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Abstract

An extensive literature exists describing various techniques for the evaluation
of Hankel determinants. The prevailing methods such as Dodgson condensation,
continued fraction expansion, LU decomposition, all produce product formulas when
they are applicable. We mention the classic case of the Hankel determinants with
binomial entries

(3k+2
k

)

and those with entries
(3k

k

)

; both of these classes of Hankel

determinants have product form evaluations. The intermediate case,
(3k+1

k

)

has not
been evaluated. There is a good reason for this: these latter determinants do not
have product form evaluations. In this paper we evaluate the Hankel determinant of
(3k+1

k

)

. The evaluation is a sum of a small number of products, an almost product.
The method actually provides more, and as applications, we present the salient
points for the evaluation of a number of other Hankel determinants with polynomial
entries, along with product and almost product form evaluations at special points.

1 Introduction

A determinant

Hn = det[ai,j]0≤i,j≤n
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whose entries satisfy

ai,j = ai+j

for some sequence {ak}k≥0 is said to be a Hankel determinant. Thus Hn is the determinant

of a special type of (n + 1) × (n + 1) symmetric matrix.

In various cases of Hankel determinant evaluations, special techniques such as Dodgson

condensation, continued fraction expansion, and LU decomposition are applicable. These

methods provide product formulas for a large class of Hankel determinants. A modern

treatment of the theory of determinant evaluation including Hankel determinants as well

as a substantial bibliography can be found in Krattenthaler [7, 8].

The product form determinants of special note are those whose factors have some

particular attraction. Factorials and other familiar combinatorial entities that appear as

factors have an especially pleasing quality, and we find an extensive literature devoted to

the evaluation of classes of Hankel determinants as such products.

Several classical Hankel determinants involve entries that are binomial coefficients or

expressions closely related to binomial coefficients. Perhaps the most well-known of these

is where ak =
(

2k+1
k

)

, and ak = 1
2k+1

(

2k+1
k

)

, for which Hn = 1 for all n. The binomial

entries

ak =

(

3k

k

)

, ak =

(

3k + 2

k

)

(1)

also yield product evaluations for the corresponding Hn as we give in (4) and (3). In fact,

product formulas have been shown to exist for a host of other cases (see Gessel and Xin

[4]), and we only mention

ak =
1

3k + 1

(

3k + 1

k

)

, ak =
9k + 14

(3k + 4)(3k + 5)

(

3k + 2

k + 1

)

as representatives.

However, within the restricted class of Hankel determinants defined by the binomial

coefficients

ak = a
(β,α)
k =

(

βk + α

k

)

, (2)

parametrized by a pair of integers β > 0 and α, it is a rare phenomenon that the deter-

minant evaluations are in product form. An extensive check of Hankel determinants of

sequences ak in the form (2) suggests that there is no product formula for Hn in general

for such binomial sequences. In fact, it would seem that the instances for which Hn has

a product form can be enumerated in full:

(i) β = 1, α arbitrary,

(ii) β = 2, α = 0, 1, 2, 3, 4,

(iii) β = 3, α = 0, 2.
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All the other cases are likely not products, but in any event, the question remains

open: are evaluations possible in these cases?

Let H (β,α)
n denote the (n+1)×(n+1) Hankel determinant with entries a

(β,α)
k as defined

in (2). We will also use the term (β, α)-case to refer to the evaluation of H (β,α)
n .

Numerical data indicates the intriguing possibility that the H (β,α)
n might be evaluated

as a sum of a small number of products, where “small” would mean O(nd) summands for

some fixed d = d(β, α). We refer to such an evaluation as an almost product.

The evidence of an almost product evaluation of H (β,α)
n is most pronounced for β = 3,

and we begin with some sample data.

For the (3, 2)-case the Hankel determinants evaluate to

H
(3,2)
10 = 22 · 3 · 73 · 37 · 412 · 433 · 473 · 532 · 59 · 61 ,

H
(3,2)
20 = 37 · 11 · 17 · 292 · 31 · 67 · 712 · 733 · 795 · 836 · 896 · 975 · 1014 · 1034 ·

1073 · 1093 · 1132 ,

H
(3,2)
30 = 210 · 512 · 119 · 133 · 413 · 433 · 97 · 1012 · 1033 · 1074 · 1095 · 1136 · 12710 ·

1319 · 1378 · 1398 · 1496 · 1516 · 1575 · 1634 · 1673 · 1732 · 179 · 181 .

The small prime factors are indicative of the fact that there is an underlying product

formula. In fact for the (3, 2)-case, the Hankel determinant is explicitly given by ([1],

Theorem 4):

H(3,2)
n =

n
∏

i=1

(6i + 4)!(2i + 1)!

2(4i + 2)!(4i + 3)!
. (3)

We mention also the (3, 0)-case for which the Hankel determinant also has small prime

factors, and can be shown to possess the product evaluation [2]:

H(3,0)
n =

n
∏

i=1

3(3i + 1)(6i)!(2i)!

(4i)!(4i + 1)!
. (4)

We will say more about this evaluation as the first example in Section 8.

For the (3, 1)-case, we get the following intriguing evaluations:

H
(3,1)
10 = 22 · 72 · 37 · 412 · 433 · 472 · 53 · 41740796329 ,

H
(3,1)
20 = 38 · 29 · 67 · 712 · 733 · 795 · 836 · 895 · 974 · 1013 · 1033 · 1072 · 1092 ·

113 · 631 · 548377971864917477341 ,

H
(3,1)
30 = 210 · 510 · 119 · 132 · 413 · 432 · 97 · 1012 · 1033 · 1074 · 1095 · 1136 ·

1279 · 1318 · 1377 · 1397 · 1495 · 1515 · 1574 · 1633 · 1672 · 173 · 569 ·
920397320923 · 56029201596264233691799 .

The existence of large primes in the factorizations indicates that H (3,1)
n does not have a

product form evaluation. However if we write Hn = PnQn where Pn is the product of
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the small primes and Qn is the product of the large primes left over, then it appears that

the estimates log Pn = Ω(n2) and log Qn = O(n) hold. This suggests that these Hankel

determinants can be represented as a sum of O(n) number of products, all of which have

very similar representations.

The purpose of this paper is to provide a method that evaluates H (3,1)
n and a number

of other Hankel determinants as almost products. For Hn = H(3,1)
n , we obtain

Hn = (−1)n
n
∏

i=1

(6i − 3)!(3i + 2)!(2i − 1)!

(4i − 1)!(4i + 1)!(3i − 2)!

n
∑

i=0

n!(3n + i + 2)!(−6)i

(3n + 2)!(n − i)!(2i + 1)!
(5)

or alternately

Hn =
n
∏

i=1

(6i + 4)!(2i + 1)!

2(4i + 2)!(4i + 3)!

n
∑

i=0

n!(4n + 3)!!(3n + i + 2)!

(3n + 2)!i!(n − i)!(4n + 2i + 3)!!
(6)

each as a sum of n + 1 products. The method actually evaluates more, and we describe

now the general situation in the (3, 1)-case, which consists of three basic ingredients:

(I) Replace ak with polynomials

ak(x) = a
(3,1)
k (x) =

k
∑

m=0

(

3k + 1 − m

k − m

)

xm (7)

so that ak(x) is a monic polynomial of degree k with ak = ak(0).

(II) Show that the ak(x) satisfy certain differential-convolution equations.

(III) Show that the resulting determinants Hn(x) themselves satisfy certain differential

equations.

The (n + 1) × (n + 1) Hankel determinant Hn(x) = H (3,1)
n (x) is then expressed as the

power series solution of the differential equation in (III), and we give it here as it is stated

as Theorem 2:

Hn(x) = (−1)n
n
∏

i=1

(6i − 3)!(3i + 2)!(2i − 1)!

(4i − 1)!(4i + 1)!(3i − 2)!

n
∑

i=0

n!(3n + i + 2)!2i(x − 3)i

(3n + 2)!(n − i)!(2i + 1)!
. (8)

An alternate expression for this evaluation appears in Theorem 10 in Section 8.

Similarly, steps (I), (II), (III), mutatis mutandis, yield (Theorem 5):

H(2,1)
n (x) = (−1)n(2n + 1)

n
∑

i=0

(n + i)!2i(x − 2)i

(n − i)!(2i + 1)!

where

ak(x) = a
(2,1)
k (x) =

k
∑

m=0

(

2k + 1 − m

k − m

)

xm . (9)

the electronic journal of combinatorics 15 (2008), #R6 4



These polynomial families have a number of interesting properties that we briefly

discuss. For example, the polynomials H (3,1)
n (x) satisfy a three-term recursion, their roots

are real, and interlace. Furthermore the specializations at x = 3, 3
2
, 3

4
all have product

evaluations. The polynomials H (2,1)
n (x) form an orthogonal family. A few other classes of

Hankel determinants can be evaluated in almost product form by simple transformations

of these polynomials (e.g., Example 8 in Section 8, and Corollaries 7 and 8 in Section

6.2).

Returning briefly to the general case of the determinants H (β,α)
n , we remark that there

are a few more cases which fall under the method described above. These would also

include the same three ingredients:

(I) Replace ak with polynomials

ak(x) = a
(β,α)
k (x) =

k
∑

m=0

(

βk + α − m

k − m

)

xm (10)

so that ak(x) is a monic polynomial of degree k with ak = ak(0).

(II) Show that the ak(x) satisfy certain differential-convolution equations.

(III) Show that the resulting determinants Hn(x) themselves satisfy certain differential

equations.

The (3, 1)-case and the (2, 1)-case are governed by second order differential equations,

but even these cases already present considerable technical problems to overcome. We

mention some further difficulties that arise in the consideration of other (β, α)-cases in

Section 7. A number of additional almost product evaluations of Hankel determinants

are given in Section 8. For these additional results given as Theorems 6, 7, 8, 9, 10 and

special product form evaluations that appear in (168), (169) and (172), we provide the

necessary identities for proving the differential equations, mimicking the proofs we present

for H (3,1)
n (x) and H (2,1)

n (x).

Finally, a remarkable property of these (n+1)×(n+1) Hankel determinants H (β,α)
n (x)

is that the degree of the polynomial Hn(x) is only n, indicating an extraordinary amount

of cancellation in the expansion of the determinant. The unusual degree of cancellation

is a basic property of a large class of Hankel determinants with polynomial entries. This

class contains the Hankel determinants defined by polynomials in (10) that we consider.

The degree result is of independent interest, and we include an exact statement and a

proof of it as Theorem 11 in Appendix III.

We would like to remark that the differential-convolution equations (II) used in this

paper are reminiscent of the equations that arise in the study of the Painlevé II equation

and the Toda lattice [6, 5].
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2 The (3, 1)-case

2.1 Differential-convolution equations

In the proof of the (3, 1)-case, we denote the polynomials a
(3,1)
k (x) by ak, H(3,1)

n (x) by Hn,

and the differentiation operator by dx.

We need two identities given below in Lemmas 1 and 2. The first is a differential-

convolution equation. The second identity involves convolutions and ak but no derivatives.

The proofs of these two lemmas are given in Appendix II.

Lemma 1 Let the polynomials ak = a
(3,1)
k (x) be as defined in (7). Then

(x − 3)(2x − 3)(4x − 3)dxak = 2(2k + 3)ak+1 − (8x2 − 18x + 27k + 36)ak (11)

+ 4(2x2 − 6x + 3)ck − 27(2x2 − 6x + 3)ck−1

where

ck = ck(x) =
k
∑

m=0

am(x)ak−m(x) , (c−1 = 0) . (12)

Lemma 2 With ak = a
(3,1)
k (x) and ck = ck(x) as in Lemma 1, we have

4(2k + 5)(x − 1)ak+2

−
(

2(16x3 − 72x2 + 135x − 81)k + 2(24x3 − 92x2 + 180x − 117)
)

ak+1

+ (27(2x − 3)3k + 54(2x − 3)(2x2 − 4x + 3))ak + 8(x − 1)(2x2 − 6x + 3)ck+1

+ 2(8x4 − 114x3 + 324x2 − 297x + 81)ck − 27x(2x − 3)(2x2 − 12x + 9)ck−1 = 0 .

Lemmas 1 and 2 will be needed for the proof of the differential equation satisfied by

the determinants Hn. This differential equation is given below in Theorem 1.

In addition to the first two identities in Lemma 1 and 2, a much more complicated

third identity involving the ak is also needed for the proof of this differential equation.

This will emerge in the course of the proof of (14).

Theorem 1 Let the polynomials ak = a
(3,1)
k (x) be as in (7) and define the (n+1)×(n+1)

Hankel matrix by

An = An(x) = [ai+j(x)]0≤i,j≤n .

Then

Hn = H(3,1)
n (x) = det An(x) (13)

satisfies the differential equation

(x − 1)(x − 3)d2
xy + (2(n + 2)(x − 3) + 3) dxy − 3n(n + 1)y = 0 . (14)
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Proof This is easy to check for n = 0, 1. Henceforth we assume that n ≥ 2.

We will find an expression for the first derivative dxHn in Section 2.2. An expression

for the second derivative d2
xHn is developed in Sections 2.3 and 2.4. This is followed

by Section 3 on specializations of x: product formulas for Hn(3), Hn(
3
2
) and Hn(3

4
) are

given as three corollaries in Sections 3.1, 3.2, and 3.3. The specializations make use of a

Dodgson-like expansion result we prove as Proposition 1 at the start of Section 3. The

proof of Theorem 1 continues in Section 4 where we put together the expressions obtained

for the derivatives and the third identity mentioned to prove (14).

2.2 Calculating the first derivative

The first step is to find a reasonably simple form for the derivative of Hn. We begin with

the expression

dxHn = Tr(A−1
n dxAn)Hn (15)

for the derivative of a determinant, where

dxAn = dxAn(x) = [dxai+j(x)]0≤i,j≤n .

Referring to Lemma 1, we write

(x − 3)(2x − 3)(4x − 3)Tr(A−1
n dxAn)

as

2Tr(A−1
n [(2(i + j) + 3)ai+j+1]0≤i,j≤n) (16)

+Tr(A−1
n [−(8x2 − 18x + 27(i + j) + 36)ai+j]0≤i,j≤n) (17)

+4(2x2 − 6x + 3)Tr(A−1
n [ci+j]0≤i,j≤n) (18)

−27(2x2 − 6x + 3)Tr(A−1
n [ci+j−1]0≤i,j≤n) (19)

where the convolutions ck are defined in (12).

