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Abstract

We derive sufficient conditions for the existence of rainbow cycles of all lengths in
edge colourings of complete graphs. We also consider rainbow colorings of a certain
class of trees.

1 Introduction

Let the edges of the complete graph Kn be coloured so that no colour is used more than
max {b, 1} times. We refer to this as a b-bounded colouring. We say that a subset S of the
edges of Kn is rainbow coloured if each edge of S is of a different colour. Various authors
have considered the question of how large can b = b(n) be so that any b-bounded edge
colouring contains a rainbow Hamilton cycle. It was shown by Albert, Frieze and Reed
[1] (see Rue [7] for a correction in the claimed constant) that b can be as large as n/64.
This confirmed a conjecture of Hahn and Thomassen [5]. Our first theorem discusses the
existence of rainbow cycles of all sizes. We give a kind of a pancyclic rainbow result.

Theorem 1 There exists an absolute constant c > 0 such that if an edge colouring of Kn

is cn-bounded then there exist rainbow cycles of all sizes 3 ≤ k ≤ n.

Having dealt with cycles, we turn our attention to trees.

Theorem 2 Given a real constant ε > 0 and a positive integer ∆, there exists a constant

c = c(ε, ∆) such that if an edge colouring of Kn is cn-bounded, then it contains a rainbow

copy of every tree T with at most (1 − ε)n vertices and maximum degree ∆.
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We conjecture that that there is a constant c = c(∆) such that every cn-bounded edge
colouring of Kn contains a rainbow copy of every spanning tree of Kn which has maximum
degree at most ∆. We are far from proving this and give a small generalisation of the
known case where the tree in question is a Hamilton path. Let T ∗ be an arbitrary rooted

tree with ν0 nodes. Assume that ν0 divides n and let ν1 = n/ν0. We define T (ν1) as
follows: It has a spine which is a path P = (x0, x1, . . . , xν1−1) of length ν1 − 1. We
then have ν1 vertex disjoint copies T0, T1, . . . , Tν1−1 of T ∗, where Ti is rooted at xi for
i = 0, 1, . . . , ν1 − 1. T (ν) has n vertices. The edges of T (ν1) are of two types, spine-edges

in P and teeth-edges.

We state our theorem as

Theorem 3 If an edge colouring of Kn is k-bounded and
(

ν1−2
2

)

> 16kn then there exists

a rainbow copy of every possible T (ν1).

2 Proof of Theorem 1

We will not attempt to maximise c as we will be far from the optimum.

The following lemma is enough to prove the theorem:

Lemma 4

(a) Let c0 = 2−7 and suppose that n ≥ 221. Then every 2c0n-bounded edge colouring of

Kn contains rainbow cycles of length k, n/2 ≤ k ≤ n.

(b) If n ≥ e1000 and cn ≥ n2/3 and an edge colouring of Kn is cn-bounded, then there

exists a set S ⊆ [n] such that |S| = N = n/2 and the induced colouring of the edges

of S is c′N-bounded where c′ = c(1 + 1/(lnn)2).

We will first show that the lemma implies the theorem. Assume first that n ≥ e1000. We
let Ni = 2−in for 0 ≤ i ≤ r = blog2(ne−1000)c and note that Ni ≥ e1000 > 221 for all i ≤ r.
Now define a sequence c0, c1, c2, . . . , cr by

ci+1 = ci

(

1 +
1

(ln Ni)2

)

.

Then for i ≥ 1 we have:

ci = c0

i
∏

s=1

(

1 +
1

(ln n − s ln 2)2

)

≤ c0 exp











1

(ln n)2

i
∑

s=1

1
(

1 − s
log2 n

)2
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= c0 exp

{

(

log2 n

ln n

)2 i
∑

s=1

1

(log2 n − s)2

}

.

