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“Aliens invade the earth and threaten to obliterate it in a year’s time unless human beings can find

the Ramsey number for red five and blue five. We could marshal the world’s best minds and fastest

computers, and within a year we could probably calculate the value. If the aliens demanded the Ramsey

number for red six and blue six, however, we would have no choice but to launch a preemptive attack.”

Paul Erdős [5]

Abstract

In this paper, we consider the on-line Ramsey numbers R(k, l) for cliques. Using
a high performance computing networks, we ‘calculated’ that R(3, 4) = 17. We also
present an upper bound of R(k, l), study its asymptotic behaviour, and state some
open problems.

1 Introduction and definitions

In this paper, we consider the on-line Ramsey numbers introduced by Kurek and Ruciński
[7] and corresponding to them the on-line Ramsey game. (The game was considered earlier
by Beck [1] but not in terms of the numbers; Friedgut et al. [3] also studied a variant of this
game but in the context of the random graph theory.) Let G, H be a fixed graphs. The
game between two players, called the Builder and the Painter, is played on an unbounded
set of vertices. In each of her moves the Builder draws a new edge which is immediately
coloured red or blue by the Painter. The goal of the Builder is to force the Painter to
create a red copy of G or a blue copy of H; the goal of the Painter is the opposite, he
is trying to avoid it for as long as possible. The payoff to the Painter is the number of
moves until this happens. The Painter seeks the highest possible payoff. Since this is a
two-person, full information game with no ties, one of the players must have a winning
strategy. The on-line Ramsey number R(G, H) is the smallest payoff over all possible
strategies of the Builder, assuming the Painter uses an optimal strategy. For simplicity,
we use R(k, l) for R(Kk, Kl) and R(G) for R(G, G).
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Similar to the classical Ramsey numbers (see a dynamic survey of Radziszowski [11]
which includes all known nontrivial values and bounds for Ramsey numbers), it is hard
to compute the exact value of R(G, H) unless G, H are trivial. In this relatively new area
of small on-line Ramsey numbers, very little is known.

Recently, Grytczuk et al. [6], dealing with many labourious subcases, determined the
on-line Ramsey numbers for a few short paths (R(P2) = 1, R(P3) = 3, R(P4) = 5,
R(P5) = 7, R(P6) = 10). It is clear that R(Pn) ≥ 2n − 3 for n ≥ 2 since the Painter
may color safely the first n − 2 edges red, and the next n − 2 edges blue. Also it is not
hard to prove that R(Pn) ≤ 4n − 7 for n ≥ 2 (see [6] for more details) but it seems that
determining the exact values for longer paths requires computer support. The author of
this paper was able to determine some new values, namely R(P7) = 12, R(P8) = 15, and
R(P9) = 17 (see [9, 8] for more details).

Kurek and Ruciński considered in [7] the most interesting case where G and H are
cliques, but besides the trivial R(2, k) =

(

k
2

)

, they were able to determine only one more

value, namely R(3, 3) = 8 (the upper bound can be shown by mimicking the proof of
the upper bound for classical Ramsey number R(K3, K3); the proof of the lower bound is
elegant and definitely nontrivial). In [7], it has been shown that

R(k, k) ≤ 2k

(

2k − 2

k − 1

)

∼ 1

2
√

π

√
k4k.

In this paper, we show that R(3, 4) = 17 (Section 3), provide a general upper bound

for R(k, l) which gives a slightly better asymptotic upper bound of 3
8
√

π
4k

√
k

for diagonal

numbers (Section 2), and state some open problems (Section 4).
We also consider a new version of the on-line Ramsey numbers, related to the similar

game we described before but the number of vertices is no longer unbounded. The Builder
starts with an empty graph with k vertices. The generalized on-line Ramsey number

Rk(G, H) is defined as the minimum number of rounds in such a game if the Builder
wins, otherwise Rk(G, H) = ∞ (that is, after

(

k
2

)

moves the game is still not finished

but the Builder has no more edges to present). Note that R(G, H) moves are enough
to win a game on unbounded set of vertices but it does mean the Builder does not use
more than 2R(G, H) vertices in this game (in fact, this number is much smaller; see also
Conjecture 4.3). Thus, R2R(G,H)(G, H) = R(G, H).