We render each of these four expressions (16)-(19) in a simple form, and then combine

them all into an expression for the derivative in (15). After that is done, we go through a

similar computation for the second derivative of Hn, where we use the recursion in Lemma

2 for the simplifications. The differential equation will follow from a third identity, the

proof of which makes up the bulk of the work for the rest of the argument.

We begin with the trace term (16): Let I denote the identity matrix of relevant

dimension and define the two matrices

Bn = Bn(x) =















a1 a2 . . . an+1

a2 a3 . . . an+2

...
...

an+1 an+2 . . . a2n+1














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Ln =





















0

1

2
. . .

n





















.

Then

2Tr
(

A−1
n [(2(i + j) + 3)ai+j+1(x)]0≤i,j≤n

)

= 2Tr
(

A−1
n ((2Ln +

3

2
I)Bn + Bn(2Ln +

3

2
I))
)

.

Now define σ0, σ1, . . . , σn and Kn as follows:















σ0

σ1

...

σn















= A−1
n















an+1

an+2

...

a2n+1















(20)

and

Kn = det





















a0 a1 . . . an−1 an+1

a1 a2 . . . an an+2

...
. . .

an−1 an . . . a2n−2 a2n

an an+1 . . . a2n−1 a2n+1





















. (21)

By Cramer’s rule we have

σn =
Kn

Hn

. (22)

Therefore

A−1
n Bn =

























0 . . . σ0

1 0 σ1

1 0 σ2

. . .
...

0 σn−1

1 σn

























. (23)

and

A−1
n Bn(2Ln +

3

2
I) =

























0 . . . (2n + 3/2)σ0

3/2 0 (2n + 3/2)σ1

7/2 0 (2n + 3/2)σ2

. . .
...

0 (2n + 3/2)σn−1

(4n − 1)/2 (2n + 3/2)σn

























.
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Since

(2Ln +
3

2
I)BnA

−1
n = (A−1

n Bn(2Ln +
3

2
I))T

we can write

2Tr
(

A−1
n ((2Ln +

3

2
I)Bn + Bn(2Ln +

3

2
I))
)

= 2Tr
(

A−1
n (2Ln +

3

2
I)Bn

)

+ 2Tr
(

A−1
n Bn(2Ln +

3

2
I)
)

= 2Tr
(

(2Ln +
3

2
I)BnA−1

n

)

+ 2Tr
(

A−1
n Bn(2Ln +

3

2
I)
)

= 4Tr
(

A−1
n Bn(2Ln +

3

2
I)
)

= 4(2n +
3

2
)σn

= 2(4n + 3)σn .

The last expression gives

2Tr(A−1
n [(2(i + j) + 3)ai+j+1]0≤i,j≤n) = 2(4n + 3)

Kn

Hn

(24)

for the desired form of the first term (16). It is useful to record in passing that

Kn

Hn

= σn = Tr(A−1
n Bn) . (25)

The identity (25) will be useful later when we calculate the derivative of Kn.

Now we consider the second trace term (17). The calculation of this term is done in

the same manner as the first term but the evaluation is somewhat simpler. We get the

expression:

Tr(A−1
n [−(8x2−18x+27(i+ j)+35)ai+j]0≤i,j≤n) = −(n+1)(8x2−18x+27n+36) . (26)

The final two terms (18) and (19) require a new technique. We will use ideas from

[6, 5] where an identity similar to the following is used:

[ci+j]0≤i,j≤n
= EnAn + AnET

n (27)

where

En = En(x) =





















a0/2 0

a1/2 a0

a2/2 a1 a0

...
. . .

an/2 an−1 an−2 a0





















. (28)
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Note that the first column of En is divided by two. This allows for the immediate com-

putation

Tr(A−1
n [ci+j]0≤i,j≤n

) = (2n + 1)a0 .

So the third term (18) is

4(2x2 − 6x + 3)Tr(A−1
n [ci+j]0≤i,j≤n) = 4(2n + 1)(2x2 − 6x + 3) . (29)

The trace term (19) that involves

[ci+j−1]0≤i,j≤n

is handled in a similar way. We have the equation

[ci+j−1]0≤i,j≤n
= FnAn + AnF T

n (30)

where

Fn = Fn(x) =





















0

a0 0

a1 a0 0
...

. . .

an−1 an−2 . . . a0 0





















. (31)

The identity (30) leads to the computation

Tr(A−1
n [ci+j−1]0≤i,j≤n) = 0

so that the trace term (19) evaluates to zero:

−27(2x2 − 6x + 3)Tr(A−1
n [ci+j−1]0≤i,j≤n) = 0 . (32)

Adding the expressions (24), (26), (29), (32) and multiplying through by Hn we obtain

the following expression for the first derivative

Lemma 3

(x − 3)(2x − 3)(4x − 3)dxHn =
(

8nx2 − 6(5n + 1)x − 3(9n2 + 13n + 8)
)

Hn

+ 2(4n + 3)Kn . (33)

2.3 Preparatory work for the second derivative

We state and prove a lemma which is preparatory to the calculation of the second deriva-

tive of Hn. First define two new determinants as follows:

Mn = Mn(x) = det





















a0 a1 . . . an−2 an+1 an

a1 a2 . . . an−1 an+2 an+1

...
. . .

an−1 an . . . a2n−3 a2n a2n−1

an an+1 . . . a2n−2 a2n+1 a2n





















(34)
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Nn = Nn(x) = det





















a0 a1 . . . an−2 an−1 an+2

a1 a2 . . . an−1 an an+3

...
. . .

an−1 an . . . a2n−3 a2n−2 a2n+1

an an+1 . . . a2n−2 a2n−1 a2n+2





















(35)

where ak = ak(x) are the polynomials defined in (7). Then there is a linear relationship

between the four determinants Hn, Kn, Mn, and Nn as stated in the following lemma.

Lemma 4

4(4n + 5)(x − 1)Nn + 4(4n + 1)(x − 1)Mn

+
(

−16(4n + 1)x3 + 8(36n + 7)x2 − 108(5n + 2)x + 6(54n + 31)
)

Kn

+
(

(64n + 16)x4 + (216n2 − 24n − 12)x3 − (972n2 + 800n + 108)x2 (36)

+(1458n2 + 1770n + 378)x − 729n2 − 1083n − 324
)

Hn = 0 .

Proof of the Lemma: First we make use of the recursion in Lemma 2 for each index k.

Putting these all together in matrix form, we apply the operator

Tr(A−1
n ∗)

to obtain the trace identity

Tr(A−1
n [4(2(i + j) + 5)(x − 1)ai+j+2]0≤i,j≤n) (37)

+ Tr(A−1
n [(−2(16x3 − 72x2 + 135x − 81)(i + j)

−2(24x3 − 92x2 + 180x − 117))ai+j+1]0≤i,j≤n) (38)

+ Tr(A−1
n [(27(2x − 3)3(i + j) + 54(2x − 3)(2x2 − 4x + 3))ai+j]0≤i,j≤n) (39)

+ Tr(A−1
n [8(x − 1)(2x2 − 6x + 3)ci+j+1]0≤i,j≤n) (40)

+ Tr(A−1
n [2(8x4 − 114x3 + 324x2 − 297x + 81)ci+j]0≤i,j≤n) (41)

+ Tr(A−1
n [−27x(2x − 3)(2x2 − 12x + 9)ci+j−1]0≤i,j≤n) = 0 . (42)

Each of these six traces (37)-(42) is calculated in a similar manner as was done above

in the calculation of the first derivative of Hn. The first and fourth trace will involve a

small extension to what was used above. We will start with the computation of (37). As

before we write this as

4(x − 1)Tr(A−1
n ((2Ln +

5

2
I)[ai+j+2]0≤i,j≤n + [ai+j+2]0≤i,j≤n(2Ln +

5

2
I))) . (43)

Using the fact that

4(x − 1)Tr(A−1
n (2Ln + 5

2
I)[ai+j+2]0≤i,j≤n)

= 4(x − 1)Tr((2Ln + 5
2
I)[ai+j+2]0≤i,j≤nA−1

n )
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and
(

(2Ln +
5

2
I)[ai+j+2]0≤i,j≤nA

−1
n

)T

= A−1
n [ai+j+2]0≤i,j≤n(2Ln +

5

2
I)

we see that we can write (43) as

8(x − 1)Tr(A−1
n [ai+j+2]0≤i,j≤n(2Ln +

5

2
I)) . (44)

We will obtain a representation of the trace above in terms of Hn, Mn, and Nn. Introduce

τ0, τ1, . . ., τn as follows:














τ0

τ1

...

τn















= A−1
n















an+2

an+3

...

a2n+2















.

As before we observe that

A−1
n [ai+j+2]0≤i,j≤n =









































0 σ0 τ0

0 0 σ1 τ1

1 0
. . . σ2 τ2

1
. . . σ3 τ3

. . .
. . .

...
...

. . . 0 σn−2 τn−2

. . . 0 σn−1 τn−1

1 σn τn









































and therefore

A−1
n [ai+j+2]0≤i,j≤n(2Ln +

5

2
I)

expands to




































0 (4n + 1)σ0/2 (4n + 5)τ0/2

0
. . . (4n + 1)σ1/2 (4n + 5)τ1/2

5/2
. . . (4n + 1)σ2/2 (4n + 5)τ2/2

. . .
. . .

...
...

. . . 0 (4n + 1)σn−2/2 (4n + 5)τn−2/2
. . . 0 (4n + 1)σn−1/2 (4n + 5)τn−1/2

(4n − 3)/2 (4n + 1)σn/2 (4n + 5)τn/2





































.

Thus (44) simplifies to

4(x − 1)((4n + 1)σn−1 + (4n + 5)τn) .
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By Cramer’s rule we have

σn−1 =
Mn

Hn

(45)

τn =
Nn

Hn

(46)

so, in summary, the first trace (37) evaluates to

4(x − 1)((4n + 1)
Mn

Hn

+ (4n + 5)
Nn

Hn

) . (47)

Now we consider the second trace (38). The evaluation of this trace proceeds exactly as

the evaluation of the trace (16) in the computation of the derivative of Hn. (38) evaluates

to

−2
(

2(16x3 − 72x2 + 135x − 81)n + (24x3 − 92x2 + 180x − 117)
) Kn

Hn

. (48)

Similarly, the third trace (39) evaluates to

(n + 1)
(

27(2x − 3)3n + 54(2x − 3)(2x2 − 4x + 3)
)

. (49)

The next trace (40) requires that we define a matrix Gn in a similar manner to En

and Fn. Specifically we define

Gn = Gn(x) =

























a1/2 a0/2

a2/2 a1/2 a0

a3/2 a2/2 a1 a0

...
...

. . .

an/2 an−1/2 an−2 . . . a0

an+1/2 an/2 an−1 . . . a1

























.

With this definition of Gn we can write

[ci+j+1]0≤i,j≤n = GnAn+AnGT
n +a0















0 . . . 0
...

...

0 0 . . . 0

an+1 an+2 . . . a2n+1















+a0

















0 . . . 0 an+1

... 0 an+2

...

0 . . . 0 a2n+1

















.

We have

A−1
n

















0 . . . 0 an+1

... 0 an+2

...

0 . . . 0 a2n+1

















=

















0 . . . 0 σ0

... 0 σ1

...

0 . . . 0 σn
















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where σi is as defined in (20). It follows that

Tr

















A−1
n

















0 . . . 0 an+1

... 0 an+2

...

0 . . . 0 a2n+1

































= σn .

The term

Tr















A−1
n















0 . . . 0
...

...

0 0 . . . 0

an+1 an+2 . . . a2n+1





























also comes out to σn because




























0 . . . 0
...

...

0 0 . . . 0

an+1 an+2 . . . a2n+1















A−1
n















T

= A−1
n

















0 . . . 0 an+1

... 0 an+2

...

0 . . . 0 a2n+1

















.

Putting all this together we see that the fourth trace (40) evaluates to

16(x − 1)(2x2 − 6x + 3)
(

n(x + 4) +
Kn

Hn

)

. (50)

The evaluation of the fifth and sixth traces (41) and (42) are done in exactly the same

manner as the traces (18) and (19). For the fifth trace (41) we obtain

Tr(A−1
n [2(8x4 − 114x3+324x2 − 297x + 81)ci+j]0≤i,j≤n)

= 2(2n + 1)(8x4 − 114x3 + 324x2 − 297x + 81)
(51)

and the sixth trace (42) evaluates to zero just as the trace in (19):

Tr(A−1
n [−27x(2x − 3)(2x2 − 12x + 9)ci+j−1]0≤i,j≤n) = 0 . (52)

Adding the expressions we have found for the six traces in (47)-(52) we obtain the identity

in (36). This finishes the proof of Lemma 4.

2.4 Calculating the second derivative

We are now ready to calculate the second derivative of Hn. We begin with equation (33)

for the derivative. The first step is to replace Kn in equation (33) with the representation

of Kn as a trace from (25). Inserting this expression into equation (33) we get

(x − 3)(2x − 3)(4x − 3)dxHn = (8nx2 − 6(5n + 1)x − 3(9n2 + 13n + 8))Hn

+ 2(4n + 3)Tr(A−1
n Bn)Hn . (53)
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In order to obtain the second derivative of Hn, we differentiate (53). We obtain

(x − 3)(2x − 3)(4x − 3)d2
xHn+

(8(n + 3)x2 − 6(5n − 13)x − 3(9n2 + 13n + 29))dxHn+

2(8nx − 15n − 3)Hn

= 2(4n + 3)(dxTr(A−1
n Bn))Hn + 2(4n + 3)Tr(A−1

n Bn)dxHn .

Multiply both sides of the equation by

(x − 3)(2x − 3)(4x − 3) .

The second trace term on the right hand side now becomes

2(4n + 3)(x − 3)(2x − 3)(4x − 3)Tr(A−1
n Bn)dxHn . (54)

Using the identities (33) and (25), (54) can be written in terms of Hn and Kn as follows:

as

2(4n + 3)

(

(8nx2 − 6(5n + 1)x − 3(9n2 + 13n + 8))Kn + 2(4n + 3)
K2

n

Hn

)

.

Substituting back, we get

(x − 3)2(2x − 3)2(4x − 3)2d2
xHn−

(x − 3)(2x − 3)(4x − 3)(8(n − 3)x2 − 6(5n − 13)x − 3(9n2 + 13n + 29))dxHn−
2(x − 3)(2x − 3)(4x − 3)(8nx − 15n − 3)Hn−

2(4n + 3)(8nx2 − 6(5n + 1)x − 3(9n2 + 13n + 8))Kn− (55)

4(4n + 3)2K2
n

Hn

−

2(4n + 3)(x − 3)(2x − 3)(4x − 3)
(

dxTr(A−1
n Bn)

)

Hn = 0 .

