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Abstract

We consider in this work the enumeration of involutions by descent sets, and

based on that, by descent numbers. Formulas of the number of involutions with

a prescribed descent set, with a prescribed descent number and Frobenius-type

formulas are given.

1 Introduction

This work was motivated by recent work on permutation statistics on involutions [4, 7].
Dukes [4] proved partially the unimodality of the Eulerian distribution on involutions.
The unimodality was later fully established by Guo and Zeng [7].

Several authors have considered enumeration problems closely related to the class of
involutions. Désarménien and Foata [3] obtained, amongst other things, a multivariate
basic hypergeometric series according to the quadruple (fix, trans, des, maj), where fix σ,
trans σ, des σ and maj σ denote respectively the number of fixed points, the number of
transpositions, the number of descents, and the major index, of σ, on the class of involu-
tions. Gessel and Reutenauer [6] enumerated permutations according to a prescribed cycle
structure and descent set. (Results concerning involutions are immediate by restricting
the cycle lengths to at most two.)

Although different kinds of generating functions of involutions exist in the literature,
explicit formulas for the number of involutions with prescribed descent sets appear to be
missing. It is the purpose of the present work to fill this gap, and in the course of doing
so, we obtain the involution analogues of the corresponding results on permutations. The
point of departure of this work is the above mentioned work of Gessel and Reutenauer.

The organization of this paper is as follows. In the next section, we collect certain
notations and preliminary results to which we shall refer in subsequent sections. In Section
3, we consider the enumeration of involutions by descent sets. In Section 4, we demonstrate
the decomposition properties of fλ

C , the number of involutions of shape λ and of descent
composition C. In Section 4, we consider the complementary symmetry of the descent
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statistics on involutions. In the final section, we obtain Frobenius-type formulas for the
generating functions of involutions by descent numbers.

2 Notations and preliminaries

Denote by Z the set of integers. If m, n ∈ Z, then [m, n] = {m, m + 1, . . . , n}, and
[n] := [1, n]. The cardinality of a finite set S is denoted by #S.

Denote by Sn the symmetric group on n letters, which is a Coxeter group of type An−1

of rank n−1 generated by s1, s2, . . . , sn−1, where si = (i, i+1) is the simple transposition
exchanging i and i + 1, i = 1, 2, . . . , n − 1. We shall respresent any σ ∈ Sn by the word
σ1σ2 · · ·σn, where σi = σ(i), i = 1, 2, . . . , n. An integer i ∈ [n − 1] is said to be a descent

of σ if σi > σi+1. Denote by D(σ) := {i : σi > σi+1} the descent set, and d(σ) := #D(σ)
the number of descents (or descent number), of σ.

A permutation σ = σ1 · · ·σn ∈ Sn is alternating (resp., reverse alternating) if σ1 <
σ2 > σ3 < σ4 > · · · (resp., σ1 > σ2 < σ3 > σ4 < · · · ). Equivalently, σ is alternating (resp.,
reverse alternating) if D(σ) = {2, 4, . . . , 2b(n − 1)/2c} (resp., D(σ) = {1, 3, . . . , 2bn/2c −
1}). The Coxeter-theoretic length of σ ∈ Sn is defined as `(σ) := min{r : si1si2 · · · sir =
σ}. Two distinguished elements of Sn are the identity element 12 · · ·n, and the Coxeter

element w0 := n(n− 1) · · ·21. The Coxeter element w0 is the longest element in the sense
that its Coxeter-theoretic length is the largest among all elements of Sn.