2 An upper bound for R(k, l)

In this section, we present a general upper bound for R(k, l). The main result is the
following Theorem 2.1 and the whole section is devoted to prove this result. (Of course,
the first inequality is obvious.)

Theorem 2.1. For all k, l, 2 ≤ k ≤ l

R(k, l) ≤ R(k+l−2

l−1 )(k, l) ≤ 3

2

k−1
∑

i=0

(

2i

i

)

+

(

k + l − 1

l − 1

)

−
(

2k − 1

k − 1

)

− l − k +
1

2
.
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In a table below we present the values of an upper bound of R(k, l) for 3 ≤ k ≤ l ≤ 10.

3 4 5 6 7 8 9 10

3 8 17 31 51 78 113 157 211
4 36 70 125 208 327 491 710
5 139 264 473 802 1296 2010
6 515 976 1767 3053 5054
7 1899 3614 6616 11620
8 7045 13479 24918
9 26348 50657
10 99276

Table 1: Upper bounds of R(k, l)

Let us start from the following simple observation.

Lemma 2.2. Assume that Rm(k − 1, l) < ∞ and Rn(k, l − 1) < ∞. Then

Rm+n(k, l) ≤ m + n − 1 + max{Rm(k − 1, l),Rn(k, l − 1)}.

Proof. We present a natural Builder’s strategy forcing the Painter to create a red copy of
Kk or a blue Kl after m + n − 1 + max{Rm(k − 1, l),Rn(k, l − 1)} moves. The Builder
presents m + n − 1 edges of a star K1,m+n−1. By pigeonhole principle, the Painter must
use either red at least m times or blue at least n times. If the red K1,m is created, then
the Painter can use a strategy forcing a red Kk−1 or a blue Kl on m leaves of a red star in
Rm(k−1, l) moves. Otherwise a strategy forcing a red Kk or a blue Kl−1 can be used.

Lemma 2.2 guarantees the existence of numbers R(k, l) for any value of k and l.
(Of course, it follows from the existence of classical Ramsey numbers R(k, l) as well.)
From this lemma, it is also possible to determine a recursive relation for the number of
vertices n(k, l) used in the described strategy of the Builder. We note that for k ≥ 2,
n(2, k) = n(k, 2) = k, and for all k, l ≥ 3

n(k, l) = n(k, l − 1) + n(k − 1, l) . (1)

In fact, this recurrence is used in the proof that classical Ramsey numbers are well defined,
given by Graham et al. [4].

From this relation, we can derive an explicit value of n(k, l) by elementary methods.
This is a known result but we present a proof for completeness.

Lemma 2.3. For all k, l ≥ 2

n(k, l) =

(

k + l − 2

l − 1

)

.
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Proof. Let ρ(k, l) =
(

k+l−2
l−1

)

. Since
(

u
v

)

=
(

u−1
v−1

)

+
(

u−1
v

)

, we have

ρ(k, l) =

(

k + l − 2

l − 1

)

=

(

k + l − 3

l − 2

)

+

(

k + l − 3

l − 1

)

= ρ(k, l − 1) + ρ(k − 1, l) .

This recursive relation is analogous to (1). Thus, together with the fact that for any k ≥ 2

ρ(k, 2) = ρ(2, k) = k = n(k, 2) = n(2, k) ,

this finishes the proof.

Immediately from Lemma 2.2 and Lemma 2.3 we get the following corollary.

Corollary 2.4. For all k, l ≥ 3

R(k+l−2

l−1 )(k, l) ≤
(

k + l − 2

l − 1

)

− 1 + max
{

R(k+l−3

l−1 )(k − 1, l),R(k+l−3

l−2 )(k, l − 1)
}

.

In order to study an upper bound of R(k, l) we study the behaviour of τ(k, l) where
τ(k, l) is defined by the recursive relation analogous to one in the corollary, namely,

τ(2, k) = τ(k, 2) =

(

k

2

)

τ(k, l) = τ(l, k) =

(

k + l − 2

l − 1

)

− 1 + max {τ(k − 1, l), τ(k, l − 1)} (2)

for all k, l ≥ 3. It is clear that R(k, l) ≤ R(k+l−2

l−1 )(k, l) ≤ τ(k, l).

It is convenient to put τ(1, 1) = τ(2, 1) = 0. Now the following holds.