Then for all 0 ≤ i ≤ r we have:

c0 ≤ ci ≤ c0 exp

{

(

log2 n

ln n

)2 ∞
∑

t=21

1

t2

}

≤ c0 exp

{

2.1

∫

∞

t=20

t−2dt

}

= c0 exp

{

2.1

20

}

≤ 2c0.

Furthermore, for 0 ≤ i ≤ r we have n/2r > 221 and so

ciN
1/3
i ≥

c0n
1/3

2i/3
≥ 1,

which implies that ciNi ≥ N
2/3
i .

Assume now we are given a c0n-bounded coloring of Kn and that n ≥ e1000. Then by part
(a) of the lemma we can find rainbow cycles of length k, n/2 ≤ k ≤ n. By part (b) there
exists a subset S, |S| = n/2 = N , such that the induced coloring on S is c1n-bounded.
Now we can apply part (a) of the lemma to the induced subgraph G[S] to find rainbow
cycles of length k, n/4 ≤ k ≤ n/2. We can continue this halving process for r steps, thus
finding rainbow cycles of length k, Nr ≤ k ≤ n where e1000 ≤ Nr ≤ 2e1000.

To summarise: Assuming the truth of Lemma 4, if n ≥ e1000 and c ≤ 2−7 then any
cn-bounded coloring of Kn contains a rainbow cycle of length 2e1000 ≤ k ≤ n.

Up to this point, the value of c is quite reasonable. We now choose a very small value of
c in order to finish the proof without too much more effort.

Suppose now that c ≤ e−3001, n ≥ e1000 and 3 ≤ k ≤ min {2e1000, n}. Suppose that Kn is
edge colored with q colors and that color i is used mi ≤ cn times. Choose a set S of k
vertices. Let E be the event S contains two edges of the same color. at random. Then,

Pr(E) ≤

(

k

2

)2 q
∑

i=1

(

mi
(

n
2

)

)2

+

(

k

3

) q
∑

i=1

(

mi

2

)

(

n
3

) (1)

≤

(

k

2

)2
(

n
2

)

cn

(

cn
(

n
2

)

)2

+

(

k

3

)

(

n
2

)

cn

(

cn
2

)

(

n
3

)

≤
ck2

n − 1
+

ck3

4
< 1.

The two sums in (1) correspond to having two disjoint edges with the same color and to
two edges of the same color sharing a vertex, respectively.

All that is left is the case n ≤ e1000 but now c is so small that cn < 1 and all edges have
distinct colors.
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2.1 Proof of Lemma 4

Part (a) follows immediately from [1] (n ≥ 221 is easily large enough for the result there
to hold). We can apply the main theorem of that paper to any subset of [n] with at least
n/2 vertices.

We now prove part (b). Let S be a random n/2-subset of [n]. Now for each colour i we
orient the i-coloured edges of Kn so that for each v ∈ [n],

|d+
i (v) − d−

i (v)| ≤ 1

where d+
i (v) (resp. d−

i (v)) is the out-degree (resp. in-degree) of v in the digraph Di =
([n], Ei) induced by the edges of colour i. Now fix a colour i and let

Li =
{

v : d+
i (v) ≥ (ln n)6

}

.

Then with (v, w) denoting an edge oriented from v to w we let

A1 = {(v, w) ∈ Ei : v ∈ Li}

A2 =
{

(v, w) ∈ Ei : v /∈ Li, w ∈ Li and ∃ ≥ (ln n)6 edges of colour i from L̄i to w
}

A3 = Ei \ (A1 ∪ A2).

Let |Aj| = αjn where α1 + α2 + α3 ≤ c.

Let Zj, j = 1, 2, 3, be the number of edges of Aj which are entirely contained in S and let
Z = Z1 + Z2 + Z3. We write

Z1 =
∑

v∈Li

1v∈SX1,v

where X1,v is the number of neighbours of v in Di that are included in S.

Now

Pr(X1,v ≥
1

2
d+

i (v) +
1

4
d+

i (v)1/2 ln n) ≤ e−(ln n)2/24.