An integer i ∈ [n] is said to be a fixed point of σ ∈ Sn if σi = i. A permutation
σ ∈ Sn is an involution if σ2 is the identity permutation 12 · · ·n. Denote by In the set of
involutions, and Jn the set of fixed-point-free involutions, in Sn. It is clear that J2n−1 = ∅

for n = 1, 2, . . ..
Let n be a positive integer. A partition of n is a weakly decreasing sequence λ =

(λ1, λ2, . . . , λk) of positive integers such that |λ| :=
∑k

i=1 λi = n. We shall say that λ is
of weight n, has k parts and write `(λ) = k. We also write λ ` n to denote that λ is
a partition of n. One also writes λ = 〈1m12m2 · · ·nmn〉, where mi := #{j : λj = i}, the
number of parts of λ equal to i. A composition of n is an ordered sequence of positive
integers C = (c1, c2, . . . , ck) such that |C| :=

∑k
i=1 ci = n. The positive integers ci are

called parts of C, C is said to have k parts, and we write `(C) = k. We also write C |= n to
mean that C is a composition of n. A Ferrers diagram of shape λ consists of left-justified
rows with λ1 boxes in the first row, λ2 boxes in the second row, etc. The conjugate

partition λ′ of λ is the partition whose associated Ferrers diagram is the transpose of that
of λ. A semistandard Young tableau (SSYT) of shape λ and of type µ = (µ1, µ2, . . . , µn) is
a Ferrers diagram filled with µ1 1’s, µ2 2’s, etc., so that it is weakly increasing along rows
from left to right, and strictly increasing along columns from top to bottom. A standard

Young tableau (SYT) of shape λ is a semistandard Young tableau of shape λ and of type
(1, 1, . . . , 1), i.e., 1, 2, . . . , n each occurs exactly once. Denote by SYT(λ) the set of all
standard Young tableaux of shape λ, and f λ := # SYT(λ).

Let T be a standard Young tableau. An integer i is said to be a descent of T if i + 1
appears in a lower row of T than i. See, e.g., [12, p. 361]. Denote by D(T ) the descent set
of T . This notion of descent set D(T ) for a tableau T is alternatively called the inverse
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line of route, denoted Iligne T , by French researchers. See, e.g., [3, §3]. It is clear that
transposing a standard Young tableau T of order n yields a standard Young tableau T t

of order n with D(T t) = [n − 1] \ D(T ).
An important combinatorial algorithm is the Robinson-Schensted-Knuth correspon-

dence, a bijective map from σ ∈ Sn to pairs of standard Young tableaux (P, Q) that have

the same shape λ ` n. We shall write σ
RSK
−→ (P, Q) to designate a permutation σ and

its corresponding pair of tableaux (P, Q). It is well known [11] that if σ
RSK
−→ (P, Q), then

σ−1 RSK
−→ (Q, P ). It is also well known that, under the Robinson-Schensted-Knuth corre-

spondence, involutions are in bijective correspondence with standard Young tableaux so
that results on involutions are readily translated into ones on standard Young tableaux,
and vice versa. Note also the remarkable result of Schützenberger [10] that the number of
fixed points of σ ∈ In is equal to the number of columns of P (and/or Q) of odd length.

Gessel and Reutenauer [6, p. 206] remarked that the Robinson-Schensted algorithm
transforms involutions into standard Young tableaux, preserving descents. A more general
statement about this descent-preserving property [12, Lemma 7.23.1] is as follows.

Proposition 1. Let σ ∈ Sn and σ
RSK
−→ (P, Q). Then D(σ) = D(Q) and D(σ−1) = D(P ).

For other aspects of the Robinson-Schensted-Knuth correspondence, see [9, Chapter
3] and [12, Chapter 7].

It is well-known that subsets S = {s1 < s2 < · · · < sk} of [n − 1] are in bijective
correspondence with compositions C = (c1, c2, . . . , ck+1) of n, the correspondence being

si = c1 + c2 + · · · + ci, i = 1, 2, . . . , k,

ci = si − si−1, i = 1, 2, . . . , k + 1,

where s0 := 0 and sk+1 := n. We shall write S(C) to denote the subset of [n − 1]
corresponding to C, and C(S) the composition of n corresponding to S. It is convenient
to transfer the partial order on subsets of [n − 1] to compositions of n by defining C 4

D ⇐⇒ S(C) ⊆ S(D).
Let X = {x1, x2, . . .} be an infinite alphabet of commuting letters totally ordered by

xi < xj ⇐⇒ i < j. The fundamental quasi-symmetric function FC in the alphabet X
indexed by a composition C of n is defined by

FC =
∑

16i16i26···6in
j∈S(C)⇒ij<ij+1

xi1xi2 · · ·xin .