Theorem 2.5. For all k, l such that 2 ≤ k ≤ l

τ(k, l) =

(

k + l − 2

l − 1

)

− 1 + τ(k, l − 1) . (3)

Proof. Since τ(k − 1, k) = τ(k, k − 1), (3) holds for 2 ≤ k = l. Thus it is enough to verify
(3) for 2 ≤ k < l and we use induction on k for that. For a basis step (k = 2), note that
for any l > 2,

(

l

l − 1

)

− 1 + τ(2, l − 1) = l − 1 +

(

l − 1

2

)

=

(

l

2

)

= τ(2, l) .

For an induction step, fix k0 ≥ 3, suppose that (3) holds for all l and 2 ≤ k0 − 1 < l,
and take any l > k0. By the induction hypothesis and simple property of the binomial
coefficient,

τ(k0 − 1, l) =

(

k0 + l − 3

l − 1

)

− 1 + τ(k0 − 1, l − 1)

≤
(

k0 + l − 3

l − 2

)

− 1 + τ(k0 − 1, l − 1) . (4)
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Using (2) and (4) we have that

τ(k0, l − 1) =

(

k0 + l − 3

l − 2

)

− 1 + max {τ(k0 − 1, l − 1), τ(k0, l − 2)}

≥
(

k0 + l − 3

l − 2

)

− 1 + τ(k0 − 1, l − 1)

≥ τ(k0 − 1, l),

and now (3) follows directly from (2).

Now, we are ready to prove the main result of this section, namely, Theorem 2.1.

Proof of Theorem 2.1. From Theorem 2.5 it follows that for any k ≥ 2

τ(k, k) =

(

2k − 2

k − 1

)

+

(

2k − 3

k − 1

)

− 2 + τ(k − 1, k − 1)

= 3

(

2k − 3

k − 1

)

− 2 + τ(k − 1, k − 1)

=
k
∑

i=3

(

3

(

2i − 3

i − 1

)

− 2

)

+ 1

=
3

2

k−1
∑

i=2

(

2i

i

)

− 2k + 5

=
3

2

k−1
∑

i=0

(

2i

i

)

− 2k +
1

2
. (5)

Thus, for any l ≥ k ≥ 2

τ(k, l) =

l
∑

m=k+1

((

k + m − 2

m − 1

)

− 1

)

+ τ(k, k)

=

l−1
∑

m=k

(

k + m − 1

m

)

− (l − k) + τ(k, k)

=
l−1
∑

m=0

(

(k − 1) + m

m

)

−
k−1
∑

m=0

(

(k − 1) + m

m

)

+
3

2

k−1
∑

i=0

(

2i

i

)

− l − k +
1

2

and the assertion follows from the fact that
∑r

j=0

(

n+j
j

)

=
(

n+r+1
r

)

.

From Theorem 2.1 we can easily derive an asymptotic upper bound for diagonal online
Ramsey numbers.
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Corollary 2.6.

R(k, k) ≤ τ(k, k) ∼ 3

8
√

π

4k

√
k

.

Proof. From (5) and the Stirling formula we get that

τ(k, k) ∼ 3

2

k−1
∑

i=0

(

2i

i

)

=
3

2

k−1
∑

i=1

√
4πi(2i/e)2i

2πi(i/e)2i
(1 + O(1/i))

=
3

2
√

π

k−1
∑

i=1

4i

√
i
(1 + O(1/i)) .

Using summation by parts, sometimes called the Abel transformation, it follows that

k−1
∑

i=1

4i

√
i

=
4k−1

√
k − 1

−
k−2
∑

i=1

4i+1 − 1

3

(

1√
i + 1

− 1√
i

)

=
4k−1

√
k − 1

−
k−2
∑

i=1

O

(

4i

i3/2

)

.

Thus,

τ(k, k) ∼ 3

8
√

π

4k

√
k

+

k−1
∑

i=1

O

(

4i

i3/2

)

=
3

8
√

π

4k

√
k

+
4k

k3/2
· O
(

k−1
∑

i=1

1

2i

)

∼ 3

8
√

π

4k

√
k

since
4n−1

(n − 1)3/2
=

4n

n3/2
· 1

4
·
(

n

n − 1

)3/2

<
1

2
· 4n

n3/2

for n ≥ 3.

