = G,,,, p = d/n.
We remove any edge of G; which has the same colour as another edge of GG;. Call the
remaining graph G,. The edge set of G5 is rainbow coloured. We then remove vertices
of low and high degree to obtain a graph G3. We then show that whp (G5 satisfies the
conditions of a theorem of Alon, Krivelevich and Sudakov [2], implying that G5 contains
a copy of every tree with < (1 —e)n vertices and maximum degree < A. The theorem we
need from [2] is the following:

Definition: Given two positive numbers a; and as < 1, a graph G = (V, E) is called an
(a1, az)-expander if every subset of vertices X C V of size | X| < a,|V| satisfies | Ng(X)| >
as| X|. Here Ng(X) is the set of vertices in V(G) \ X that are neighbours of vertices in
X.

Theorem 5 Let A > 2,0 < e <1/2. Let H be a graph on N wvertices of minimum degree
0y and maximum degree Ag. Suppose that

T1
_ 480A%In(2/e)

3

N
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T2

2
A2 < Letn/e00-1 e jo = 20872/
K €
T3 FEvery subgraph Hy of H with minimum degree at least ﬁf@/e) is a (ﬁ, A+ 1)—

expander.
Then H contains a copy of every tree with < (1 —¢e)N wvertices and mazimum degree < A.

We now get down to details. In the following we assume that cd < 1 < d. We will prove
that whp,

P1 The number of edges using repeated colours is at most d?cn.

P2 Every set X C [n], |X| < n/d'/® contains less than ad|X| edges of G; where, with

A =2d,
9

(100A2(A +2) In(2/2))’

o =

P3 G contains at most ne~%10 vertices of degree outside [d/2, 2d).

P4 Every pair of disjoint sets S, T C [n] of size n/d'/* are joined by at least d*/?n/2 edges
in Gl.

Before proving that P1-P4 hold whp, let us show that they are sufficient for our purposes.

Starting with G = G,,, we remove all edges using repeated colours to obtain G,. Then
let X denote the set of vertices of Gy whose degree is not in [d/3,2d]. It follows from
P1,P3 that

| Xo| < n(e=1 + 12¢d). (2)

Note that 12¢dn bounds the number of vertices that lose more than d/6 edges in going
from G to Gs.

Now consider a sequence of sets Xg, X1,..., where X; = X; 1 U{z;} and z; has at least
2ad neighbours in X; ;. We continue this process as long as possible. Let G3 be the
resulting graph. We claim that the process stops before i reaches | X|. If not, we have a
set with 2| X| vertices and at least 2ad|X,| edges. For this we need 2| Xo| > n/d"/® (see
P2) and this contradicts (2) if d is large and ¢ < 1/d?.

Thus H = G has at least n(1 —2(e~%1% +12¢d)) vertices and this implies that T1 holds.
Also,

So if d > K?, T2 will also hold.

Now consider a subgraph I' of H which has minimum degree at least fd where § =
2(A +2)a. Let v = |V(T')]. Choose S C V(I') where [S| < 5355 and let T = Nr(S5).
Suppose also that |T'| < (JA| 4+ 1)]S|.
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Suppose first that S| > n/dY*. Then |SUT| < v(A+2)/(2A+2) andso Y = V(I')\(SUT)
satisfies |Y| > |S| > n/d'/*. The fact that there are no S : Y edges contradicts P1, P4.

Now assume that 1 < |S| < n/dY/*. Then [SUT| < (A +2)n/dY/* < n/d"/> and SUT
contains at least 4d|S|/2 > ad|S U T| edges, contradicting P2.

Thus, I is (ﬁ, A+ 1)—expander and the minimum degree requirement is Gd which is

weaker than required by T'3.
It only remains to verify P1-P4:

P1: Let Z denote the number of edges using repeated colours. Let there be m; < cn
edges with colour ¢ for ¢+ = 1,2,...,¢. Then

l

6 < (W) < B(2)E < oF,

i=1

Now whp G has at most dn edges and changing one edge can only change Z by at most
2. So, by Azuma’s inequality, we have

22
Pr(Z>E(Z)+t) < S ——
(22 B(Z) 40 <o}

and we get (something stronger than) P1 by taking t = n%/4.