We shall suppress the designation of alphabet(s) unless the circumstance demands the con-
trary. Let QSymn be the K-linear span of all FC with |C| = n, and QSym :=

⊕

n>0 QSymn

its completion, with QSym0 := K a field of characteristic 0.
Given a permutation σ = σ1σ2 · · ·σn in Sn, its descent composition C(σ) is defined as

the composition of n corresponding to the descent set D(σ) of σ.
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Let µ = (µ1, µ2, . . . , µk) be an integer partition. The homogeneous symmetric function
hn (in the alphabet X) is defined by

hn =
∑

16i16i26···6in

xi1xi2 · · ·xin ,

and hµ = hµ1
hµ2

· · ·hµk
; the monomial symmetric function mµ indexed by µ is defined by

mµ =
∑

16i1<i2<···<ik

xα1

i1
xα2

i2
· · ·xαk

ik
,

where the sum is over all distinct permutations α = (α1, α2, . . . , αk) of (µ1, µ2, . . . , µk). In
the algebra Λ of symmetric functions, hλ and mµ form dual bases with respect to the inner
product 〈·, ·〉, i.e., 〈hλ, mµ〉 = δλ,µ, and the Schur functions sλ form a self-dual basis, i.e.,
〈sλ, sµ〉 = δλ,µ. Expressing sλ in terms of mµ, sλ =

∑

µ Kλ,µmµ, where Kλ,µ is a Kostka
number, which counts the number of semistandard Young tableaux (SSYT) of shape λ
and of type µ.

Let K be a field of characteristic 0 and x1, x2, . . . be commuting indeterminates. A
formal power series f ∈ K[[x1, x2, . . .]] is called quasi-symmetric if the coefficients of
xc1

i1
xc2

i2
· · ·xck

ik
and xc1

j1
xc2

j2
· · ·xck

jk
in f are equal, where i1 < i2 < · · · < ik, j1 < j2 < · · · <

jk and c1, c2, . . . , ck > 0. We shall need the following result of Gessel [5, Theorem 3]
concerning coefficient extraction of formal series.

Proposition 2. If a quasi-symmetric formal series g =
∑

L aLFL is symmetric, then

aL = 〈g, SL〉, where SL =
∑

K4L(−1)`(L)−`(K)hK is a skew Schur function.

3 Counting involutions by descent sets

We consider in this section the enumeration of involutions by descent sets. Gessel and
Reutenauer [6, eq.(7.1)] obtained the quasi-symmetric generating function for involutions,
namely,

∑

π

FC(π)α
fix(π)z|π| =

∏

i

(1 − αzxi)
−1
∏

i<j

(1 − z2xixj)
−1, (1)

where the sum is over all involutions π, fix(π) is the number of fixed points of π, and |π|
is the length of the word π. From the linear Schur formula:

∑

λ

αc(λ)sλ =
∏

i

(1 − αxi)
−1
∏

i<j

(1 − xixj)
−1,

where c(λ) is the number of columns of λ of odd length, the combinatorial definition of
Schur functions, and xi 7→ zxi, we have that

∑

λ

αc(λ)sλz
|λ| =

∏

i

(1 − αzxi)
−1
∏

i<j

(1 − z2xixj)
−1.
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Equating this with (1), followed by extracting the coefficients of zn, we have that
∑

π∈In

FC(π)α
fix(π) =

∑

λ`n

αc(λ)sλ,

which is symmetric. Applying Proposition 2 then yields

∑

π∈In,C(π)=C

αfix(π) =

〈

∑

λ

αc(λ)sλ, SC

〉

=

〈

∑

λ

αc(λ)
∑

µ

Kλ,µmµ,
∑

D4C

(−1)`(C)−`(D)hD

〉

=
∑

λ

∑

D4C

(−1)`(C)−`(D)αc(λ)Kλ,D.