3 Games for red K3 and blue K4.

Note that, for any two graphs G, H and k, l ∈ N, k < l

Rk(G, H) ≥ Rl(G, H) ≥ R(G, H)

since in the generalized version of the game the Builder has more restrictions to follow.
Using a computer support we were able to find that R12(3, 4) = 17 (Theorem 3.1) and show
that this implies that R(3, 4) = 17 (Theorem 3.2). We also checked that R9(3, 4) ≥ 19
(Theorem 3.3).

We implemented and ran programs written in C/C++ using backtracking algorithms.
(The programs can be downloaded from [10].) Backtracking is a refinement of the brute
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force approach, which systematically searches for a solution to a problem among all avail-
able options. Since it is not possible to examine all possibilities, we used many advanced
validity criteria to determine which portion of the solution space needed to be searched.
For example, one can look at the coloured graph in every round and try to estimate the
number of red (and blue) edges needed to create desired structure. This knowledge can
be used to avoid considering the whole branch in the searching tree. If the Painter can
use red colour and ‘survive’ additional k rounds, then there is no point to check whether
using blue colour forces him to finish the game earlier.

Using a set of clusters (see Section 5 for more details), we were able to run (inde-
pendently) the program from different initial graphs with given colouring of edges. In
the table below we present the numbers of nonisomorphic coloured graphs with k edges
that have been found by computer. Since the game we play is nonsymmetric we have to
consider more initial graphs than in the symmetric version (see [9] where the symmetric
game for paths was considered). If the number of edges is odd, we have exactly two times
more graphs to consider. For the even case, this number is a little bit smaller than double.

k # of symmetric graphs # of nonsymmetric graphs

1 1 2
2 4 6
3 12 24
4 51 93
5 203 406
6 1, 004 1, 959
7 5, 117 10, 234
8 29, 153 58, 013
9 176, 778 353, 556
10 1, 150, 164 2, 298, 303

Table 2: Number of nonisomorphic coloured graphs with k edges

Having results from simulations starting from different initial graphs (even partial
ones!) we are able to determine the exact value of the on-line Ramsey numbers. The
relations between the partial results in different levels are complicated but can be found
using a computer. The relations between levels 1 – 2, and 2 – 3 are described below. For
simplicity, we present the symmetric case; the nonsymmetric one is studied in the same
way.

There is only one possible coloured graph G1
1 with one edge (up to isomorphism).

Graphs with two and three edges are presented in Figure 1 and Figure 2, respectively.
Let xm

i = xm
i (Gm

i , k, l) denote the number of moves in a winning strategy of the Builder
in the on-line Ramsey game, provided that after m moves a coloured graph is isomorphic
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Figure 1: Coloured graphs with two edges

Figure 2: Coloured graphs with three edges

to Gm
i . Using the notation

x1 ∨ x2 = max{x1, x2}
x1 ∧ x2 ∧ · · · ∧ xk = min{x1, x2, . . . , xk} ,

it is not hard to see that

x1
1 = (x2

1 ∨ x2
2) ∧ (x2

3 ∨ x2
4) ,

and

x2
1 = (x3

1 ∨ x3
2) ∧ (x3

8 ∨ x3
9) ∧ (x3

4 ∨ x3
5) ∧ (x3

6 ∨ x3
7)

x2
2 = (x3

3 ∨ x3
2) ∧ x3

10 ∧ x3
5 ∧ x3

7

x2
3 = (x3

1 ∨ x3
3) ∧ (x3

8 ∨ x3
10) ∧ (x3

11 ∨ x3
12)

x2
4 = x3

2 ∧ (x3
9 ∨ x3

10) ∧ x3
12 .

Each “∨” sign corresponds to the Painter’s move, “∧” corresponds to the Builder’s one.
He tries to play as long as possible, choosing the maximum value, but she would like to
win as soon as possible.

Since it is more difficult to study on-line Ramsey game on unbounded set of vertices,
we consider a game on 12 vertices first and then we show that the Builder cannot win
faster by playing on larger set.
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Theorem 3.1. R12(3, 4) = 17

Proof. It follows from Theorem 2.1 that R10(3, 4) ≤ 17 (τ(3, 4) = 17, n(3, 4) = 10). Thus,
R12(3, 4) ≤ R10(3, 4) ≤ 17.