We will now focus on the simplification of the derivative of the trace

(x − 3)(2x − 3)(4x − 3)(dxTr(A−1
n Bn))

which is a factor of the last term on the left of equation (55). We use the fact that

dxA
−1
n = −A−1

n (dxAn)A−1
n

and write

dxTr(A−1
n Bn) = Tr(A−1

n dxBn) − Tr(A−1
n (dxAn)A−1

n Bn) . (56)

Using equation (11) from Lemma 1, and multiplying equation (56) by (x − 3)(2x −
3)(4x − 3), we can write

(x − 3)(2x − 3)(4x − 3)Tr(A−1
n dxBn)
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as

Tr(A−1
n [2(2(i + j + 1) + 3)ai+j+2]0≤i,j≤n) (57)

+ Tr(A−1
n [−(8x2 − 18x + 27(i + j + 1) + 36)ai+j+1]0≤i,j≤n) (58)

+ Tr(A−1
n [4(2x2 − 6x + 3)ci+j+1]0≤i,j≤n) (59)

+ Tr(A−1
n [−27(2x2 − 6x + 3)ci+j]0≤i,j≤n) (60)

and we can write

(x − 3)(2x − 3)(4x − 3)Tr(A−1
n (dxAn)A−1

n Bn)

as

Tr(A−1
n [2(2(i + j) + 3)ai+j+1]0≤i,j≤nA

−1
n Bn) (61)

+ Tr(A−1
n [−(8x2 − 18x + 27(i + j) + 36)ai+j]0≤i,j≤nA

−1
n Bn) (62)

+ Tr(A−1
n [4(2x2 − 6x + 3)ci+j]0≤i,j≤nA

−1
n Bn) (63)

+ Tr(A−1
n [−27(2x2 − 6x + 3)ci+j−1]0≤i,j≤nA

−1
n Bn) . (64)

We have already evaluated traces that are similar to the first four terms (57)-(60) in the

calculation of the trace terms in (16)-(19). In this case we obtain

Tr(A−1
n [2(2(i + j + 1) + 3)ai+j+2]0≤i,j≤n) = 2((4n + 1)

Mn

Hn

+ (4n + 5)
Nn

Hn

) (65)

Tr(A−1
n [−(8x2 − 18x + 27(i + j + 1) + 36)ai+j+1]0≤i,j≤n) (66)

= −(8x2 − 18x + 54n + 63)
Kn

Hn

Tr(A−1
n [4(2x2 − 6x + 3)ci+j+1]0≤i,j≤n) = (2x2 − 6x + 3)(8n(x + 4) + 8

Kn

Hn

) (67)

Tr(A−1
n [−27(2x2 − 6x + 3)ci+j]0≤i,j≤n) = −27(2n + 1)(2x2 − 6x + 3) (68)

Next we evaluate the traces (61)-(64). To calculate the first of these, the trace in(61), we

expand the matrix

A−1
n [2(2(i + j) + 3)ai+j+1]0≤i,j≤nA

−1
n Bn

as

A−1
n ((4Ln + 3I)Bn + Bn(4Ln + 3I))A−1

n Bn .

The trace (61) thus can be evaluated as

Tr((4Ln + 3I)BnA−1
n BnA−1

n )+Tr(A−1
n Bn(4Ln + 3I)A−1

n Bn)

= 2Tr(A−1
n Bn(4Ln + 3I)A−1

n Bn)

= 2Tr((4Ln + 3I) (A−1
n Bn)

2
)
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where we used the symmetry of the matrices in the trace calculation. Using the expression

(23) for A−1
n Bn, we have

(

A−1
n Bn

)2
=

































0 σ0 σ0σn

0
. . . σ1 σ0 + σ1σn

1
. . . σ2 σ1 + σ2σn

. . .
...

...

0 σn−2 σn−3 + σn−2σn

0 σn−1 σn−2 + σn−1σn

1 σn σn−1 + σ2
n

































.

Therefore

(4Ln + 3I)
(

A−1
n Bn

)2
=

































0 3σ0 3σ0σn

0
. . . 7σ1 7(σ0 + σ1σn)

1
. . . 10σ2 10(σ1 + σ2σn)

. . .
...

...

0 (4n − 5)σn−2 (4n − 5)(σn−3 + σn−2σn)

0 (4n − 1)σn−1 (4n − 1)(σn−2 + σn−1σn)

1 (4n + 3)σn (4n + 3)(σn−1 + σ2
n)

































and thus

Tr(A−1
n [2(2(i + j) + 3)ai+j+1]≤i,j≤nA

−1
n Bn) = 2((4n − 1)σn−1 + (4n + 3)(σn−1 + σ2

n))

= 4(4n + 1)
Mn

Hn

+ 2(4n + 3)
K2

n

H2
n

(69)

where the last equality is a consequence of the identities (22) and (45).

Using similar reasoning, we see that the trace term (62)

Tr(A−1
n [−(8x2 − 18x + 27(i + j) + 36)ai+j]0≤i,j≤nA

−1
n Bn)

evaluates to

−(8x2 − 18x + 54n + 36)
Kn

Hn

. (70)

The trace term (63) is expanded using (27). We obtain the following trace identities

Tr(A−1
n [4(2x2 − 6x + 3)ci+j]0≤i,j≤nA

−1
n Bn)

= 4(2x2 − 6x + 3)Tr(A−1
n (EnAn + AnET

n )A−1
n Bn)

= 4(2x2 − 6x + 3)(Tr(A−1
n EnBn) + Tr(ET

n A−1
n Bn))

= 8(2x2 − 6x + 3)Tr(ET
n A−1

n Bn) .
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Since

ET
n A−1

n Bn =





















a1/2 a2/2 . . . an/2 a0σ0/2 + . . .

a0 a1 . . . an−1 a0σ1 + . . .
. . .

...
. . . a1 a0σn−1 + a1σn

0 a0 a0σn





















the trace reduces as follows:

Tr(A−1
n [4(2x2 − 6x + 3)ci+j]0≤i,j≤nA

−1
n Bn) = 4(2x2 − 6x + 3)((2n − 1)a1 + 2a0σn)

= 4(2n − 1)(x + 4)(2x2 − 6x + 3)

+8(2x2 − 6x + 3)
Kn

Hn

. (71)

Using the expansion (30), the final trace term (64) simplifies as follows:

Tr(A−1
n [−27(2x2 − 6x + 3)ci+j−1]0≤i,j≤nA

−1
n Bn) = −54n(2x2 − 6x + 3) . (72)

Now we return to equation (55). In this equation, there is a term containing

dxTr(A−1
n Bn) .

We expanded the derivative above as the difference of two traces in (56). We multiplied

(56) by (x − 3)(2x − 3)(4x − 3) and expressed the product

(x − 3)(2x − 3)(4x − 3)dxTr(A−1
n Bn))

as the sum of four terms in (57), (58), (59), (60) minus the sum of four terms in (61),

(62), (63), (64). These eight traces in turn were simplified as (65), (66), (67), (68), (69),

(70), (71), (72). Computing the sum of (65), (66), (67), (68) minus the sum of (69), (70),

(71), (72) we obtain

Hn(x − 3)(2x − 3)(4x − 3)dxTr(A−1
n Bn)) = 2(4n + 5)Nn − 2(4n + 1)Mn

−27Kn + (4x − 11)(2x2 − 6x + 3)Hn

−2(4n + 3)
K2

n

Hn

.

Now we multiply this through by 2(4n+3). The left hand side becomes the last term on the

left hand side of equation (55). Substituting and simplifying, we obtain the intermediate

identity

(x − 3)2(2x − 3)2(4x − 3)2d2
xHn−

(x − 3)(2x − 3)(4x − 3)(8(n − 3)x2 − 6(5n − 13)x − 3(9n2 + 13n + 29))dxHn−
2(64nx4 − 424nx3 + 2(475n − 6)x2 − 3(283n − 15)x + 3(91n − 6))Hn−

2(4n + 3)(8nx2 − 6(5n + 1)x − 3(9n2 + 13n + 17))Kn+ (73)

4(4n + 1)(4n + 3)Mn−
4(4n + 3)(4n + 5)Nn = 0 .
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Recall that equation (33) of Lemma 3 expresses dxHn in terms of Hn and Kn. Also,

Lemma 4 gives a linear relationship between Hn, Kn, Mn and Nn. Thus by using these

two equations we can eliminate both the dxHn and the Mn term in the above formula:

4(4n + 1)(x − 1)(x − 3)2(2x − 3)2(4x − 3)2d2
xHn−

4(4n + 1)(64n(n − 1)x5 − 96(3n2 − 8n − 2)x4 + 12(36n3 + 163n2 − 65n − 8)x3−
4(459n3 + 1661n2 + 949n + 417)x2 + 3(243n4 + 2106n3 + 5192n2 + 4291n + 1482)x

−3(243n4 + 1674n3 + 3679n2 + 3140n + 1008))Hn+

8(4n + 1)(4n + 3)(16(n + 2)x3 − 4(17n + 31)x2 + 6(9n2 + 48n + 53)x− (74)

3(18n2 + 80n + 77))Kn−
32(4n + 1)(4n + 3)(4n + 5)(x − 1)Nn = 0 .

At this point we have enough information on the interrelationship between Hn, Kn, Nn

and Mn that allows us to derive a number of evaluations of Hn(x) for special values of x.

These evaluations also turn out to be essential for the final step of the proof of Theorem

1 in Section 4.

3 Product form evaluations of Hn(x) at special x

Our calculations for the special values rely on identities we have proved for Hn, Kn, Nn

and Mn as well as a Dodgson-like determinant identity which is useful. This identity is

as follows:

Proposition 1 Suppose the determinants Hn, Kn, Mn, and Nn are defined as in (13),

(21), (34), and (35) respectively. Then

Hn−1Hn+1 = HnNn − HnMn − K2
n . (75)

Proof This identity can be proved using techniques similar to those in [9]. We first

prove a general determinant expansion result, and then specialize to Hankel determinants

to obtain (75). Consider two matrices

Rn = [ri,j]0≤i,j≤n

Xn+1 = [xi,j]0≤i,j≤n+1

where ultimately we will set for all i, j

ri,j = xi,j = ai+j(x) .
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Consider the sum

n+1
∑

k=0

(−1)n+1−k



det

[{

ri,j if i 6= n

xk,j+1 if i = n

]

0≤i,j≤n

det





{

xi,j if i < k

xi+1,j if i ≥ k

]

0≤i,j≤n



 (76)

as a function of the matrix X = Xn+1. It is not difficult to prove that if two adjacent

rows of X are switched then the sum (76) changes sign. Since the set of all permutations

of the rows is generated by flips of adjacent rows, it follows that (76) is alternating.

In addition (76) is linear in each row of X. Since (76) is both alternating and multilin-

ear, it is equal to a multiple (depending on Rn) of det(Xn+1). To determine the multiple

we set X to the matrix:

Xn+1 =





















1 0 . . . 0

0 r0,0 r0,1 . . . r0,n

0 r1,0 r1,1 . . . r1,n

...

0 rn,0 rn,1 . . . rn,n





















.

In this case

det(Xn+1) = det(Rn) .

In the sum (76) only the term corresponding to i = n + 1 survives and this term itself

evaluates to

det(Rn) det(Rn−1) .

Therefore for all R and X, the sum (76) evaluates to det(Rn−1) det(Xn+1). When R and

X are Hankel, only the last three terms of in the sum (76) survive. In particular, if we

set

ri,j = xi,j = ai+j(x)

we obtain identity (75). •

3.1 The evaluation of Hn(3)

We use the identities involving Hn, Kn, Mn, and Nn that we already have, along with

(75). At the point x = 3 the left hand side of (75) evaluates to Hn−1(3)Hn+1(3). The

right hand side of (75) is more difficult to evaluate; we have to use the identities from the

previous section. At x = 3, equation (33) simplifies to

2(4n + 3)Kn(3) = 3(9n2 + 19n + 14)Hn(3) . (77)

Therefore

Kn(3) =
3(9n2 + 19n + 14)

2(4n + 3)
Hn(3) . (78)
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Now we can use this together with equation (74) to calculate Nn at x = 3

Nn(3) =
3(243n4 + 1512n3 + 3605n2 + 4144n + 1920)

8(4n + 3)(4n + 5)
Hn(3) . (79)

Finally we use the linear relationship of Lemma 4 to calculate Mn at x = 3:

Mn(3) = −3n(243n3 + 540n2 + 559n + 58)

8(4n + 1)(4n + 3)
Hn(3) . (80)

We can now write the right hand side of (75) as

9(3n + 4)(3n + 5)(6n − 1)(6n + 1)

4(4n + 1)(4n + 3)2(4n + 5)
Hn(3)2 .

Letting Hn = Hn(3), we have

Hn−1Hn+1 =
9(3n + 4)(3n + 5)(6n − 1)(6n + 1)

4(4n + 1)(4n + 3)2(4n + 5)
H2

n . (81)

Writing (81) as a recursion for Hn+1

Hn
, we find that

Hn+1

Hn

=
H1

H0

n
∏

i=1

9(3i + 4)(3i + 5)(6i − 1)(6i + 1)

4(4i + 1)(4i + 3)2(4i + 5)
.

Thus

Hn = H0(
H1

H0

)n
n−1
∏

j=1

n−j
∏

i=1

9(3i + 4)(3i + 5)(6i − 1)(6i + 1)

4(4i + 1)(4i + 3)2(4i + 5)
.

We compute directly that H0 = 1 and H1 = −1. Rearranging,

Hn = (−1)n
n−1
∏

j=1

n−j
∏

i=1

9(3i + 4)(3i + 5)(6i − 1)(6i + 1)

4(4i + 1)(4i + 3)2(4i + 5)
. (82)

This double product expression for Hn can be rewritten in terms of factorials. We record

this as a corollary.

Corollary 1 Suppose ak(x) is defined as in (7) and Hn(x) = det[ai+j(x)]0≤i,j≤n. Then

Hn(3) = (−1)n
n
∏

i=1

(6i − 3)!(3i + 2)!(2i − 1)!