In particular, setting α = 1 yields the following expression for the number of involutions
in Sn with descent composition C:

#{π ∈ In : C(π) = C} =
∑

λ`n

∑

D4C

(−1)`(C)−`(D)Kλ,D.

The sum on the right can be explained combinatorially with the help of [12, Exercise
7.90.a], which states that the Kostka number Kλ/µ,α is equal to the number of standard
Young tableaux T of shape λ/µ satisfying D(T ) ⊆ S(α), where α = (α1, . . . , αk) is a
composition of n. Inclusion-exclusion then yields the right hand side, which is equal
to the number of standard Young tableaux of order n with descent composition C.
As the Robinson-Schensted-Knuth correspondence is descent-preserving (hence descent
composition-preserving) between involutions and standard Young tableaux, the equality
between the left and right sides follows.

Define now the shape sh(σ) of σ ∈ Sn to be the common shape of the pair (P, Q) of
tableaux corresponding to σ under the Robinson-Schensted-Knuth correspondence, and
fλ

C := #{σ ∈ In : sh(σ) = λ, C(σ) = C}. We summarize the above in the next theorem.

Theorem 3. We have

fλ
C =

∑

D4C

(−1)`(C)−`(D)Kλ,D,

and #{σ ∈ In : C(σ) = C} =
∑

λ`n fλ
C , where Kλ,D is a Kostka number.

4 Decomposition properties of fλ
C

In Section 3, we obtained the number fλ
C of involutions of shape λ and descent composition

C. It is clear that fλ
C satisfies the following decomposition properties:

∑

λ`n

fλ
C = #{σ ∈ In : C(σ) = C} and

∑

C|=n

fλ
C = fλ.
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We shall present in this section one further decomposition property of f λ
C . Toward this end,

recall the internal coproduct δ : QSym −→ QSym⊗QSym defined by δf(X) −→ f(XY ),
where f ∈ QSym, and we have identified f(XY ) =

∑

g(X)h(Y ) with
∑

g(X) ⊗ h(Y ).
Here, X = {x1, x2, . . .} and Y = {y1, y2, . . .} are infinite totally ordered alphabets of
commuting letters, and XY = {xiyj} is the product alphabet totally ordered by xiyj <
xkyl ⇐⇒ (i, j) < (k, l) lexicographically. The internal coproduct of fundamental quasi-
symmetric functions is easy to describe combinatorially [5, Theorem 13], namely, if π ∈
Sn, then

δFC(π) = FC(π)(XY ) =
∑

τσ=π

FC(σ)(X) ⊗ FC(τ)(Y ),

where the sum on the right is over all pairs (σ, τ) ∈ Sn × Sn such that τσ = π.
A fundamental identity in the representation theory of symmetric groups is the fol-

lowing [9, Theorem 2.6.5 (3)], [12, (7.43)]:
∑

λ`n

(fλ)2 = n!, (2)

of which a bijective proof is provided by the Robinson-Schensted-Knuth correspondence,
and a representation-theoretic proof follows from a dimensional consideration of the fact
that C[Sn] =

⊕

λ`n fλSλ, where C[Sn] carries the regular representation of Sn and Sλ

is the Specht module indexed by λ with dim Sλ = fλ.
Substituting

∑

C|=n fλ
C = fλ into (2) yields the following decomposition property of

fλ
C :

∑

C,D|=n

∑

λ`n

fλ
Cfλ

D = n!.

The next proposition gives a combinatorial interpretation to
∑

λ`n fλ
Cfλ

D.