This follows from the Chernoff bounds (more precisely, using Hoeffding’s lemma [6] about
sampling without replacement).

Note that
1

2
d+

i (v) +
1

4
d+

i (v)1/2 ln n ≤
1

2
d+

i (v)

(

1 +
1

2(ln n)2

)

.

So, on using n ≥ e1000, we see that with probability at least

1 − ne−(ln n)2/24 = 1 − n1−(ln n)/24 ≥ 9/10

we have

Z1 ≤
1

2
α1n

(

1 +
1

2(lnn)2

)

.

the electronic journal of combinatorics 15 (2008), #R59 4



The edges of A2 are dealt with in exactly the same manner and we have that with
probability at least 9/10,

Z2 ≤
1

2
α2n

(

1 +
1

2(lnn)2

)

.

To deal with Z3 we observe that if we delete a vertex v of S then Z3 can change by at
most 2(ln n)6. This is because the digraph induced by A3 has maximum in-degree and
out-degree bounded by (lnn)6. Applying a version of Azuma’s inequality that deals with
sampling without replacement (see for example Lemma 11 of [4]) we see that for t > 0,

Pr

(

Z3 ≥
1

4
α3n + t

)

≤ exp

{

−
2t2

n(ln n)12

}

.

So, putting t = n3/5 and using n ≥ e1000 and cn ≥ n2/3 we see that with probability at
least 9/10,

Z ≤
1

2
(α1 + α2)n

(

1 +
1

2(ln n)2

)

+
1

4
α3n + n3/5 ≤

1

2
cn

(

1 +
1

(ln n)2

)

.

So, with probability at least 7/10 the colouring of the edges of S is c(1 + 1/(lnn)2)n/2-
bounded and Lemma 4 is proved. 2

3 Proof of Theorem 2

We proceed as follows. We choose a large d = d(ε, ∆) > 0 and a small c � 1/d3/2

and consider a cn-bounded edge colouring of Kn. We then define G1 = Gn,p, p = d/n.
We remove any edge of G1 which has the same colour as another edge of G1. Call the
remaining graph G2. The edge set of G2 is rainbow coloured. We then remove vertices
of low and high degree to obtain a graph G3. We then show that whp G3 satisfies the
conditions of a theorem of Alon, Krivelevich and Sudakov [2], implying that G3 contains
a copy of every tree with ≤ (1− ε)n vertices and maximum degree ≤ ∆. The theorem we
need from [2] is the following:
Definition: Given two positive numbers a1 and a2 < 1, a graph G = (V, E) is called an
(a1, a2)-expander if every subset of vertices X ⊆ V of size |X| ≤ a1|V | satisfies |NG(X)| ≥
a2|X|. Here NG(X) is the set of vertices in V (G) \ X that are neighbours of vertices in
X.

Theorem 5 Let ∆ ≥ 2, 0 < ε < 1/2. Let H be a graph on N vertices of minimum degree

δH and maximum degree ∆H . Suppose that

T1

N ≥
480∆3 ln(2/ε)

ε
.
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T2

∆2
H ≤

1

K
eδH/(8K)−1 where K =

20∆2 ln(2/ε)

ε
.

T3 Every subgraph H0 of H with minimum degree at least εδH

40∆2 ln(2/ε)
is a

(

1
2∆+2

, ∆ + 1
)

-

expander.

Then H contains a copy of every tree with ≤ (1−ε)N vertices and maximum degree ≤ ∆.

We now get down to details. In the following we assume that cd � 1 � d. We will prove
that whp,

P1 The number of edges using repeated colours is at most d2cn.

P2 Every set X ⊆ [n], |X| ≤ n/d1/5 contains less than αd|X| edges of G1 where, with
∆ = 2d,

α =
ε

(100∆2(∆ + 2) ln(2/ε))
.