(4i − 1)!(4i + 1)!(3i − 2)!
. (83)
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3.2 The evaluation of Hn(
3
2)

For x = 3
2
, the left hand side of identity (33) of Lemma 3 vanishes, and we obtain

Kn(3
2
) =

3(9n2 + 22n + 11)

2(4n + 3)
Hn(3

2
) . (84)

Next, we evaluate (74) at x = 3
2

using this expression for Kn. The second derivative terms

drops out and we obtain

Nn(3
2
) =

3(243n4 + 1674n3 + 4031n2 + 3934n + 1290)

8(4n + 3)(4n + 5)
Hn(3

2
) . (85)

Finally, using these expressions for Kn(3
2
) and Nn(3

2
) in the linear identity (36) of Lemma

4 at x = 3
2
, we obtain

Mn(3
2
) =

−3n(243n3 + 702n2 + 547n + 118)

8(4n + 1)(4n + 3)
Hn(3

2
) . (86)

Substituting these in (75) with Hn = Hn(
3
2
), we obtain

Hn−1Hn+1 =
9(3n + 2)(3n + 4)(6n + 1)(6n + 5)

4(4n + 1)(4n + 3)2(4n + 5)
H2

n . (87)

This can be written as a recursion for Hn

Hn−1
giving

Hn = Hn−1 ·
H1

H0

n−1
∏

i=1

9(3i + 2)(3i + 4)(6i + 1)(6i + 5)

4(4i + 1)(4i + 3)2(4i + 5)
. (88)

Iterating (88), and using the fact that H0(
3
2
) = 1 and H1(

3
2
) = 2, we obtain the product

formula

Hn(3
2
) = 2n ·

n−1
∏

j=1

n−j
∏

i=1

9(3i + 2)(3i + 4)(6i + 1)(6i + 5)

4(4i + 1)(4i + 3)2(4i + 5)
. (89)

The expression (89) can equivalently be written in terms of factorials as in (90).

Corollary 2 Suppose ak(x) is defined as in (7) and Hn(x) = det[ai+j(x)]0≤i,j≤n. Then

Hn(3
2
) =

n
∏

i=1

(2i − 1)!(6i)!(3i + 1)

2(4i − 1)!(4i + 1)!
. (90)
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3.3 The evaluation of Hn(
3
4)

We can mimic the above steps for the evaluation of Hn at x = 3
4

as well. Evaluating the

identities (33) of Lemma 3, (74), and (36) of Lemma 4 at x = 3
4
, we obtain respectively,

Kn(3
4
) =

3(18n2 + 38n + 19)

4(4n + 3)
Hn(

3
4
) (91)

Nn(3
4
) =

3(486n4 + 3024n3 + 6724n2 + 6290n + 2085)

16(4n + 3)(4n + 5)
Hn(3

4
) (92)

Mn(3
4
) =

−3n(243n3 + 540n2 + 316n + 31)

8(4n + 1)(4n + 3)
Hn(3

4
) .

Substituting these in (75) with Hn = Hn(
3
4
), we obtain the recursion

Hn−1Hn+1 =
9(3n + 1)(3n + 2)(6n + 5)(6n + 7)

4(4n + 1)(4n + 3)2(4n + 5)
H2

n . (93)

Using the values H0(
3
4
) = 1 and H1(

3
2
) = 7

2
, and calculating as in the derivation of (89),

we obtain

Hn(
3
4
) = (7

2
)n

n−1
∏

j=1

n−j
∏

i=1

9(3i + 1)(3i + 2)(6i + 5)(6i + 7)

4(4i + 1)(4i + 3)2(4i + 5)
. (94)

The expression (94) can be written in terms of factorials as given in (95).

Corollary 3 Suppose ak(x) is defined as in (7) and Hn(x) = det[ai+j(x)]0≤i,j≤n. Then

Hn(3
4
) =

n
∏

i=1

(2i − 1)!(6i + 1)!

2(4i − 1)!(4i + 1)!
. (95)

4 A third identity and the differential equation for

Hn

We now continue with the proof of Theorem 1. Using the expression for d2
xHn in terms of

Hn, Kn and Nn from (74), and the expression for dxHn in terms of Hn and Kn from (33),

we have

(x − 3)(2x − 3)2(4x − 3)2
(

(x − 1)(x − 3)d2
xHn

+(2(n + 2)(x − 3) + 3)dxHn − 3n(n + 1)Hn

)

= 8(4n + 3)(4n + 5)(x − 1)Nn (96)

−4(4n + 3)(−27n2 − 93n − 75 + (27n2 + 81n + 60)x + (8n + 10)x2)Kn

−(729n4 + 3564n3 + 6015n2 + 4236n + 1080

−(729n4 + 2916n3 + 3777n2 + 1722n + 180)x

−(432n3 + 1492n2 + 1676n + 600)x2)Hn .
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To prove Theorem 1, we show that the expression on the right hand side of (96) is

identically zero. This is the consequence of our third identity.

Write the right hand side of (96) in the form

−(pnNn + qnKn + rnHn) (97)

where pn = pn(x), qn = qn(x), and rn = rn(x) are the negatives of the polynomials

multiplying Nn, Kn, and Hn on the right hand side of (96), respectively. That is,

pn(x) = −8(4n + 3)(4n + 5)(x − 1)

qn(x) = 4(4n + 3)(−27n2 − 93n − 75 + (27n2 + 81n + 60)x + (8n + 10)x2) (98)

rn(x) = 729n4 + 3564n3 + 6015n2 + 4236n + 1080

−(729n4 + 2916n3 + 3777n2 + 1722n + 180)x

−(432n3 + 1492n2 + 1676n + 600)x2 .

Note that pn is linear, while qn and rn are quadratic polynomials in x.

The three matrices in (13), (21), (35) that define Hn, Kn, and Nn respectively, differ

only in their last column. Therefore the expression

pnNn + qnKn + rnHn (99)

is the determinant of the (n + 1) × (n + 1) matrix whose

i) first n columns are the columns of the matrix An in (13),

ii) whose last column is the linear combination

pnvn+2 + qnvn+1 + rnvn (100)

where for j ≥ 0

vj =















aj

aj+1

...

aj+n















.

To show that the determinant (99) is zero, it suffices to show that the last column (100)

of this matrix is a linear combination of the first n columns v0, v1, . . . , vn−1, i.e. there are

weights wn,0, wn,1, . . . , wn,n+2 with

wn,n+2 = pn

wn,n+1 = qn (101)

wn,n = rn
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such that
n+2
∑

j=0

wn,jai+j = 0 (102)

for i = 0, 1, . . . , n. This is the third identity we need.

After some experimentation, bolstered by checks in Mathematica for values up to

n = 30, we found that the weights are likely given by

wn,j(x) =

min(−j+n+1,bn
2 c+1)

∑

i=0

An,i,j(x) +

min(−j+n+2,bn
2 c+1)

∑

i=0

Bn,i,j(x) (103)

where

An,i,j(x) = un,i(αn,i,j + βn,i,jx + γn,i,jx
2)

Bn,i,j(x) = vn,i(δn,i,j + εn,i,jx + θn,i,jx
2)

and

un,i =
nun,i

dun,i

with

nun,i = 3 · 2i+1(4n + 3)(4n + 5)

(

n

2i

)(

j + 2(n − i + 1) + 1

2(n − i − j + 1) + 1

)

·

(2n − i + 2)!(4n − 2i + 5)!!(6n + 7)!!

dun,i = (2i + 1)(3j + 1)(3j + 2)(2i − j − 2n − 3)(2i − j − 2n − 2) ·
(2n + 1)!(4n + 5)!!(6n − 4i + 7)!! ,

αn,i,j = 3(9j(j + 1) + 2)(12i2 + 6(3j − 4n − 5)i + 6(n + 1)(2n + 3) − j(18n + 19)),

βn,i,j = −3(3j + 2)(24i3 + 8(12j − 9n − 8)i2

+2(36n2 − 96jn + 64n + 9j(5j − 11) + 23)i

−2(n + 1)(2n + 3)(6n + 1) − j2(90n + 89) + 3j(32n2 + 66n + 33)),

γn,i,j = 2(2i + 2j − 2n − 3)(i + j − n − 1)(36i2 + 6(9j − 12n − 5)i

+6n(6n + 5) − 3j(18n + 13) + 2) ,

vn,i =
nvn,i

dvn,i

with

nvn,i = 3 · 2i+3(2n − 2i − 2j + 5)(4n + 3)(4n + 5)

(

n + 1

2i

)(

j + 2(n − i + 2) + 1

2(n − i − j + 2) + 1

)

·

(2n − i + 3)!(4n − 2i + 5)!!(6n + 7)!!

dvn,i = (3j + 1)(3j + 2)(2i − j − 2n − 5)(2i − j − 2n − 4)(2i − j − 2n − 3) ·
(2n + 2)!(4n + 5)!!(6n − 4i + 9)!! ,

δn,i,j = 3(9j(j + 1) + 2)(6i2 + 3(3j − 4n − 7)i + 3(n + 2)(2n + 3) − j(9n + 14)),

εn,i,j = −3(3j + 2)(12i3 + (48j − 36n − 50)i2
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+(45j2 − 3(32n + 49)j + 4(n + 1)(9n + 16))i

−2(n + 2)(2n + 3)(3n + 2) − j2(45n + 67) + 3j(n(16n + 49) + 37)),

θn,i,j = 2(2i + 2j − 2n − 3)(i + j − n − 2)(18n2 − 9(4i + 3j)n

+33n − 33j + 3i(6i + 9j − 11) + 13) .

The proof of formula (102), and consequently the proof of Theorem 1, is therefore

reduced to a somewhat involved system of binomial identities involving summations over

multiple indices. Our first reaction was that a pen-and-paper proof was infeasible. The

explicit form of the conjectured weights gave us a slim hope that automated binomial

identity provers might work. However, we did not see how to do this. So our entire

approach to the evaluation of the determinants Hn seemed to founder on these identities.

Our efforts seemed to indicate that these identities may well be beyond the standard for-

mulations and computational resources required for automated binomial identity provers,

and even if such a proof is possible, the insight such it would offer would be minimal.

We were able to find an alternative approach, which avoids the explicit form of the

weights, and which has the advantage of generalization to other cases. For the proof, all

we need to do is to show the existence of weights satisfying (102) and (101). This becomes

a manageable problem which relies on certain properties of the generating function

f = f(x, y) =
∑

k≥0

ak(x)yk (104)

of the ak.

Lemma 5 Suppose ak(x) is as defined in (7) and f is as in (104). Then

f(x, y) =
4x + 2t − 6

(x − 3)(4x − 3)y(2t − 3) − (x − 1)(27y − 4)
(105)

where

t =
∑

k≥0

(3k)!

(2k + 1)!k!
yk = 1 + y + 3y2 + 12y3 + · · ·

satisfies t3y = t − 1.

The proof of the lemma can be found in Appendix I.

The proof of the existence of weights satisfying (102) and (101) takes several steps.

Suppose t is as in Lemma 5 and define

η = 2t − 3 = −1 + 2y + 6y2 + · · · (106)

Then

f(x, y) =
4x − 3 + η

(x − 3)(4x − 3)yη − (x − 1)(27y − 4)
.
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The first step is to note that we can find a nontrivial polynomial Q0 = Q0(y) of degree

n + 1 such that in the series expansion

ηQ0 = b0 + b1y + b2y
2 + · · ·

we have

bn+2 = bn+3 = · · · = b2n+2 = 0 . (107)

This is possible because there are n + 2 coefficients available in Q0 and only n + 1 homo-

geneous linear equations imposed by (107) that these coefficients are required to satisfy.

Thus we can write

ηQ0 = Q1 + y2n+3Ψ0 (108)

where Q1 = Q1(y) is a polynomial of degree n + 1, and Ψ0 = Ψ0(y) is a power series in y.

In the next step, put

Q2 = (x − 3)(4x − 3)yQ1 − (x − 1)(27y − 4)Q0 . (109)

Then Q2 = Q2(x, y) is a polynomial in x and y of y-degree n + 2. It is important to

note that all three of the polynomials Q0, Q1, Q2 so defined are nontrivial. We claim that

the coefficients of Q2 are the weights we want. In other words, the coefficients of the

terms yn+2 through y2n+2 in fQ2 vanish. Our aim now is to use the special form of the

generating function f in (105) to show this.

Writing (105) in the form

f(x, y)((x − 3)(4x − 3)yη − (x − 1)(27y − 4)) = 4x − 3 + η

and multiplying through by Q0, we get

f(x, y)
(

(x−3)(4x−3)y(Q1 +y2n+3Ψ0)− (x−1)(27y−4)Q0

)

= (4x−3)Q0 +Q1 +y2n+3Ψ0

or

f(x, y)
(

Q2 + (x − 3)(4x − 3)y2n+4Ψ0

)

= (4x − 3)Q0 + Q1 + y2n+3Ψ0

and therefore

f(x, y)Q2 = (4x − 3)Q0 + Q1 + y2n+3 (Ψ0 + f(x, y)(x − 3)(4x − 3)yΨ0)

which means that

fQ2 = (4x − 3)Q0 + Q1 + y2n+3Ψ1 (110)

where

(4x − 3)Q0 + Q1

is a polynomial in x and y of y-degree n + 1 and Ψ1 = Ψ(y) is a power series in y.
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This last statement (110) is equivalent to the statement that

n+2
∑

j=0

Cn+2−j(Q2)ai+j = 0 (111)

for i = 0, 1, . . . , n, where by Ck(Ψ) we denote the coefficient of the term yk in a power

series Ψ. Thus (102) holds with

wn,j = Cn+2−j(Q2)

for j = 0, 1, . . . , n + 2.

In particular, taking determinants, we have

C0(Q2)Nn + C1(Q2)Kn + C2(Q2)Hn = 0 . (112)

This identity is not trivial. Otherwise, we would have a nontrivial linear relationship

among the n+1 columns v0, v1, . . . , vn of Hn. But we have already shown that the special

values Hn(3), Hn(
3
2
), Hn(

3
4
) evaluated in (83), (90), (95) are nonzero, and therefore Hn

does not identically vanish.

Now we need to verify the three special values in (101). Since equation (111) is valid

when multiplied through by an arbitrary constant, in terms of the coefficients Ck(Q2), we

need to show that for some nonzero constant α,

C0(Q2) = αpn

C1(Q2) = αqn (113)

C2(Q2) = αrn

where pn, qn, rn are as defined in (98).

First we rewrite (112) in terms of the three coefficients C0(Q0), C1(Q0), C2(Q0) which

are pure constants, independent on x and y. First, comparing coefficients in (108) and

(109), we obtain the five identities in (114).

C0(Q1) = −C0(Q0)

C1(Q1) = 2C0(Q0) − C1(Q0)

C0(Q2) = 4(x − 1)C0(Q0) (114)

C1(Q2) = (x − 3)(4x − 3)C0(Q1) − 27(x − 1)C0(Q0) + 4(x − 1)C1(Q0)

C2(Q2) = (x − 3)(4x − 3)C1(Q1) − 27(x − 1))C1(Q0) + 4(x − 1)C2(Q0) .