In order to show that R12(3, 4) ≥ 17 we examined 2, 298, 303 initial configurations
with 10 edges. Exactly 280, 993 graphs with at most 12 vertices contain a red K3 or
a blue K4 so we put x10

i ≤ 10 for these graphs. 100, 946 graphs contain more than 12
vertices; we put x10

i = ∞ for these graphs. For the rest, we run the simulation to check
whether x10

i ≤ 16. (Note that we can restrict our consideration to this interval since we
know that R12(3, 4) ≤ 17.) The results are presented below. Next we verified that the

# of initial configurations

x10
i ≤ 10 280, 993

x10
i = 11 868

x10
i = 12 1, 578

x10
i = 13 8, 043

x10
i = 14 14, 065

x10
i = 15 43, 695

x10
i = 16 96, 701

17 ≤ x10
i < ∞ 1, 751, 414

x10
i = ∞ 100, 946

total 2, 298, 303

Table 3: Results for a game on 12 vertices

Painter has a strategy to reach one of the ‘good’ configurations that allow him to survive
the next six moves.

Increasing the number of vertices for this game will not change her winning strategy
provided she already has enough vertices. It is also clear that in order to force the Painter
to create a red copy of K3 or a blue copy of K4, the Builder has to build relatively
dense structure. Moreover, it seems that there is no point for her to have disconnected
components at the end of the game (it might be a good idea to start with disconnected
graphs at the beginning) so the final graph should be connected (see Conjecture 4.4). If
this is proven, then there is a simple proof of Theorem 3.2. But since the conjecture is
still open, we have to be content with the following proof which is definitely not from the

Book.

Theorem 3.2. R(3, 4) = 17

Proof. Since R(3, 4) ≤ R12(3, 4) = 17 (see Theorem 3.1) it is enough to show that
R(3, 4) ≥ 17. For a contradiction, let us suppose that R(3, 4) = m ≤ 16. Consider
a winning strategy of the Builder as a (binary) game tree of depth m; for every Builder’s
move from the winning strategy, the Painter can reply by using red (left child) or blue
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(right child) colour. (Note that, since he is playing perfectly, sometimes his move is
determined, that is, the game tree is not complete.)

All graphs at the very last level of the tree (level m) must contain a red copy of K3

or a blue copy of K4. It is also clear that all graphs at the level m − 1 do not have
those structures but they contain a subgraph A presented in Figure 3. Continuing this
way of thinking, we can try to investigate the shape of graphs with m − 2 edges at the
higher level. Those graphs cannot contain A (otherwise the Builder would be able to
finish the game earlier) so we know that one edge e (blue or red) from A was added at
the round m− 1. Without loss of generality, we can assume that e ∈ S = {e1, e2, e3} (see
Figure 3) since the other edges are isomorphic to one of those from S. We focus on the
case corresponding to adding the edge e1 only; the rest can be studied the same way.

Figure 3: Desired subgraphs

Suppose that the Painter was forced to use blue at the round m− 1, that is, using red
would create a red triangle and the game would be finished. This means that B or C is
a subgraph of a graph at the round m − 2. Alternatively, if the Painter had a free choice
of colours, one of the graphs D −H must appear on this level; no matter which colour is
used, the Painter cannot avoid A.

Note that subgraphs D, G, H have 12 edges and at most 8 vertices. Since all graphs on
that level have exactly m − 2 ≤ 14 edges, those graphs have at most 12 vertices. For the
rest of subgraphs presented in Figure 3, we have to investigate graphs on higher level in
the game tree (they have one less edge and are usually denser) to get the same conclusion.
This also implies that graphs on the last level all have at most 12 vertices. But it means
that there is a strategy of the Builder to win a game on 12 vertices in m ≤ 16 moves.
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# of initial configurations

x10
i ≤ 10 180, 147

11 ≤ x10
i ≤ 17 110, 647

x10
i = 18 64, 546

19 ≤ x10
i < ∞ 641, 582

x10
i = ∞ 1, 301, 381

total 2, 298, 303

Table 4: Results for a game on 9 vertices

This contradicts Theorem 3.1 and finishes the proof.

Let us finish this section with one more result for a game on the smallest possible
number of vertices, namely, on 9 vertices. From previous results it follows that Rn(3, 4) =
R(3, 4) = 17 for all n ≥ 10 but the value of R9(3, 4) is bigger (see also a discussion in the
next section).