P3 G1 contains at most ne−d/10 vertices of degree outside [d/2, 2d].

P4 Every pair of disjoint sets S, T ⊆ [n] of size n/d1/4 are joined by at least d1/2n/2 edges
in G1.

Before proving that P1–P4 hold whp, let us show that they are sufficient for our purposes.

Starting with G1 = Gn,p we remove all edges using repeated colours to obtain G2. Then
let X0 denote the set of vertices of G2 whose degree is not in [d/3, 2d]. It follows from
P1,P3 that

|X0| ≤ n(e−d/10 + 12cd). (2)

Note that 12cdn bounds the number of vertices that lose more than d/6 edges in going
from G1 to G2.

Now consider a sequence of sets X0, X1, . . . , where Xi = Xi−1 ∪ {xi} and xi has at least
2αd neighbours in Xi−1. We continue this process as long as possible. Let G3 be the
resulting graph. We claim that the process stops before i reaches |X0|. If not, we have a
set with 2|X0| vertices and at least 2αd|X0| edges. For this we need 2|X0| ≥ n/d1/5 (see
P2) and this contradicts (2) if d is large and c < 1/d2.

Thus H = G3 has at least n(1− 2(e−d/10 +12cd)) vertices and this implies that T1 holds.
Also,

d(1/3 − 2α) ≤ δH ≤ ∆H ≤ 2d.

So if d � K2, T2 will also hold.

Now consider a subgraph Γ of H which has minimum degree at least βd where β =
2(∆ + 2)α. Let ν = |V (Γ)|. Choose S ⊆ V (Γ) where |S| ≤ ν

2∆+2
and let T = NΓ(S).

Suppose also that |T | < (|∆| + 1)|S|.
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Suppose first that |S| ≥ n/d1/4. Then |S∪T | ≤ ν(∆+2)/(2∆+2) and so Y = V (Γ)\(S∪T )
satisfies |Y | ≥ |S| ≥ n/d1/4. The fact that there are no S : Y edges contradicts P1, P4.

Now assume that 1 ≤ |S| ≤ n/d1/4. Then |S ∪ T | ≤ (∆ + 2)n/d1/4 ≤ n/d1/5 and S ∪ T
contains at least βd|S|/2 ≥ αd|S ∪ T | edges, contradicting P2.

Thus, Γ is
(

1
2∆+2

, ∆ + 1
)

-expander and the minimum degree requirement is βd which is
weaker than required by T3.

It only remains to verify P1–P4:

P1: Let Z denote the number of edges using repeated colours. Let there be mi ≤ cn
edges with colour i for i = 1, 2, . . . , `. Then

E(Z) ≤
∑̀

i=1

(

mi

2

)

p2 ≤

(

n
2

)

cn

(

cn

2

)

d2

n2
≤

cd2

4
n.

Now whp G1 has at most dn edges and changing one edge can only change Z by at most
2. So, by Azuma’s inequality, we have

Pr(Z ≥ E(Z) + t) ≤ exp

{

−
2t2

4dn

}

,

and we get (something stronger than) P1 by taking t = n3/4.

P2: The probability P2 fails is at most

n/d1/5

∑

k=2αd

(

n

k

)(
(

k
2

)

αdk

)

pαdk ≤

n/d1/5

∑

k=2αd

(

(

k

2n

)αd−1
( e

α

)αd

e

)k

= o(1).

P3: If now Z is the number of vertices with degrees outside [d/2, 2d] then the Chernoff
bounds imply that

E(Z) ≤ n(e−d/8 + e−d/3) ,

and Azuma’s inequality will complete the proof.

P4: The probability P4 fails is at most

(

n

n/d1/4

)2 d1/2n/2
∑

k=0

(

n2/d1/2

k

)

pk(1 − p)n2/d1/2
−k ≤ 4ne−d1/2n/8 = o(1).