Therefore

C0(Q2) = 4(x − 1)C0(Q0)

C1(Q2) = −2(2x2 + 6x − 9)C0(Q0) + 4(x − 1)C1(Q0) (115)

C2(Q2) = 2(x − 3)(4x − 3)C0(Q0) − 2(2x2 + 6x − 9)C1(Q0) + 4(x − 1)C2(Q0)
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and (112) becomes

4(x − 1)C0(Q0)Nn +
(

−2(2x2 + 6x − 9)C0(Q0) + 4(x − 1)C1(Q0)
)

Kn + (116)
(

2(x − 3)(4x − 3)C0(Q0) − 2(2x2 + 6x − 9)C1(Q0) + 4(x − 1)C2(Q0)
)

Hn = 0 .

We have explicit linear relationships between the three determinants Nn, Kn, Hn at the

points x = 3, 3
2
, 3

4
. For x = 3, we use the expressions in terms of Hn(3) for Nn(3) from

(79) and for Kn(3) from (79) in (116) to obtain the linear equation

8(3 + 4n)(5 + 4n)C2(Q0) +

6(5 + 4n)(1 + 2n + 18n2)C1(Q0) + (117)

3(30 + 67n + 338n2 + 540n3 + 243n4)C0(Q0) = 0 .

For x = 3
2
, we use the expressions in terms of Hn(3

2
) for Nn(3

2
) from (85) and for Kn(3

2
)

from (84) in (116) to obtain

8(3 + 4n)(5 + 4n)C2(Q0) +

12(5 + 4n)(2 + 10n + 9n2)C1(Q0) + (118)

3(120 + 778n + 1445n2 + 1026n3 + 243n4)C0(Q0) = 0 .

Finally for x = 3
4
, we use (92) and (91) in (116) to obtain

8(3 + 4n)(5 + 4n)C2(Q0) +

12(5 + 4n)(−4 + n + 9n2)C1(Q0) + (119)

3(−240 − 446n + 95n2 + 540n3 + 243n4)C0(Q0) = 0 .

Using (any two of) these equations we obtain the parametric solutions

C2(Q0) = 3(50n + 343n2 + 540n3 + 243n4)α

C1(Q0) = −12(1 + n)(30 + 67n + 36n2)α (120)

C0(Q0) = 8(15 + 32n + 16n2)α .

Going back to the system (115), we compute that

C0(Q2) = 32(4n + 3)(4n + 5)(x − 1)α (121)

C1(Q2) = −16(4n + 3)(−75 − 93n − 27n2 + 60x + 81nx + 27n2x + 10x2 + 8nx2)α

C2(Q2) = 4(−1080 − 4236n − 6015n2 − 3564n3 − 729n4 + 180x + 1722nx + 3777n2x

+2916n3x + 729n4x + 600x2 + 1676nx2 + 1492n2x2 + 432n3x2)α .

Taking α = − 1
4
, these are exactly the weights wn,n+2 = pn, wn,n+1 = qn, wn,n = rn as

claimed in (101). This finishes the proof of Theorem 1. •
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4.1 The differential equation solution for the (3, 1)-case

In the previous section we derived the differential equation (14) satisfied by

Hn(x) = det















a0 a1 a2 . . . an

a1 a2 a3 . . . an+1

...
...

an an+1 . . . a2n















where

ak = a
(3,1)
k (x) =

k
∑

m=0

(

3k + 1 − m

k − m

)

xm .

We obtain a power series solution to (14) of the form

y(x) =
∞
∑

i=0

bi(x − 3)i

where the bi satisfy

bi+1 =
(3n + i + 3)(n − i)

(k + 1)(2k + 3)
bi

with b0 = 1. This allows us to prove that

Hn(x) = Cn

n
∑

i=0

n!(3n + i + 2)!2i(x − 3)i

(3n + 2)!(n − i)!(2i + 1)!
(122)

where Cn is the constant of integration that depends only on n but not on x. We have

already calculated Cn = Hn(3) in (83) of Corollary 1. We record the final determinant

evaluation result of the (3, 1)-case as a Theorem:

Theorem 2 Suppose ak(x) is defined as in (7) and Hn(x) = det[ai+j(x)]0≤i,j≤n. Then

Hn(x) = (−1)n
n
∏

i=1

(6i − 3)!(3i + 2)!(2i − 1)!

(4i − 1)!(4i + 1)!(3i − 2)!

n
∑

i=0

n!(3n + i + 2)!2i(x − 3)i

(3n + 2)!(n − i)!(2i + 1)!
. (123)

In particular, evaluating (123) at x = 0 and at x = 1 we obtain

Corollary 4

det

[(

3(i + j) + 1

i + j

)]

0≤i,j≤n

= (124)

(−1)n
n
∏

i=1

(6i − 3)!(3i + 2)!(2i − 1)!

(4i − 1)!(4i + 1)!(3i − 2)!

n
∑

i=0

n!(3n + i + 2)!(−6)i

(3n + 2)!(n − i)!(2i + 1)!

det

[(

3(i + j) + 2

i + j

)]

0≤i,j≤n

= (125)

(−1)n
n
∏

i=1

(6i − 3)!(3i + 2)!(2i − 1)!

(4i − 1)!(4i + 1)!(3i − 2)!

n
∑

i=0

n!(3n + i + 2)!(−4)i

(3n + 2)!(n − i)!(2i + 1)!
.
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The formula on the right-hand side of (126) does indeed simplify to the product formula

(3) by means of the Chu-Vandermonde summation formula.

4.2 A recursion for H (3,1)
n

(x)

We now remark on a property of the polynomials Hn(x) for the (3, 1)-case, which does

not enter into the evaluation of the determinant, but which nevertheless is of interest.

Theorem 3 With H0 = 1, H1(x) = −2x + 5, the Hn(x) satisfy a three-term polynomial

recursion

pn(x)Hn(x) + qn(x)Hn−1(x) + Hn−2(x) = 0 (126)

for n ≥ 2 where

pn(x) =
4(4n − 3)!2(4n − 1)!2

9(3n − 2)2(3n − 1)2(2n − 1)!2(6n − 5)!2
(x − 1)2

qn(x) =
4(n − 1)(4n − 5)!(4n − 1)!

3(3n − 2)(3n − 1)(4n + 1)(2n − 1)!(6n − 5)!

(

8(4n − 3)(4n + 1)x3

−36(4n − 3)(4n + 1)x2 + 6(126n2 − 63n − 23)x − 3(108n2 − 54n − 19)
)

Proof The theorem follows from the explicit form of the Hn(x) given in Theorem 2. We

omit the details. •
The following property of the Hn for the (3, 1)-case is a consequence of Theorem 3:

Corollary 5 The roots of Hn(x) are real and interlace those of Hn+1(x) for n > 0.

Proof The polynomials Hn(x) are clearly not orthogonal, so the proof of the interlacing

phenomenon does not follow from classical results, nor directly from the results of [10].

Nevertheless an elementary induction argument works, which we also omit. •
It is also curious that the recursion (126) seems to define a sequence of rational func-

tions with nontrivial denominators. We are unaware of a general theory of such recurrences

which actually define Sturm sequences of polynomials.

5 Transformation rules

Before we proceed with the evaluation of the determinant H (2,1)
n (x), we would like to

collect the information we already have about various trace calculations to automate this

process to some extent. In the course of the calculations involved in the (3, 1)-case, we

have had to evaluate traces such as

Tr(A−1
n [p(x)ai+j+1]0≤i,j≤n), Tr(A−1

n [q(x)(i + j)ai+j+1]0≤i,j≤n), Tr(A−1
n [r(x)ci+j]0≤i,j≤n)
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for polynomial coefficients p(x), q(x), r(x). These traces are reduced to calculating traces

of the form

Tr(A−1
n [ai+j+1]), Tr(A−1

n [(i + j)ai+j+1]), Tr(A−1
n [ci+j])

etc., and then use linearity of the trace. Furthermore, the calculations do not use the ex-

plicit form of the polynomials ak. We can go one step further: when we apply the operator

Tr(A−1
n ∗) to various terms of an identity linearly, we can then multiply through the re-

sulting transformed identity by Hn to obtain a relationship between various determinants

related to Hn, as we did in a number of cases in the computation of the (3, 1)-case. In

Table 1 we summarize the effect of this transformation on various terms that may appear

in an identity.

dxan → dxHn

nan−1 → 0 cn−1 → 0

an → (n + 1)Hn nan → n(n + 1)Hn cn → (2n + 1)a0Hn

an+1 → Kn nan+1 → 2nKn cn+1 → 2a0Kn + 2na1Hn

an+2 → Mn + Nn

(n > 0)

nan+2 → 2(n − 1)Mn + 2nNn

(n > 0)

Table 1: Some linear transformation rules.

In Table 1, an = an(x), n = 0, 1, . . . is a sequence of polynomials, cn are the convolution

polynomials defined by

cn =
n
∑

i=0

aian−i (127)

and Hn, Kn, Mn, Nn are the following (n + 1)× (n + 1) determinants defined by the ak’s:

Hn = det















a0 a1 a2 . . . an

a1 a2 a3 . . . an+1

...
...

an an+1 . . . a2n















Kn = det





















a0 a1 . . . an−1 an+1

a1 a2 . . . an an+2

...
. . .

an−1 an . . . a2n−2 a2n

an an+1 . . . a2n−1 a2n+1





















Mn = det





















a0 a1 . . . an−2 an+1 an

a1 a2 . . . an−1 an+2 an+1

...
. . .

an−1 an . . . a2n−3 a2n a2n−1

an an+1 . . . a2n−2 a2n+1 a2n




















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Nn = det





















a0 a1 . . . an−2 an−1 an+2

a1 a2 . . . an−1 an an+3

...
. . .

an−1 an . . . a2n−3 a2n−2 a2n+1

an an+1 . . . a2n−2 a2n−1 a2n+2





















.

From these rules we obtain a few known applications that are not connected with the

determinants we are evaluating. We give a few simple examples.

Example

Recall that a polynomial sequence {ak}k≥0 is said to be an Appell set if dxan = nan−1.

If Bn, Hn, Tn, Pn are the Bernoulli, Hermite, Chebyshev, and Legendre polynomials,

respectively, then for any complex a 6= 0,

{Bn(x)}, {(2a)−nHn(ax)}, {(x2 − a2)
n
2 Tn(

x√
x2 − a2

)}, {(x2 − a2)
n
2 Pn(

x√
x2 − a2

)},

are all well-known examples of Appell sets [3, 14]. Starting with the defining identity

dxan = nan−1

and applying the transformations dxan → dxHn and nan−1 → 0 from Table 1, we see that

dxHn = 0, and therefore the Hankel determinants of Appell polynomials are independent

of x.

Example

For a sequence of polynomials an satisfying

xdxan = nan + cnan−1 (128)

for some constant c, we make the replacements dxan → dxHn, nan → n(n + 1)Hn and

nan−1 → 0 from Table 1 to find that the corresponding Hankel determinant Hn satisfies

xdxHn = n(n + 1)Hn .

This is integrable with

Hn(x) = cn · xn(n+1) .

For c = −1 in (128) we get the Laguerre polynomials Ln with L0 = 1, L1 = 1 − x. After

simple row operations, cn = Hn(1) has a known product evaluation as

cn = det

[

1

(i + j)!

]

0≤i,j≤n

= 2−n2

(−1)
n(n+1)

2

n
∏

i=1

1

12 · 32 · · · (2i − 1)2
.
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For c = 1 in (128) we get the so-called derangement polynomials

Dn(x) =
n
∑

i=0

(−1)i n!

i!
xn−i

for which the constant of integration is

cn =
n
∏

i=1

i!2

as found in [12].

Example

Legendre polynomials satisfy

(x2 − 1)dxPn = nxPn − nPn−1

with P0 = 1, P1 = x. Therefore

(x2 − 1)dxHn = xn(n + 1)Hn

and

Hn = cn · (x2 − 1)
n(n+1)

2 .

Hn can be evaluated at x = 0, giving

cn = 2−n2

.

Example

In general, for any family of polynomials {ak}k≥0 such that

dxan, an, nan, nan−1, cn, cn−1

satisfy a linear identity with fixed polynomial coefficients (where cn is the convolution de-

fined in (127)), the corresponding Hankel determinant is the solution to a simple separable

first-order linear equation.

Now we return to the determinants H (β,α)
n and consider the (2, 1)-case.
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6 The (2, 1)-case

Now we let

ak = a
(2,1)
k (x) =

k
∑

m=0

(

2k + 1 − m

k − m

)

xm

ck =
k
∑

i=0

aiak−i (129)

Hn = H(2,1)
n (x) = det[ai+j(x)]0≤i,j≤n .

Theorem 4 Let the polynomials ak = a
(2,1)
k (x) and Hn = H(2,1)

n (x) are as defined in

(129). Then Hn satisfies the differential equation

x(x − 2)d2
xy + (2x − 1)dxy − n(n + 1)y = 0 . (130)

The proof of Theorem 4 mimics the steps of the (3, 1)-case. The analogues of the first

two identities in Lemma 1 and Lemma 2 of the (3, 1)-case are now as follows:

Lemma 6 Suppose ak and ck are as defined in (129). Then

2x(x − 2)dxan − (n + 1)an+1 + (4n + 2(x + 1))an − (x − 1)cn + 4(x − 1)cn−1 = 0 . (131)

Lemma 7 Suppose ak and ck are as defined in (129). Then

(nx + 2(x + 1))an+2 − (2x(x + 2)n + 2(2x2 + 3x + 4))an+1

+4x2(2n + 3)an + (x − 1)(x − 2)cn+1 − 4(x − 1)(x − 2)cn = 0 . (132)

The proofs are given in Appendix II.

Applying the transformations in Table 1 to the identities in these two Lemmas, we

immediately obtain the pair of identities

2x(x − 2)dxHn − (2n + 1)Kn

+4n(n + 1)Hn + 2(x + 1)(n + 1)Hn − (x − 1)(2n + 1)Hn = 0,

x(2(n − 1)Mn + 2nNn) + 2(x + 1)(Mn + Nn) − 2x(x + 2)(2nKn)

+2(2x2 + 3x + 4)Kn + 8x2n(n + 1)Hn + 12x2(n + 1)Hn

+(x − 1)(x − 2)(2Kn + 2n(x + 3)Hn) − 4(x − 1)(x − 2)(2n + 1)Hn = 0 .