Theorem 4. We have

#{σ ∈ Sn : C(σ) = C, C(σ−1) = D} =
∑

λ`n

fλ
Cfλ

D,

where C, D |= n.

Proof. Let π = 12 · · ·n, the identity element of Sn, so that τσ = π ⇐⇒ τ = σ−1. It
follows that

δFC(π) =
∑

σ∈Sn

FC(σ)(X) ⊗ FC(σ−1)(Y )

=
∑

λ`n

∑

P,Q∈SYT(λ)

FC(Q)(X) ⊗ FC(P )(Y )

=
∑

λ`n

∑

C,D|=n

fλ
Cfλ

DFC(X) ⊗ FD(Y ),

where σ
RSK
−→ (P, Q). The proposition now follows upon equating coefficients of FC(X) ⊗

FD(Y ).
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The number #{σ ∈ Sn : C(σ) = C, C(σ−1) = D} can also be expressed as the in-
ner product 〈SC , SD〉 of two skew Schur functions SC and SD. See, e.g., [12, Corollary
7.23.8][5, Theorem 5] for details.

5 Complementary symmetry

We consider in this section complementary symmetries of the descent statistic for involu-
tions with and without fixed points.

In case of permutations, the following complementary symmetry holds:

#{σ ∈ Sn : D(σ) = S} = #{σ ∈ Sn : D(σ) = [n − 1] \ S}, (3)

where S ⊆ [n − 1]. A bijective proof of (3) is readily given by either of the two maps
σ −→ σw0 and σ −→ w0σ which sends bijectively a permutation σ ∈ Sn to a permutation
σ′ ∈ Sn with descent set [n − 1] \ D(σ). These two maps, unfortunately, do not send
involutions to involutions since, for instance, σw0 is an involution if and only if w0σ =
(σw0)

−1 = σw0, which need not hold for all involution σ in Sn.

Proposition 5. The following complementary symmetry holds for involutions:

#{σ ∈ In : D(σ) = S} = #{σ ∈ In : D(σ) = [n − 1] \ S}, (4)

where S ⊆ [n − 1].

Proof. The map σ
RSK
−→ Q −→ Qt RSK−1

−→ σ′ sending σ ∈ In with D(σ) = S to σ′ ∈ In with
D(σ′) = [n − 1] \ S is bijective.

The same proof can be found in [4, 13]. It is included here to make our discussion self-
contained. Eq. (4) is a refinement of the symmetry result In,s−1 = In,n−s for s = 1, 2, . . . , n.
For an alternate proof of this symmetry, see [3, Section 6]. For a (quasi-)symmetric
generating function proof of (4), see [6, Theorem 4.2].

Corollary 6. Alternating involutions and reverse alternating involutions are equinu-

merous in In, where n > 1.

An alternative bijective proof of this result for odd n may also be given. Before
embarking on the proof, we need some further notations and results. Given a standard
Young tableau Q of order n, denote by evac(Q) the evacuation tableau for Q. We only
need the properties of evacuation here. For the actual definition, see [9, §3.9]. The map
Q −→ evac(Q) is called the Schützenberger involution [12, Proposition A1.2.9].

If σ = σ1σ2 · · ·σn ∈ Sn, then let σ# := (n+1−σn) · · · (n+1−σ2)(n+1−σ1) = w0σw0.

It is easy to see that if σ is an involution, then so is σ#. Also, if σ
RSK
−→ (P, Q), then

σ# RSK
−→ (evac(P ), evac(Q)).

Proposition 7. We have D(evac(Q)) = {n − i : i ∈ D(Q)}.
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Proof. Let σ
RSK
−→ (P, Q). For any i, i ∈ D(σ) ⇐⇒ σi > σi+1 ⇐⇒ n + 1 − σi+1 >

n + 1− σi ⇐⇒ σ#
n−i > σ#

n−i+1 ⇐⇒ n− i ∈ D(σ#). It follows that {n− i : i ∈ D(Q)} =
{n− i : i ∈ D(σ)} = D(σ#) = D(evac(Q)), where the first and the last equivalences follow
from Proposition 1.