P2: The probability P2 fails is at most

S ()7 @) =

P3: If now Z is the number of vertices with degrees outside [d/2,2d] then the Chernoff

bounds imply that
E(Z) <n(e Y8 473

and Azuma’s inequality will complete the proof.

P4: The probability P4 fails is at most

(o)

4 Proof of Theorem 3

9 dY/2n /2

2/31/2
(n /]j / )pk(l _p)n2/d1/2—k S 4ne—d1/2n/8 _ 0(1)

We will use the lop-sided Lovasz local lemma as in Erdés and Spencer [3] and in Albert,
Frieze and Reed [1]. We state the lemma as
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Lemma 6 Let Ay, A, ..., Ay denote events in some probability space. Suppose that for
each i there is a partition of [N]\ {i} into X; and Y;. Let m = max{|Yi| : i € [N]} and
B =max{Pr(A; | N;cs4;) 11 € [N],S C Xi}. IfdmfB < 1 then Pr((;_, 4;) > 0.

Suppose now that we have a k-bounded colouring of K,, and that H is chosen uniformly
from the set of all copies of T'(v) in K,, where T is an arbitrary rooted tree with v vertices.
We show that the probability that H is a rainbow copy is strictly positive.

Let {e;, fi},i=1,2,..., N, be an enumeration of all pairs of edges of K,, where e;, f; have
the same colour (thus N = Y-, (") where n, is the number of edges of colour ¢). Let A;
be the event H D {e;, fi} fori =1,2,..., N. We apply Lemma 6 with the definition

Yi={j#i:(e;Uf;)N(e;Uf;) # D}

With this definition
m < 4kn.

We estimate (3 as follows: Fix i, S C X;. We show that for each T € 77 = A; N ﬂjes A;
(this means that 7" is a copy of T' (v, 1) containing both e;, f; and at most one edge from
each pair e;, f; for j € S) there exists a set S(T) C 7T, = A; N Njes A; such that (i)
|S(T)| > 4kn and (ii) S(T)NS(T") = 0 for T # T" € 7;. This shows that

1

Pr(d; [ (VA) € =

jes

and proves the theorem.

Fix H e 7. If e = (2, 2,41) and f = (2, 2,41) are both spine-edges where j —i > 2, we
define the tree Fjp;,.(H;e, f), which is also a copy of T'(v), as follows: We delete e, f from
H and replace them by (z;,z;) and (2,41, zj4+1). Suppose now that e = (a,b) € T; \ z; and
f = (c,d) € Tj \ z; are both teeth-edges and that ¢(e) = f in some isomorphism from 7;
to Tj. Then we define Fi..r(H; e, f) as follows: We delete e, f from H and replace them
by (a,d) and (b, c) to get another copy of T'(v).

Observe that if f # f; then H' = F,(H;e;, f) € T, for o € {spine, teeth}. This is because
e; is not an edge of H' and the edges that we added are all incident with e;. We cannot
therefore have caused the occurrence of A; for any j € X,;. Similarly, F,(H'; fi,g) € T
for g # e;.

We use Flipine, Fieetn to construct S(H) as follows: We choose an edge f # f; of the same
type as e; and construct H' = F,(H;e;, f) for the relevant 0. We then choose g # e; of the
same type as f; and construct H” = F,/(H'; f;,g). In this way we construct S(H) C 75

containing at least (', ?) distinct copies of T'(11).

Notice that knowing e;, f; allows us to construct H’ from H” and then H from H’. This
shows that S(H) N S(H') = (. After this, all we have to do is choose k,r; so that

(”12_ 2) > 16kn in order to finish the proof of Theorem 3.
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