These can be rewritten as

2x(x − 2)dxHn + (x + 3 + 8n + 4n2)Hn − (2n + 1)Kn = 0,

(2nx3 + (8n2 + 12n + 8)x2 + (12n + 10)x − 4n − 8)Hn (133)

−((2 + 4n)x2 + (12 + 8n)x + 4)Kn + 2(nx + 1)Mn + 2((n + 1)x + 1)Nn = 0 .
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First we use identity (25) to rewrite Kn as a trace in (133). Differentiating, we follow

through calculations of traces similar to the derivation of d2
xHn of the (3, 1)-case to obtain

2(x − 2)2x2(1 + nx)d2
xHn

+2(x − 2)x(3 + 10n + 4n2 + 3x + 9nx + 12n2x + 4n3x + 4nx2 + 2n2x2)dxHn

+(10 + 49n + 78n2 + 44n3 + 8n4 + (4 + 34n + 86n2 + 98n3 + 48n4 + 8n5)x

+(1 + 8n + 14n2 + 8n3)x2 + (2n − 2n3)x3)Hn (134)

−(2n + 1)(1 + 2n + 2nx + 2n2x)Nn = 0 .

Combining (134) and the expression (133) for dxHn, we obtain

2(x − 2)x(nx + 1)
(

x(x − 2)d2
xy + (2x − 1)dxy − n(n + 1)y

)

= (135)

(2n + 1)(1 + 2n + 2nx + 2n2x) (Nn − (4 + 2n + x)Kn

+(2 + 5n + 2n2 + 3x + 2nx)Hn

)

.

6.1 Product form evaluations at special x for the (2, 1)-case

At this point, we can evaluate Hn(x) at special points x easily. At x = 0, we get from

(133) and (134)

Kn =
3 + 8n + 4n2

2n + 1
Hn

Nn =
10 + 49n + 78n2 + 44n3 + 8n4

(2n + 1)2
Hn (136)

Mn = −(3n + 2n2)Hn .

Using (75) and that H0 = H1 = 1 for x = 0, we obtain the recursion for Hn

Hn−1
as

Hn+1

Hn

=
Hn

Hn−1
(137)

and therefore

Hn(0) = 1 (138)

as is well known. At x = 2

Kn =
5 + 8n + 4n2

2n + 1
Hn

Nn =
22 + 33n + 20n2 + 4n3

2n + 1
Hn (139)

Mn = −n(7 + 8n + 4n2)

(2n + 1)
Hn
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and H0 = 1, H1 = −3. From (75)

Hn+1Hn−1 =
(2n − 1)(2n + 3)

(2n + 1)2
H2

n

and therefore

Hn(2) = (−1)n(2n + 1) . (140)

After the evaluations at special points, we now return to the proof of the differential

equation for the 2n + 1 case. By (135), it suffices to prove the identity

Nn − (4 + 2n + x)Kn + (2 + 5n + 2n2 + 3x + 2nx)Hn = 0 . (141)

This is the determinantal form of the third identity for the (2, 1)-case. The left hand side

of (141) is a determinant as in (99) and (100) of the (3, 1)-case. The problem is again to

show the existence of weights wn,0, wn,1, . . . , wn,n+2 satisfying the third identity (101) and

(102) where in this case the requirements are

wn,n+2 = pn(x) = 1

wn,n+1 = qn(x) = −(4 + 2n + x) (142)

wn,n = rn(x) = 2 + 5n + 2n2 + 3x + 2nx .

By experimentation, we found that these weights are explicitly given by

wn,j = (−1)n+j

{

2

(

n + j + 1

n − j + 1

)

+

(

n + j + 1

n − j + 2

)

(143)

+

(

2

(

n + j + 1

n − j

)

+

(

n + j + 1

n − j + 1

))

x

}

for i = 0, 1, . . . , n − 1, and wn,n, wn,n+1, wn,n+2 as in (142). The resulting identities are

simpler than the (3, 1)-case, and in fact a combination of paper-and-pencil and automatic

identity provers can be used to prove that these are correct. However we can do better,

and we use this case as another exercise for the application of the method of the existence

of the weights that we used in the (3, 1)-case.

We need a lemma similar to Lemma 5.

Lemma 8 Suppose ak(x) is as defined in (9) and f is as in (104). Then

f(x, y) =
t

(x − 2)yt + 1 − 2xy
(144)

where

t =
∑

k≥0

(2k)!

(k + 1)!k!
yk = 1 + y + 2y2 + 5y3 + · · ·

satisfies t2y = t − 1.
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The proof of Lemma 8 can be found in Appendix I.

Let t be the power series in y given in Lemma 8. Then there is a nontrivial polynomial

Q0 = Q0(y) of degree n + 1 such that

tQ0 = Q1 + y2n+3Ψ0 (145)

where Q1 = Q1(y) is a polynomial of degree n + 1, and Ψ0 = Ψ0(y) is a power series in

y; i.e. the coefficients of yk in tQ0 vanish for n + 2 ≤ k ≤ 2n + 2. Such a nontrivial Q0

exists because there are n + 2 coefficients and only n + 1 linear homogeneous equations

these coefficients need to satisfy. In the next step, put

Q2 = (x − 2)yQ1 + (1 − 2xy)Q0 . (146)

Then Q2 = Q2(x, y) is a polynomial in x and y of y-degree n + 2. All three polynomials

Q0, Q1, Q2 are nontrivial. We claim that the coefficients of Q2 are the weights we want.

In other words, the coefficients of the terms yn+2 through y2n+2 in fQ2 vanish. Writing

(144) in the form

f(x, y)((x − 2)yt + 1 − 2xy) = t

and multiplying through by Q0, we get

f(x, y)
(

(x − 2)y(Q1 + y2n+3Ψ0) + (1 − 2xy)Q0

)

= Q1 + y2n+3Ψ0

or

f(x, y)Q2 = Q1 + y2n+3Ψ0 − f(x, y)(x − 2)yy2n+3Ψ0

and therefore

f(x, y)Q2 = Q1 + y2n+3 (Ψ0 − f(x, y)(x − 2)yΨ0)

which means that

fQ2 = Q1 + y2n+3Ψ1 (147)

where Ψ1 = Ψ(y) is a power series in y. This last statement (147) is equivalent to

n+2
∑

j=0

Cn+2−j(Q2)ai+j = 0 (148)

for i = 0, 1, . . . , n, where by Ck(Ψ) we denote the coefficient of the term yk in a power

series Ψ. Thus (102) holds with

wn,j = Cn+2−j(Q2)

for j = 0, 1, . . . , n + 2.

Therefore

C0(Q2)Nn + C1(Q2)Kn + C2(Q2)Hn = 0 . (149)
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This identity is not trivial, for otherwise we would have a nontrivial linear relationship

among the n + 1 columns v0, v1, . . . , vn of Hn. But we have already shown by the evalua-

tions in (138), (140) that Hn does not identically vanish.

Now we need verify the three special values in (142), i.e. for some nonzero constant

α,

C0(Q2) = αpn

C1(Q2) = αqn (150)

C2(Q2) = αrn

where pn, qn, rn are as defined in (142).

Rewrite (149) in terms of C0(Q0), C1(Q0), C2(Q0) which are pure constants, independent

on x and y. Comparing coefficients in (145) and (146), we obtain

C0(Q1) = C0(Q0)

C1(Q1) = C1(Q0) + C0(Q0)

C0(Q2) = C0(Q0) (151)

C1(Q2) = (x − 2)C0(Q1) − 2xC0(Q0) + C1(Q0)

C2(Q2) = (x − 2)C1(Q1) − 2xC1(Q0) + C2(Q0) .

Therefore

C0(Q2) = C0(Q0)

C1(Q2) = C1(Q0) − (x + 2)C0(Q0) (152)

C2(Q2) = C2(Q0) − (x + 2)C1(Q0) + (x − 2)C0(Q0)

and (149) becomes

C0(Q0)Nn +

(C1(Q0) − (x + 2)C0(Q0)) Kn + (153)

(C2(Q0) − (x + 2)C1(Q0) + (x − 2)C0(Q0)) Hn = 0 .

Using the expressions for Kn and Nn in terms of Hn at x = 0 and x = 2 from (136) and

(139)

(10 + 49n + 78n2 + 44n3 + 8n4)C0(Q0)

+(3 + 8n + 4n2)(2n + 1)(C1(Q0) − 2C0(Q0))

+(2n + 1)2(C2(Q0) − 2C1(Q0) − 2C0(Q0)) = 0

(22 + 33n + 20n2 + 4n3)C0(Q0)

+(5 + 8n + 4n2)(C1(Q0) − 4C0(Q0))

+(2n + 1)(C2(Q0) − 4C1(Q0)) = 0 .
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The parametric solutions are

C2(Q0) = n(2n + 1)α

C1(Q0) = −2(n + 1)α (154)

C0(Q0) = α .

Going back to the system (152)

C0(Q2) = α

C1(Q2) = −(4 + 2n + x)α (155)

C2(Q2) = (2 + 5n + 2n2 + 3x + 2nx)α .

With α = 1, these are exactly the weights wn,n+2 = pn, wn,n+1 = qn, wn,n = rn as claimed

in (142).

6.2 The differential equation solution for the (2, 1)-case

We have the differential equation (130) satisfied by the Hankel determinants Hn for the

(2, 1)-case. We obtain a power series solution to (130) as

y(x) = Cn

n
∑

i=0

(n + i)!2i(x − 2)i

(n − i)!(2i + 1)!

where he constant of integration Cn = Hn(2) is given by (140). Therefore

Theorem 5 Suppose ak(x) is defined by (9) and Hn(x) = H (2,1)
n (x) = det[ai+j(x)]0≤i,j≤n.

Then

Hn(x) = (−1)n(2n + 1)
n
∑

i=0

(n + i)!2i(x − 2)i

(n − i)!(2i + 1)!
. (156)

Evaluating (156) at x = 0 and at x = 1 we obtain

Corollary 6

det

[(

2(i + j) + 1

i + j

)]

0≤i,j≤n

= (−1)n(2n + 1)
n
∑

i=0

(n + i)!(−4)i

(n − i)!(2i + 1)!
(157)

det

[(

2(i + j) + 2

i + j

)]

0≤i,j≤n

= (−1)n(2n + 1)
n
∑

i=0

(n + i)!(−2)i

(n − i)!(2i + 1)!
(158)

We remark that the known product forms for the Hankel determinant evaluations in

this corollary follow by writing the series in (157) as a hypergeometric series

2F1

[

−n, n + 1

1
; 1

]
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and applying the Chu-Vandermonde summation formula, respectively by writing the series

in (158) as a geometric series

2F1

[

−n, n + 1

1
;
1

2

]

and applying Bailey’s summation

2F1

[

a, 1 − a

b
;
1

2

]

=
Γ( b

2
)Γ(1

2
+ b

2
)

Γ(a
2

+ b
2
)Γ(1

2
− a

2
+ b

2
)

.

An interesting point about Corollary 6 is that the right hand side of (157) is a com-

plicated way of writing 1, while the right hand side of (158) evaluates to the simple

expression

(−1)
n(n+1)

2 . (159)

Alternate derivations of the evaluation (159) for the determinant in (158) were communi-

cated to us by Ira Gessel and Christian Krattenthaler. A generalization of the determinant

in (158) can be found in Corollary 8 below.

It is also interesting that the determinants H (2,1)
n (x) are orthogonal polynomials:

Corollary 7 The (n + 1) × (n + 1) Hankel determinants Hn(x) = H (2,1)
n (x) form an

orthogonal family of polynomials.

Proof We have

H0(x) = 1, H1(x) = 1 − 2x

and for n ≥ 2,

Hn(x) = 2(1 − x)Hn−1(x) − Hn−2(x) (160)

which can be verified directly from the explicit formula in (156) or using the differential

equation (130). Orthogonality now follows from Favard’s theorem. •

In this case the generating function of the Hn(x) is

1 − y

1 − 2(1 − x)y + y2
=
∑

n≥0

Hn(x)yn .

Comparing this last expression with the generating function

1

1 − 2xy + y2
=
∑

n≥0

Un(x)yn

of the Chebyshev polynomials of the second kind Un(x), we have the expansion

Hn(x) = Un(1 − x) − Un−1(1 − x) . (161)
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In fact we can prove more. From the identity

k
∑

m=0

(

2k + 2

k − m

)

xm =
k
∑

m=0

(

2k + 1 − m

k − m

)

(x + 1)m = a
(2,1)
k (x + 1) (162)

and the differential equation (130) for H (2,1)
n (x), we obtain both the evaluation of the

Hankel determinant of the polynomials

ak(x) =
k
∑

m=0

(

2k + 2

k − m

)

xm , (163)

and an alternate expression for H (2,1)
n (x) itself.

Corollary 8 Suppose the polynomials ak(x) are as defined in (163) and

Hn(x) = det[ai+j(x)]0≤i,j≤n .

Then Hn(x) satisfies Jacobi’s differential equation

(x2 − 1)d2
xy + (2x + 1)dxy − n(n + 1)y = 0 (164)

and therefore in terms of the Jacobi polynomials

Hn(x) = (−4)n (n!)2

(2n)!
P

(
1
2

,−
1
2
)

n (x),

H(2,1)
n (x) = (−4)n (n!)2

(2n)!
P

(
1
2

,−
1
2
)

n (x − 1) .

7 Remarks

When we started to look at Hankel determinants of An = [ai+j]0≤i,j≤n with entries ak =
(

3k+1
k

)

, it looked like an almost product could account for the combination of small and

large prime factors that were showing up in the data. At the time, we also thought that

whatever was moving the (3, 1)-case off the pure product formulas of the (3, 0) and (3, 2)-

cases would also explain the (3, 3)-case, and the (3, 4)-case, and so on. It might also get

at the (4, 1)-case, and all the rest of the (β, α)-cases.

This section is a brief discussion of what did and did not work out. We started with

the observation that if you define ak(x) by (7) then

ak(1) =

(

3k + 2

k

)

,

so that

H(3,2)
n = H(3,1)

n (1)
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has a product form evaluation. What we wanted was the value of H (3,1)
n (x) not at x = 1

but at x = 0. Experimenting with the expansion of H (3,1)
n (x) at various points, we found

that at x = 1 and at x = 3 the Taylor coefficients of H (3,1)
n (x) had small prime factors.

We called x = 1 and x = 3 round points.

We also found several Hankel determinants that had similar behavior but we had

trouble finding a consistent explanation for this phenomenon. In others, such as H (3,0)
n ,

the coefficients were somewhat round but not round enough to allow us to find a simple

power series expansion.