4 Proof of Theorem 3

We will use the lop-sided Lovász local lemma as in Erdős and Spencer [3] and in Albert,
Frieze and Reed [1]. We state the lemma as
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Lemma 6 Let A1, A2, . . . , AN denote events in some probability space. Suppose that for

each i there is a partition of [N ] \ {i} into Xi and Yi. Let m = max{|Yi| : i ∈ [N ]} and

β = max{Pr(Ai |
⋂

j∈S Āj) : i ∈ [N ], S ⊆ Xi}. If 4mβ < 1 then Pr(
⋂n

i=1 Āi) > 0.

Suppose now that we have a k-bounded colouring of Kn and that H is chosen uniformly
from the set of all copies of T (ν) in Kn where T is an arbitrary rooted tree with ν vertices.
We show that the probability that H is a rainbow copy is strictly positive.

Let {ei, fi} , i = 1, 2, . . . , N , be an enumeration of all pairs of edges of Kn where ei, fi have
the same colour (thus N =

∑

`

(

n`

2

)

where n` is the number of edges of colour `). Let Ai

be the event H ⊃ {ei, fi} for i = 1, 2, . . . , N . We apply Lemma 6 with the definition

Yi = {j 6= i : (ej ∪ fj) ∩ (ei ∪ fi) 6= ∅}.

With this definition
m ≤ 4kn.

We estimate β as follows: Fix i, S ⊆ Xi. We show that for each T ∈ T1 = Ai ∩
⋂

j∈S Āj

(this means that T is a copy of T (ν0, ν1) containing both ei, fi and at most one edge from
each pair ej, fj for j ∈ S) there exists a set S(T ) ⊆ T2 = Āi ∩

⋂

j∈S Āj such that (i)
|S(T )| > 4kn and (ii) S(T ) ∩ S(T ′) = ∅ for T 6= T ′ ∈ T1. This shows that

Pr(Ai |
⋂

j∈S

Āj) ≤
1

4m + 1

and proves the theorem.

Fix H ∈ T1. If e = (xi, xi+1) and f = (xj, xj+1) are both spine-edges where j − i ≥ 2, we
define the tree Fspine(H; e, f), which is also a copy of T (ν), as follows: We delete e, f from
H and replace them by (xi, xj) and (xi+1, xj+1). Suppose now that e = (a, b) ∈ Ti \xi and
f = (c, d) ∈ Tj \ xj are both teeth-edges and that φ(e) = f in some isomorphism from Ti

to Tj. Then we define Fteeth(H; e, f) as follows: We delete e, f from H and replace them
by (a, d) and (b, c) to get another copy of T (ν).

Observe that if f 6= fi then H ′ = Fσ(H; ei, f) ∈ T2 for σ ∈ {spine, teeth}. This is because
ei is not an edge of H ′ and the edges that we added are all incident with ei. We cannot
therefore have caused the occurrence of Aj for any j ∈ Xi. Similarly, Fσ(H ′; fi, g) ∈ T2

for g 6= ei.

We use Fspine, Fteeth to construct S(H) as follows: We choose an edge f 6= fi of the same
type as ei and construct H ′ = Fσ(H; ei, f) for the relevant σ. We then choose g 6= ei of the
same type as fi and construct H ′′ = Fσ′(H ′; fi, g). In this way we construct S(H) ⊆ T2

containing at least
(

ν1−2
2

)

distinct copies of T (ν1).

Notice that knowing ei, fi allows us to construct H ′ from H ′′ and then H from H ′. This
shows that S(H) ∩ S(H ′) = ∅. After this, all we have to do is choose k, ν1 so that
(

ν1−2
2

)

> 16kn in order to finish the proof of Theorem 3.
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[6] W. Höeffding, Probability inequalities for sums of bounded random variables, Journal
of the American Statistical Association 58 (1963), 13–30.

[7] R. Rue, Comment on [1].

the electronic journal of combinatorics 15 (2008), #R59 9