For example, we have

Q =
1 3 4 7
2 5
6

, D(Q) = {1, 4, 5}; evac(Q) =
1 2 5 6
3 7
4

, D(evac(Q)) = {2, 3, 6}.

It is convenient to express the preceding proposition simply as: D(evac(Q)) = n−D(Q)
if D(Q) 6= ∅, and ∅ otherwise. By conjugating with the Robinson-Schensted-Knuth

correspondence, i.e., σ
RSK
−→ Q −→ evac(Q)

RSK−1

−→ σ#, we obtain an involution, which we
again call the Schützenberger involution, on In.

Corollary 8. The Schützenberger involution is a bijection on In sending alternating

involutions onto alternating (resp., reverse alternating) involutions if n is even (resp.,
odd).

The Schützenberger involution is a bijection distinct from the one employed in the
proof of Proposition 5. For instance, for σ = 2143657 ∈ I7, we have D(σ) = {1, 3, 5} and

σ = 2143657
RSK
−→ Q =

1 3 5 7
2 4 6

−→ Qt =

1 2
3 4
5 6
7

RSK−1

−→ 5736142 6= 1325476 = σ#,

where D(5736142) = D(1325476) = {2, 4, 6}.
The above complementary symmetry need not hold for involutions without fixed point,

the reason being that any σ ∈ J2n is of shape sh(σ) a partition of 2n whose conjugate
partition consists of all parts even; sh(σ) itself need not have all parts even. It is clear
that the bijection in the proof of Proposition 5 is shape-conjugating, and in particular
establishes the next corollary.

Corollary 9. The following shape-preserving complementary symmetries hold:

#{σ ∈ In : sh(σ) = λ, D(σ) = S} = #{σ ∈ In : sh(σ) = λ, D(σ) = [n − 1] \ S}

for self-conjugating λ ` n and S ⊆ [n − 1], and

#{σ ∈ J2n : sh(σ) = µ ∈ E(2n), D(σ) = R}

= #{σ ∈ J2n : sh(σ) = µ ∈ E(2n), D(σ) = [2n − 1] \ R}

for self-conjugating µ ` 2n and R ⊆ [2n − 1], where E(n) denotes the set of all partitions

of n all of whose parts are even.
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Descent classes of J2n are in general not symmetric with respect to the usual com-
plementation. However, Strehl [13] had shown that to each σ ∈ J2n there corresponds
bijectively a σ′ ∈ J2n such that #D(σ′) = 2n − #D(σ). An immediate consequence
of this “complementary” symmetry is the symmetry result J2n,s = J2n,2n−s, where s =
1, 2, . . . , n − 1 (see [3, 6, 13]).

6 Frobenius-type formulas

We derive Frobenius-type formulas for involutions in this section. Let

In(t) :=
∑

σ∈In

td(σ) =

n
∑

s=1

In,s−1t
s−1, and Jn(t) :=

∑

σ∈Jn

td(σ) =

n−1
∑

s=1

Jn,st
s,

where In,s−1 := #{σ ∈ In : d(σ) = s − 1} and Jn,s := #{σ ∈ Jn : d(σ) = s}. Values of
In(t) and Jn(t) for n 6 6 can be found in [7, Table 1].