When we tried to determine the common elements of these different determinants,

differential equations came to mind because hypergeometric series such as (8) clearly

have a differential equation. In retrospect, the explanation of why x = 1 and x = 3 are

good places to expand H (3,1)
n is partially explained by examining the form of its differential

equation. For instance (14) can be written in the form

(x − 3)2d2
xy + 2(n + 2)(x − 3)dxy − 3n(n + 1)y = −2(x − 3)d2

xy − 3dxy . (165)

This form is significant because the operator on the left hand side of (165) takes (x− 3)k

to (x − 3)k times a polynomial in n and k and the operator on the right takes (x − 3)k

to (x − 3)k−1 times a polynomial in n and k. This means that the differential equation

defines a two-term recursion on successive coefficients of the expansion of H (3,1)
n (x) around

(x − 3). So the power series is easily shown to be hypergeometric.

Differential equations can also explain the “near” round behavior seen in some cases,

such as the H (3,0)
n . However, the existence of a differential equation would not provide

any input on why the constant of integration such as H (3,0)
n (3) was round. Consequently

it was a nice bonus when, during the proof of the differential equation, we realized that

we could prove product formulas for these kinds of determinants (e.g., (83) in Corollary

1, (90) in Corollary 2, (95) in Corollary 3; (168), (169), and (172) in Section 8).

Once differential equations entered the picture, it was easy to guess the differential

equations for many of these Hankel determinants and obtain strong experimental evidence

for their correctness, but we did not find a general pattern, even for the families H (β,α)
n . It

is doubtful that such a pattern exists. For example, the (unproven) differential equation

for the (3, 2)-case is fourth order and quite mysteriously complex (see Figure 1). This

differential equation has been tested for H (3,2)
n (x) where n = 1, 2, . . . , 75. We did not find

a differential equation for (3, 3) or for any (3, α) with α ≥ 3.

Now the actual proof of the differential equation for a determinant like H (3,1)
n (x) is

an elusive creature. The straightforward evaluation of the derivative yields a sum of

n + 1 determinants, each one of which is badly behaved at x = 3. That was a disturbing

development, and we still had to differentiate each of these determinants themselves to

get at the second order differential equation.

In order to approach the problem systematically, we wrote the derivative of a Hankel
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2(3x − 1)2(x − 3)3x(4(n + 2)(2n + 1)x2 + (8n2 + 20n + 11)x − 1) d4
xy

+(x − 3)2(3x − 1)(12(n + 2)(2n + 1)(8n + 27)x4

−3(128n3 + 568n2 + 724n + 161)x3

−(576n3 + 3016n2 + 4756n + 2269)x2 + (72n2 + 252n + 319)x − 15) d3
xy

+3(x − 3)(12(8n4 + 118n3 + 427n2 + 533n + 174)x5

−(736n4 + 6704 + 19628n2 + 21289n + 5814)x4

+(800n4 + 2944n3 + 564n2 − 7580n − 7078)x3

+2(816n4 + 6744n3 + 19358n2 + 23069n + 9809)x2

−6(108n3 + 540n2 + 972n + 679)x + 15(9n + 20))d2
xy

−3(12(16n5 + 62n4 − 7n3 − 293n2 − 378n − 120)x5

−(960n5 + 3104n4 − 3080n3 − 20993n2 − 23419n − 6450)x4

+4(144n5 − 4n4 − 2300n3 − 4657n2 − 2040n + 838)x3

+(1728n5 + 6624n4 − 5832n3 − 556990n2 − 80626n − 36004)x2

+12(318n4 + 1995n3 + 4670n2 + 4928n + 2058)x − (783n2 + 3105n + 3102))dxy

−3n(n + 1)(12(12n4 + 68n3 + 137n2 + 113n + 30)x4

−(864n4 + 4488n3 + 8158n2 + 5887n + 1222)x3

+(720n4 + 2304n3 + 280n2 − 4547n − 3388)x2

+3(576n4 + 3816n3 + 9182n2 + 9533n + 3666)x − 3(120n2 + 507n + 538))y = 0 .

Figure 1: Differential equation for y = H (3,2)
n (x) .
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determinant Hn = det[ai+j(x)]0≤i,j≤n as

dxHn = Tr(A−1
n dxAn)Hn

where

dxAn = dxAn(x) = [dxai+j(x)]0≤i,j≤n .

The obvious thing to try at this point is to look for expansions of the form

dxAn = RAn + AnS

so that we could prove that

dx det(An) = Tr(R + S) det(An) .

This search also proved fruitless, and in retrospect Lemma 3 suggests that it will be very

difficult to find R and S because

(x− 3)(2x− 3)(4x− 3)Tr(R + S) = 8nx2 − 6(5n + 1)x− 3(9n2 + 13n + 8) + 2(4n + 3)
Kn

Hn

and experiments suggest that Kn and Hn are often relatively prime.

So you have to feed some carefully selected facts into dxAn to get a useful expansion

of dxHn. Initially the first order differential equation

x(x − 1)dxan(x) − (n(x − 3) − 2)an(x) − (3n + 2)an(0) = 0

looks like the fact needed. However this does not work because we never figured out what

to do with the evaluation of the term

Tr(A−1
n [(3i + 3j + 2)ai+j(0)]0≤i,j≤n) .

So at this point we started searching for matrices that behaved well after being eval-

uated by the operator

Tr(A−1
n ∗) . (166)

By “behaves well” we mean that the calculations return a single determinant, or at most

a linear combination of a just a few determinants, thus avoiding the expansion of Hn as a

sum of a large number of determinants. We quickly learned about the first two columns

in Table 1 in Section 5. But this was not sufficient because dxAn cannot be expressed as

a sum of the matrices defined in these two columns.

At this point we recalled some results in the literature [5, 6] that related derivatives

to convolutions. We realized that what this work told us was that the operator in (166)

works out very nicely on [ci+j+1], [ci+j], [ci+j−1], i.e. the trace came out to be a single

determinant as already shown in Table 1.
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This gave us enough tools to find our first identity, given as (11) in Lemma 1. Using

this identity we have enough to express the first and second derivatives of Hn as linear

combinations of small numbers of determinants. In particular in the examples of this

paper, the first derivative of Hn is expressed as a linear combination of Hn and Kn. The

second derivative is expressed as a linear combination of Hn, Kn, Mn and Nn. This process

can easily be continued to higher derivatives though the computations get messier at each

derivative.

If the first identity (Lemma 1) is weakened to include terms like an+2 and cn+2, the

above process still works. The only difference is that the derivatives have more distinct

determinant summands. The point of the above discussion is that we cannot handle any

(β, α)-case in which there does not exist a first identity of this kind. So far there are a

dozen cases, some not of the (β, α) type, which have a first identity that we can handle,

and we mention (3, 0), (3, 2), and (2, 2) as examples of these.

The role of the second (Lemma 2) and third identities ( 102) is to prove linear relation-

ships between the determinants that are generated by the above process of differentiating

Hn.

Of these three identities, the proof is most sensitive to the form of the second identity.

In the (3, 2)-case, the second identity involves an+3 terms. While this version of the second

identity can still be used to prove linear relationships between determinants, there are not

enough linear relationships, and a proof of the fourth order differential equation for the

(3, 2)-case does not seem possible with the tools of this paper.

Another difficulty that needs to be overcome is the problem of finding and proving

the third identity. Our original approach was to guess the form of the third identity and

thus reduce the problem to binomial identity proving techniques. This works quite well

for the (2, 1)-case where the third identity has an explicit form:

n+2
∑

i=0

(−1)i

{

2

(

n + 1 + i

n + 1 − i

)

+

(

n + 1 + i

n + 2 − i

)

(167)

+

(

2

(

n + 1 + i

n − i

)

+

(

n + 1 + i

n + 1 − i

))

x

}

ai+m(x) = 0

for 0 ≤ m ≤ n.

Though we were eventually able to guess the third identity in the (3, 1)-case, its form

was hardly enlightening. In addition, the identity was so complex that even the job of

applying automated tools to prove it would be a major undertaking. So the whole process

had arrived at an impasse.

The way forward was a sidestep via an existence theorem (Section 4). The third

identity (once proved) said that the binomial identities we wished to prove actually existed,

and were unique, and you only had to know a few of their components explicitly to show

the electronic journal of combinatorics 15 (2008), #R6 46



that the right hand side of (96) vanished. The third identity for the (3, 1)-case is (102).

This identity is proved via the generating function of the an(x) and from the explicit

linear relationships governing the determinants Hn(x), Kn(x), Nn(x) at special values of

x.

Of special mention is the form of the generating function given in Lemma 5. It is im-

portant to know that this is not the form that emerges in the straightforward derivation

of the generating function, as was done in Lemma 9. We were surprised that we could

not use this form directly to prove the third identity. It took a long time to discover the

form in Lemma 5. This latter form worked, and this concluded the proof of the (3, 1)-case.

To sum up, a lot of things have to fall right in place perfectly to evaluate a H (β,α)
n (x) .

8 Additional results on Hankel determinants

The proof technique presented here is applicable to Hankel determinants of polynomials

other than the a
(β,α)
k . Here we give the necessary ingredients, i.e. the three identities

required, for the proof of the differential equation satisfied for a few of these but omit the

proofs of the theorems and the construction of the explicit power series solutions.

As it happens, the product form evaluation (4) of the (3, 0)-case at x = 0 is not

among the many binomial Hankel determinant evaluations that appear in Krattenthaler

([8], Theorem 31), and we start with the (3, 0)-case as the first example.

Example

First identity for the (3, 0)-case is:

3(x − 3)x(4x − 3)dxan − (4(2x − 3)n + 2(2x − 5))an+1

+(27(2x − 3)n + 3(4x2 − 3x − 9))an − (x − 1)cn+1 + 27(x − 1)cn = 0 .

Second identity for the (3, 0)-case:

(4(2x − 3)2(5x − 3)n + 2(2x − 3)(5x − 3)(6x − 11))an+2

−(81(8x3 − 24x2 + 27x − 9)n + 18(37x3 − 123x2 + 153x − 54))an+1

+(729x3n + 486x3)an + 4(x − 1)(2x − 3)(5x − 3)cn+2

−3(40x4 − 30x3 − 207x2 + 270x − 81)cn+1 + 162x2(5x2 − 15x + 9)cn = 0 .

The generating function of the ak for the third identity for the (3, 0)-case:

f(x, y) =
−(2x − 3)t − 3x

(x2(9y − 4) + 10x − 6)t + (x − 3)(4x − 3)

where t3y = t − 1.
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Theorem 6 The Hankel determinant for the (3, 0)-case satisfies the differential equation

(x − 3)(2x − 3)(5x − 3)d2
xy − 2(10(n − 1)x2 − 9(3n − 4)x − 9(n + 5))dxy

+n(10(n − 1)x − 3(n − 7))y = 0 .

In the (3, 0)-case, in addition to the stated product form evaluation at x = 0 given in

(4), at x = 3 and surprisingly also at x = 3
2

the determinant is given by a simple product.

We omit the proofs here but record these evaluations below. Details of this case will be

presented in [2].

H(3,0)
n (3) =

(3n)!(3n + 2)!

2(n!2)

n
∏

i=1

3(6i − 5)!(2i)!(2i − 1)

(4i + 1)!(4i − 1)!
, (168)

H(3,0)
n (3

2
) =

n
∏

i=1

27(6i − 5)!(3i − 1)(3i − 2)(2i − 1)!

2(4i − 1)!(4i − 3)(4i − 4)!
. (169)

Example

Next, take

ak(x) =
k
∑

m=0

(

3k − 2m

k − m

)

xm . (170)

The first identity for the polynomials in (170):

x(2x − 9)(4x + 9)dxan − (36n + 30)an+1 + (243n + 8x2 + 18x + 81)an

−12cn+1 − (8x2 − 36x − 81)cn + 27x(2x − 9)cn−1 = 0 .

The second identity for the polynomials in (170):

(36(2x + 3)n + 66(2x + 3))an+2

−((32x3 + 486x + 729)n + 12(4x3 + 4x2 + 54x + 81))an+1

+(216x3n + 108x2(2x + 3))an + 12(2x + 3)cn+2

+(16x3 − 72x2 − 378x − 243)cn+1

+2x(8x3 − 90x2 + 243x + 729)cn − 54x3(2x − 9)cn−1 = 0 .

The generating function of the ak for the third identity for the polynomials in (170):

f(x, y) =
3t + 2x

(x(4x − 9)y − 6)t + 9 + 2x − 6x2y

where t3y = t − 1.

Theorem 7 The Hankel determinant of the polynomials in (170) satisfies the differential

equation

(2x + 3)(2x − 9)d2
xy + 4(2(n + 2)x − 9(n + 1))dxy − 12n(n + 1)y = 0 .
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Example

What we refer to as the “aex”-case (for exceptional) is the Hankel determinant where

ak(x) =
1

k + 1

k
∑

m=0

(

3k − m

k − m

)

(m + 1)(m + 2)xm . (171)

The first identity for the aex-case:

x(x − 3)(7x − 3)dxan − (4(x − 1)n + 14(x − 1))an+1

+(27(x − 1)n + 3(x − 1)(11x + 3))an − 6(x − 1)2cn + 6x3cn−1 = 0 .

The second identity for the aex-case:

(4(x − 1)2(3x − 1)n + 18(x − 1)2(3x − 1))an+2

+((−113x3 + 189x2 − 135x + 27)n − 4(30x4 − 19x3 − 21x2 + 39x − 9))an+1

+(216x3n + 12x3(7x2 − 2x + 15))an

+6(x − 1)3(3x − 1)cn+1 − 6x2(x − 1)(10x2 − 17x + 9)cn + 6x5(7x − 9)cn−1 = 0 .

The generating function of the ak for the third identity for the aex-case:

f(x, y) =
2(x − 1)2τ − 2(x − 1)2 − 2(3x − 1)

(−2yx2(x − 3)τ + 2yx2(x − 3) + 6x2y − 3x + 1

where

τ =
∑

k≥0

(3k)!

(2k)!(k + 1)!
yk .

Theorem 8 The Hankel determinant of the polynomials in (171) satisfies the differential

equation

(3x − 1)(x − 1)(x − 3)d2
xy − 2(3nx2 − 8nx − 3(n + 4))dxy + 3n(n + 1)(x − 1)y = 0 .

In the aex-case, the determinant is given by a simple product for x = 3
7

as shown

below:

Hn(3
7
) =

n
∏

i=0

2(6i + 7)!(2i + 1)!