Theorem 3.3. R9(3, 4) ≥ 19

Proof. In order to show that R9(3, 4) ≥ 19 we reexamined 2, 298, 303 initial configurations
with 10 edges. Exactly 180, 147 graphs with at most 9 vertices contain a red K3 or a blue
K4 so we put x10

i ≤ 10 for these graphs. 1, 301, 381 graphs contain more than 9 vertices;
we put x10

i = ∞ for these graphs. For the rest, we run the simulation to check whether
x10

i ≤ 17, x10
i = 18 or x10

i ≥ 19. (Note that we can restrict our consideration to this
interval since we know that R9(3, 4) ≥ 17.) The results are presented below. Next we
verified that the Painter has a strategy to reach one of the ‘good’ configurations that allow
him to survive at least the next eight moves.

4 Some open problems

In this section, we ask some questions for future consideration. It is clear that

R(k, k) ≤
(

R(k, k)

2

)

,

since the Builder can present edges of KR(k,k) (in any sequence) and the Painter cannot
avoid a monochromatic copy of Kk. The following intriguing conjecture was posed by
Kurek and Ruciński [7].

Conjecture 4.1.

lim
k→∞

(

R(k,k)
2

)

R(k, k)
= ∞
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Unfortunately, we still do not know the answer to that question. In this paper, we
present an upper bound for R(k, k) which is roughly the same as the best known upper
bound for R(k, k) but since the best known lower bound for R(k, k) is far away from the
upper one, we cannot answer the question based on this knowledge only. (It is known that√

2 ≤ lim inf R(k, k)1/k ≤ lim sup R(k, k)1/k ≤ 4. Already in 1947, Erdős conjectured that
limk→∞ R(k, k)1/k exists. He later offered $100 for a proof of its existence and $250 for
its exact value [2]. Many people believe that R(k, k) ≥ (1 + o(1))2k but the conjecture is
still open.) However, it supports our intuition that online version of the Ramsey numbers
should grow slower than the classical size Ramsey numbers.

On the other hand, it seems that the generalized on-line Ramsey numbers RR(k,k)(k, k)
grow much faster than R(k, k) (see Theorem 3.3), so we conjecture the following:

Conjecture 4.2.

lim
k→∞

(

R(k,k)
2

)

RR(k,k)(k, k)
= c < ∞

It follows from Theorem 2.1 that R(4, 4) ≤ 36 by considering the game on n(4, 4) =
2n(3, 4) = 20 vertices. But, since 9 = R(3, 4) < n(3, 4) = 10, one can expect a better
upper bound by considering the strategy on 18 vertices used in the proof of Lemma 2.2
(that is, present K1,17 first (one can save two moves that way) and then use a strategy to
create desired structure in additional R9(3, 4) rounds). Unfortunately, it turned out that
R9(3, 4) ≥ 19 = R10(3, 4) + 2 so this strategy is not better than the previous one. Maybe
it is even true that the strategy used to get an upper bound in Theorem 2.1 is optimal.

Conjecture 4.3.

R(k, l) = τ(k, l) =
3

2

k−1
∑

i=0

(

2i

i

)

+

(

k + l − 1

l − 1

)

−
(

2k − 1

k − 1

)

− l − k +
1

2

Finally, let us mention the following variant of the game and its corresponding number
R̂(k, l): the Builder has to force the Painter to draw a red copy of Kk or a blue copy of
Kl as before, but also it is required that the final graph is connected (colours do not
matter). Since the Builder has more restrictions to follow, R̂(k, l) ≥ R(k, l). However, it
seems that there is no point for the Builder to construct disconnected graphs at the end
of the classical game (it might be good for her to have disconnected graphs at the very
beginning) but no proof of the following conjecture is known.

Conjecture 4.4.

R̂(k, l) = R(k, l)

As we already mentioned, this conjecture is important because if this is verified, then
there is an easy proof of Theorem 3.2.
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In order to verify that R12(3, 4) > 16 and that R9(3, 4) > 18 we checked (indepen-
dently) 2, 298, 303 initial configurations. A running time of one serial program varied
between a few seconds and 1 hour but we noticed the average running time to be around
0.2 hour for a game on 12 vertices and around 0.4 for 9 vertices. Thus, we can estimate
the total computational requirements to be around 1, 379, 000 CPU hours.
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