Based on the generating functions of In(t) and Jn(t):

∑

n>0

In(t)
un

(1 − t)n+1
=
∑

r>0

tr

(1 − u)r+1(1 − u2)r(r+1)/2
, (5)

∑

n>0

Jn(t)
un

(1 − t)n+1
=
∑

r>0

tr

(1 − u2)r(r+1)/2
, (6)

obtained by Désarménien and Foata [3], Guo and Zeng [7] derived linear recurrences for
In(t) and J2n(t), namely,

nIn(t) = t(1 − t)I ′
n−1(t) + (1 + (n − 1)t)In−1(t) + t2(1 − t)2I ′′

n−2(t)

+ t(1 − t)(3 + (2n − 5)t)I ′
n−2(t) + (n − 1)(1 + t + (n − 2)t2)In−2(t),

(7)

and

2nJ2n(t) = t2(1 − t)2J ′′
2n−2(t) + [2(2 − 2n)t3 + 2(2n − 3)t2 + 2t]J ′

2n−2(t)

+ [2n(2n − 2)t2 + 2t + (2n − 2)]J2n−2(t).
(8)

By exploiting Theorem 3, we obtain alternate formulas for In(t) and J2n(t).

Theorem 10. We have

(i) In,s−1 =
∑s

k=1(−1)s−k
(

n−k
s−k

)
∑

λ`n,`(D)=k Kλ,D;

(ii) In(t) =
∑n

k=1

∑

λ`n,`(C)=k Kλ,Ctk−1(1 − t)n−k.

Proof. Since #{σ ∈ In : C(σ) = C} =
∑

λ`n,D4C(−1)`(C)−`(D)Kλ,D, it follows that

In,s−1 =
∑

`(C)=s

∑

λ`n,D4C

(−1)`(C)−`(D)Kλ,D =

s
∑

k=1

(−1)s−k
∑

λ`n,`(D)=k

∑

D4C,`(C)=s

Kλ,D. (9)
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Since there are
(

n−k
s−k

)

(s− k)-subsets T of [n− 1] \S(D) for which S(C) = S(D)∪ T with
`(C) = s and C < D, the right hand side of (9) can be written as

In,s−1 =

s
∑

k=1

(−1)s−k

(

n − k

s − k

)

∑

λ`n,`(D)=k

Kλ,D,

which is (i). By replacing (i) in In(t) =
∑n

s=1 In,s−1t
s−1 and rearranging, we get (ii).

Theorem 10(ii) is a Frobenius-type formula for In(t), the one for the classical Eulerian
polynomial [2, Theorem E, p. 244] being:

An(t) =

n
∑

k=1

k!S(n, k)tk(1 − t)n−k,

where S(n, k) is a Stirling number of the second kind.
It is clear that the numbers gn,k :=

∑

λ`n,`(C)=k Kλ,C are non-negative, and admit the
combinatorial interpretation:

gn,k = #

(

∐

`(C)=k

{σ ∈ In : C(σ) 4 C}

)

,

where
∐

denotes disjoint union. It is of interest to compute gn,k by some other means
rather than by the combinatorial definition of Kλ,C . Let Gn(t) :=

∑n
k=1 gn,kt

k−1. Theo-
rem 10(ii) can be written as

In(t) = (1 − t)n−1Gn

(

t

1 − t

)

. (10)

Proposition 11. We have

nGn(y) = (1 + 2y)Gn−1(y) + y(1 + y)G′
n−1(y) + [6y(1 + y) + n − 1]Gn−2(y)

+ 3y(1 + y)(1 + 2y)G′
n−2(y) + y2(1 + y)2G′′

n−2(y);

ngn,k = k(gn−1,k + gn−1,k−1) + (k2 + n − 2)gn−2,k

+ k(2k − 1)gn−2,k−1 + k(k − 1)gn−2,k−2.

Proof. From (10) we have I ′
n(t) = (1−n)(1− t)n−2Gn(t/(1− t))+(1− t)n−3G′

n(t/(1− t)),
etc. Substituting In(t), In−1(t), In−2(t) and their derivatives in (7), followed by the
replacement t −→ y/(1 + y), and after some algebra, the first assertion follows. By
extracting the coefficient of yk−1, the second assertion follows.