7(4i + 5)!(4i + 3)!
. (172)

Example

We can also evaluate the Hankel determinants as an almost product for

ak(x) =
k
∑

m=0

(

3k + 1

k − m

)

xm . (173)
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These polynomials are related to the polynomials a
(3,0)
k (x) of Example 8 by the simple

transformation

k
∑

m=0

(

3k + 1

k − m

)

xm =
k
∑

m=0

(

3k − m

k − m

)

(x + 1)m = a
(3,0)
k (x + 1) (174)

which is a special case of the transformation formula

2F1

[

a,−n

b
; z

]

=
(c − a)n

(c)n
2F1

[

−n, a

1 + a − c − n
; 1 − z

]

where n is a nonnegative integer [13].

Therefore we have

Theorem 9 The Hankel determinant of the polynomials in (173) satisfies the differential

equation

(x − 2)(2x − 1)(5x + 2)d2
xy

−2(10(n − 1)x2 − (7n − 16)x − 26n − 19)dxy + n(10(n − 1)x + 7n + 11)y = 0 .

Example

Finally we have an alternate evaluation of H (3,1)
n (x) at x = 1.

Theorem 10 Suppose ak(x) is defined as in (7) and Hn(x) = det[ai+j(x)]0≤i,j≤n. Then

Hn(x) =
n
∏

i=1

(6i + 4)!(2i + 1)!

2(4i + 2)!(4i + 3)!

n
∑

i=0

(−1)in!(4n + 3)!!(3n + i + 2)!(x − 1)i

(3n + 2)!i!(n − i)!(4n + 2i + 3)!!
. (175)

As in Corollary 4, taking x = 0 and x = 1 in (175) we obtain the following alternate

evaluations.

Corollary 9

det

[(

3(i + j) + 1

i + j

)]

0≤i,j≤n

=

n
∏

i=1

(6i + 4)!(2i + 1)!

2(4i + 2)!(4i + 3)!

n
∑

i=0

n!(4n + 3)!!(3n + i + 2)!

(3n + 2)!i!(n − i)!(4n + 2i + 3)!!
,

det

[(

3(i + j) + 2

i + j

)]

0≤i,j≤n

=
n
∏

i=1

(6i + 4)!(2i + 1)!

2(4i + 2)!(4i + 3)!
.

The first evaluation in Corollary 9 is the expression given in (6) for H (3,1)
n . It is special as

there are no cancellations on the right. The second evaluation is identical in form to the

known product in (3) for H (3,2)
n .
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There are other variants on the polynomials a
(β,α)
k which experiments suggest satisfy

differential equations. A particularly unusual example are the Hankel determinants for

ak(x) =
k+1
∑

m=0

(

3k + 4 − m

k + 1 − m

)

xm .

These determinants satisfy a third order differential equation, but the coefficients are very

large and not round, making it hard to guess what they are.

Going back to the Hankel determinants H (β,α)
n , some of these are governed by a second

order differential equation, such as (3, 0), (3, 1), and (2, 1). There are also non-(β, α)-cases

governed by a second order differential equation such as the aex-case in Example 8.

In forthcoming work, we plan to refine the methods of this paper so that the approach

sidesteps the complications arising from the nonlinear terms that are produced by the

trace calculations of the derivatives. There is also ongoing work on Hankel determinants

related to other interesting families of polynomials. In the family (2, r), for example, the

three cases r = 0, 1, 2 have product evaluations, but for r ≥ 3, the evaluations are no

longer products. We also encounter new phenomena in these cases, such as higher order

differential equations and case-splitting into residue classes.

We remark that experimentally we know that both (2, 3) and (3, 2)-cases satisfy fourth

order differential equations. For the (2, 3)-case, the polynomial in front of the fourth

derivative has degree 11.
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9 Appendix I: The generating function of the a
(β,α)
k (x)

In Lemma 9, we give a closed form of the generating function f(x, y) defined in (104).

Lemma 9 Suppose ak(x) is as defined in (10) and f is as in (104). Then

f(x, y) =
tα+1

(β + (1 − β)t)(1 − xytβ−1)
(176)

where

tβy = t − 1 . (177)

Proof Changing the order of summation and rearranging

f(x, y) =
∑

m≥0

xmym
∑

n≥0

(

βn + (β − 1)m + α

n

)

yn .

It is known [11] that
∑

n≥0

(

α + βn

n

)

yn =
tα+1

β + (1 − β)t
(178)

where t satisfies (177). For our generating function, β is the same but α in (178) is

replaced by (β − 1)m + α. Using these parameters we obtain

f(x, y) =
∑

m≥0

xmym t(β−1)m+α+1

β + (1 − β)t
=

tα+1

(β + (1 − β)t)(1 − xytβ−1)
(179)

where t satisfies (177). •
Note that using the Lagrange inversion formula, t can be expanded as

t =
∑

k≥0

(βk)!

((β − 1)k + 1)!k!
yk = 1 + y + βy2 +

β(3β − 1)

2
y3 + · · · (180)

Proof of Lemma 5:

Proof The expression (179) for f with β = 3 and α = 1 can be rewritten in the form

(105) since

t2

(3 − 2t)(1 − xyt2)
− 4x + 2t − 6

(x − 3)(4x − 3)y(2t − 3) − (x − 1)(27y − 4)

is equal to

(t − 1 − t3y)(2tx + 6x − 9)

(3 − 2t)(1 − xyt2)(4tx2y − 6x2y − 15txy + 9xy + 9ty + 2x − 2)

and the numerator has t− 1− t3y as factor, but this is zero by (177). This gives the form

of the generating function f for the (3, 1)-case that is claimed in (105). •
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Proof of Lemma 8:

Proof The proof is similar to the proof of Lemma 5 once we observe that the expression

for the generating function

f(x, y) =
t2

(2 − t)(1 − xyt)
(181)

from Lemma 9 can be written as (144) since

t2

(2 − t)(1 − xyt)
− t

(x − 2)yt + 1 − 2xy
=

2t(1 − t + t2y)

(t − 2)(1 − xyt)(1 − 2yt − 2xy − xyt)

and the right hand side vanishes since in this case β = 2 and

1 − t + t2y = 0 (182)

by Lemma 9. •

10 Appendix II: Pairs of identities for the (3, 1) and

(2, 1)-cases.

Proofs of the first two identities in the (3, 1)-case are as follows:

Proof of Lemma 1:

Proof We make use of the generating function f = f(x, y) of the ak’s in the form given

by (179) in Appendix I. Passing to the generating functions, (11) is equivalent to the

functional identity

(x − 3)(2x − 3)(4x − 3)dxf − 4ydy

f − 1

y
− 6

f − 1

y
+ (8x2 − 18x + 36)f (183)

+27ydyf − 4(2x2 − 6x + 3)f 2 + 27(2x2 − 6x + 3)yf 2 = 0 .

Using identity (177),

dyt =
t3

1 − 3yt2
. (184)

Substituting this expression in the computation of dyf , the left hand side of (183) can be

simplified as

2(t3y − t + 1)

(1 − 3yt2)

(

2xt2 + 12x2yt2 − 90xyt2 + 54yt2 + 2t2 + 8x2t

+xt − 36x2yt + 135xyt − 81yt − 15t − 8x2 − 3x + 9
)

which vanishes since t3y − t + 1 = 0 by (177). •
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Proof of Lemma 2:

Proof We again use the generating function f = f(x, y) of the ak’s in the form given

by (179). The identity (13) is equivalent to

8(x − 1)ydy

f − 1 − (4 + x)y

y2
+ 20(x − 1)

f − 1 − (4 + x)y

y2

−2(−81 + 135x − 72x2 + 16x3)ydy

f − 1

y
− 2(−117 + 180x − 92x2 + 24x3)

f − 1

y

+27(2x − 3)3ydyf + 54(2x − 3)(3 − 4x + 2x2)f (185)

+8(x − 1)(3 − 6x + 2x2))
f 2 − 1

y

+2(81 − 297x + 324x2 − 114x3 + 8x4)f 2 − 27x(2x − 3)(9 − 12x + 2x2)yf 2 = 0 .

Using the expression in (184) for dyt in the calculation of dyf , the left hand side of (185)

can be simplified as

2(t3y − t + 1)

(3 − 2t)2y2(1 − 3yt2)(1 − xyt2)2

(

− 72t2y2x4 + 16t2yx4 + 56tyx4 − 72yx4

−108t2y2x3 − 16tx3 − 48t2yx3 − 156tyx3 + 252yx3 + 16x3 − 4t2x2 + 1134t2y2x2

+14tx2 + 72t2yx2 + 252tyx2 − 486yx2 − 10x2 − 1701t2y2x + 32tx + 18t2yx

−405tyx + 567yx − 24x + 4t2 + 729t2y2 − 30t − 54t2y + 243ty − 243y + 18
)

which vanishes since t3y − t + 1 = 0 by (177). •
Proofs of the first two identities in the (2, 1)-case are as follows:

Proof of Lemma 6:

Proof Passing to the generating functions in (131), we need to prove the identity

2x(x − 2)dxf − dyf + 4ydyf + 2(x + 1)f − (x − 1)f 2 + 4(x − 1)yf 2 = 0.

Using the expression

dyt =
t2

1 − 2yt
(186)

in the calculation of dyf , the left hand side of the identity we want to prove can be

simplified as
2t2(t2y − t + 1)(2 − t + 2x + 4ty − 6txy)

(2 − t)2(1 − 2ty)(1 − txy)2

which vanishes by (182). •
The proof of the second identity for the (2, 1)-case is as follows:

Proof of Lemma 7:
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Proof Again passing to the generating functions in (132), we need to prove the identity

xydy

f − 1 − (x + 3)y

y2
+ 2(x + 1)

f − 1 − (x + 3)y

y2

−2x(x + 2)ydy

f − 1

y
− 2(2x2 + 3x + 4)

f − 1

y

+ 8x2ydyf + 12x2f + (x − 1)(x − 2)
f 2 − 1

y
− 4(x − 1)(x − 2)f 2 = 0 .

Using the expression for f and the expression for dyt in (186), the left hand side of this

expression can be simplified to

2(t2y − t + 1)

(2 − t)2y2(1 − 2ty)(1 − txy)2

(

t2 − 4 + 8ty − 4t2y − 2t3y + 8txy − 2t2xy + t3xy

−2t2x2y + 8t3y2 − 16t2xy2 − 4t3xy2 + 8t2x2y2 + 4t3x2y2 − 4t3x3y3
)

which again vanishes by (182). •

11 Appendix III: On the degree of a class of Hankel

Determinants

Theorem 11 Let p0, p1, . . . , pn and q0, q1, . . . , qn be integer sequences. Further let γ be

real and α0, α1, . . . , αn and β0, β1, . . . , βn be sequences of real numbers. Then the determi-

nant

det





∑

0≤m≤pi+qj

(

αi + βj + γm

pi + qj − m

)

xm





0≤i,j≤n

(187)

as a polynomial in x has degree ≤ max{max pi + max qj − n, 0}.

Proof We note the convention that the empty sum is zero, and the binomial coefficient

in (187) is interpreted via the gamma function. The proof of the theorem is by induction.

At each stage of the induction we make use of the following lemma.

Lemma 10 Let p0, p1, . . . , pn and q0, q1, . . . , qn be two integer sequences and let a0, a1, . . .

be an infinite sequence of real numbers. Then the determinant

det





∑

0≤m≤pi+qj

api+qj−mxm





0≤i,j≤n

as a polynomial in x has degree ≤ max{max pi + max qj − n, 0}.
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Proof By rearranging the indices, we can assume that the sequences p0, p1, . . . , pn and

q0, q1, . . . , qn are nondecreasing without changing the conclusion of the lemma. Then

det





∑

0≤m≤pi+qj

api+qj−mxm





0≤i,j≤n

= y−
∑

pi−
∑

qj · det





∑

0≤m≤pi+qj

amym





0≤i,j≤n

where xy = 1. Therefore the analysis can focus on the degree of

det





∑

0≤m≤pi+qj

amym





0≤i,j≤n

as a polynomial in y. By elementary row operations, we see that this is equal to the

following determinant

det





























∑

0≤m≤p0+qj

amym if i = 0

∑

0≤m; pi−1+qj+1≤m≤pi+qj

amym otherwise











0≤i,j≤n

.

Whenever pn + qn ≥ n, the highest power of y in this determinant is no more than

max{
∑

pi +
∑

qj, 0}

and the lowest power of y in this determinant is at least

max{n +
n−1
∑

i=0

pi +
n−1
∑

j=0

qj, 0} .

Now if we multiply this polynomial by y−
∑

pi−
∑

qj obtaining

y−
∑

pi−
∑

qj det





∑

0≤m≤pi+qj

amym





0≤i,j≤n

we get a polynomial in y−1. The degree of this polynomial is no more than

max{pn + qn − n, 0}.

Converting back to x and remembering that pi and qj are nondecreasing gives the desired

result. •

Now we are ready to start the proof of Theorem 11. Let

α′
i = αi + γpi

β ′
j = βj + γqj .
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With this change of variable,
(

αi + βj + γm

pi + qj − m

)

=

(

α′
i + β ′

j − γ(pi + qj − m)

pi + qj − m

)

.

The following identity holds:

(

αi + βj + γm

pi + qj − m

)

=
∑

r≥0

pi+qj−m−r
∑

s=0

(

α′
i

r

)(

β ′
j

s

)(

−γ(pi + qj − m)

pi − r + qj − s − m

)

.

This allows us to express the determinant as

det





∑

r≥0

∑

s≥0

(

α′
i

r

)(

β ′
j

s

)

∑

0≤m≤pi−r+qj−s

(

−γ(pi + qj − m)

pi − r + qj − s − m

)

xm





0≤i,j≤n

This determinant has an expansion as a sum of terms of the form

(

∏

i

(

α′
i

ri

))





∏

j

(

β ′
j

sj

)



 . det





∑

0≤m≤pi−ri+qj−sj

(

−γpi + −γqj + γm

pi − ri + qj − sj − m

)

xm





0≤i,j≤n

over collections of nonnegative integers r0, r1, . . . , rn and s0, s1, . . . , sn.

If all the ri and sj in any such collection are zero, then the corresponding determinant

is as described in Lemma 10 and therefore has the appropriate degree as a polynomial in

x. If any of the ri or sj are nonzero, then the determinant has the same form as that of

Theorem 11 except that pi has been replaced with p′i = pi − ri and q′j = qj − sj. This is

the induction process.

Note that the induction process terminates, since eventually

max{max p′i + max q′j − n, 0} = 0

and in fact the resulting determinants in (187) become zero. •

Corollary 10 The (n + 1) × (n + 1) Hankel determinant H (β,α)
n defined by the sequence

of polynomials in (2) is of degree at most n.

Proof H (β,α)
n is of the type described in Theorem 11 where pi = qi = i, αi = βi + α,

βi = βi, and γ = −1. •
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