Recall that E(n) denotes the set of all partitions of n whose parts are all even. If
sh(σ) = λ, then σ is fixed-point-free ⇐⇒ λ′ ∈ E(n); we readily obtain the analogue of
Theorem 10 for J2n(t), whose proof is omitted.
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Theorem 12. We have

(i) J2n,s =
∑s

k=1(−1)s−k
(

2n−1−k
s−k

)
∑

λ`2n,λ′∈E(2n),`(D)=k+1 Kλ,D;

(ii) J2n(t) =
∑2n−1

k=1

∑

λ`2n,λ′∈E(2n),`(C)=k+1 Kλ,Ctk(1 − t)2n−1−k.

Let h2n,k :=
∑

λ`2n,λ′∈E(2n),`(C)=k+1 Kλ,C , and H2n(t) :=
∑2n−1

k=1 h2n,kt
k so that

J2n(t) = (1 − t)2n−1H2n

(

t

1 − t

)

.

It is immediate that h2n,k can be combinatorially interpreted as

h2n,k = #

(

∐

`(C)=k+1

{σ ∈ J2n : C(σ) 4 C}

)

.

By the same procedure as for In(t), we have the next proposition, whose proof is
omitted.

Proposition 13. We have

2nH2n(y) = 2(n + (y + 1)(3y − 1))H2n−2(y) + 2y(1 + y)(1 + 3y)H ′
2n−2(y)

+ y2(1 + y)2H ′′
2n−2(y);

2nh2n,k = [2(n − 1) + k(k + 1)]h2n−2,k + 2k(k + 1)h2n−2,k−1 + k(k + 1)h2n−2,k−2.

Proposition 14. We have

∑

n>0

Gn(x)un =
1

x2

∑

r>0

(

x

1 + x

)r+2
1

(1 − u)r+1(1 − u2)r(r+1)/2
,

∑

n>0

Hn(x)un =
1

x2

∑

r>0

(

x

1 + x

)r+2
1

(1 − u2)r(r+1)/2
,

where G0(x) = H0(x) := 1/(1 + x).

Proof. Let x = t/(1 − t). Then t = x/(1 + x) so that (10) yields

Gn(x) = (1 + x)n−1In

(

x

1 + x

)

, (11)

where n > 1. Since I0(t) = 1, we define G0(x) = 1/(1 + x). Multiplying now (11) by un,
followed by summing over n > 0, we have

∑

n>0

Gn(x)un =
1

(1 + x)2

∑

n>0

In( x
1+x

)un

(1 − x
1+x

)n+1

=
1

(1 + x)2

∑

r>0

(

x

1 + x

)r
1

(1 − u)r+1(1 − u2)r(r+1)/2

=
1

x2

∑

r>0

(

x

1 + x

)r+2
1

(1 − u)r+1(1 − u2)r(r+1)/2
,
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where the second equality follows from (5). The proof of the second assertion, being
similar, is omitted.

Note that Gn(t) need not be real-rooted for all n. Otherwise, (11) would imply the
real-rootedness of In(t) so that Newton’s inequality [8, p. 104] would imply the log-
concavity of In(t) (resp., J2n(t)), which is false [1]. Similar arguments yield that H2n(t)
need not be real-rooted.

The first few Frobenius expansions of In(t) and J2n(t) are listed as follows:

I1(t) = 1,

I2(t) = (1 − t) + 2t,

I3(t) = (1 − t)2 + 4t(1 − t) + 4t2,

I4(t) = (1 − t)3 + 7t(1 − t)2 + 15t2(1 − t) + 10t3,

J2(t) = t,

J4(t) = t(1 − t)2 + 3t2(1 − t) + 3t3,

J6(t) = t(1 − t)4 + 7t2(1 − t)3 + 22t3(1 − t)2 + 30t4(1 − t) + 15t5,

J8(t) = t(1 − t)6 + 12t2(1 − t)5 + 72t3(1 − t)4 + 225t4(1 − t)3 + 375t5(1 − t)2

+ 315t6(1 − t) + 105t7.

Acknowledgements. The author thanks I. Gessel and V. Strehl for providing an ex-
panded version of [13].
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