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Abstract

The Garnir relations play a very important role in giving combinatorial construc-

tions of representations of the symmetric groups. For the Weyl groups of type Cn,

having obtained the alternacy relation, we give an explicit combinatorial description

of the Garnir relation associated with a ∆-tableau in terms of root systems. We

then use these relations to find a K-basis for the Specht modules of the Weyl groups

of type Cn.

Introduction

Although a great deal of progress has been made in generalizing the representation
theory of symmetric groups to Weyl groups, very little has been done using the combi-
natorial approach. The first attempt at providing such a generalization has been given
by Morris [14], where the basic combinatorial concepts such as tableau, tabloid, etc.,
which were successful for symmetric groups as exemplified in the work of James [13], were
interpreted in the context of root systems of Weyl groups. In recent years, a further
development of these ideas has appeared in Halicioglu and Morris [10] and Halicioglu [8].
In this alternative approach, the Weyl groups of type An and Cn are used to motivate a
possible generalization to Weyl groups in general.

For the construction of a basis for the Specht modules of Weyl groups, Halicioglu [8]
has considered the root systems of simply laced type only (i.e., An, Dn, E6, E7, E8) and
their parabolic subsystems. Later, the present author [4] extended these ideas to deal with
the root systems of type Cn. Having obtained the ‘perfect systems’, Halicioglu [8] and the
present author [4] conclude that the set of standard ∆- polytabloids is a basis. But they
do not prove that standard ∆- polytabloids span the Specht module S∆,∆′

. Inspired by
the work of Peel [15], Halicioglu [9] introduced the Garnir relations for Weyl groups. But
he does not prove that standard ∆- polytabloids span S∆,∆′

. That is, no counterparts of
Theorems 1.1, 3.1 and 3.4 in [15] are given in his work.
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The main object of this paper is to construct the Garnir relations in terms of the root
systems of type Cn in a form which may be taken as a role model for the root systems of
other Weyl groups. Indeed, at the end of this paper, by using the proposed method here
we illustrate how a Garnir relation can be constructed for the root systems of type Dn.
We hope to extend these ideas to the Weyl group of any type in the future. The structure
of the paper will be as follows. In the first section we develop the needed notation and
give the necessary basic facts about the Specht modules S∆,∆′

. We introduce the very
good systems in Section 2 to obtain a linearly independent subset of the S∆,∆′

. Here, our
approach follows closely that due to Halicioglu [8]. In the final section, we construct the
Garnir relations for the Weyl groups of type Cn so that the standard ∆-polytabloids span
S∆,∆′

.

1 Preliminaries

We first establish the basic notation and state some results which are required later. We
refer the reader to [10] and [4] for much of the undefined terminology and quoted results.

1.1 Let Φ be a root system relating to the Weyl group W = W (Φ) with simple
system π and corresponding positive system Φ+. Let Ψ be a subsystem of Φ with simple

system J ⊂ Φ+ and Dynkin diagram ∆. If Ψ =

k∑

i=1

Ψi, where Ψi are the indecomposable

components of Ψ, then let Ji be a simple system in Ψi (i = 1, . . . , k) and J =

k∑

i=1

Ji. Let

Ψ⊥ be the largest subsystem in Φ orthogonal to Ψ and let J⊥ ⊂ Φ+ be the simple system
of Ψ⊥. Let Ψ′ be a subsystem of Φ which is contained in Φ\Ψ, with simple system J ′ ⊂ Φ+

and Dynkin diagram ∆′. If Ψ′ =

l∑

i=1

Ψ′
i, where Ψ′

i are the indecomposable components of

Ψ′, then let J ′
i be a simple system in Ψ′

i (i = 1, . . . , l) and J ′ =
l∑

i=1

J ′
i. Let Ψ′⊥ be the

largest subsystem in Φ orthogonal to Ψ′ and let J ′⊥ ⊂ Φ+ be the simple system of Ψ′⊥.
Let J̄ stand for the ordered set {J1, . . . , Jk ; J ′

1, . . . , J ′
l}, where in addition the elements

in each Ji and J ′
i are ordered, and put T∆ = {wJ̄ | w ∈ W}. The pair J̄ = {J, J ′} is

called a useful system in Φ if W (J) ∩ W (J ′) = 〈e〉 and W (J⊥) ∩ W (J ′⊥) = 〈e〉. Let J̄1

and J̄2 be useful systems in Φ. We say that J̄1 is W -conjugate to J̄2 if there exists w ∈ W

such that J̄2 = wJ̄1. The elements of T∆ are called ∆-tableaux, the Ji and J ′
i are called

the rows and columns of the useful system respectively. This construction is a natural
extension of the concept of a Young tableau in the representation theory of symmetric
groups (for a fuller explanation, see [10]). We may also interpret this for the special case
W (Cn) with the help of the work of [14] as follows.
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1.2 Let Φ = Cn with simple system π = {αi = ei − ei+1 (i = 1, . . . , n − 1), αn =

2en}. By [7], let Ψ =
r∑

i=1

Aλi
+

s∑

j=1

Cµj

(
r∑

i=1

(λi + 1) +
s∑

j=1

µj = n

)
, then let J

(1)
λi

and

J
(2)
µj be simple systems in Aλi

(i = 1, . . . , r) and Cµj
(j = 1, . . . , s) respectively

and J = J (1) + J (2), where J (1) =
r∑

i=1

J
(1)
λi

and J (2) =
s∑

j=1

J (2)
µj

. Let Ψ′ =
r′∑

i=1

Cλ′

i
+

s′∑

j=1

Aµ′

j

(
r′∑

i=1

λ′
i +

s′∑

j=1

(µ′
j + 1) = n

)
, then let J

′(1)
λ′

i
and J

′(2)
µ′

j
be simple systems in Cλ′

i
(i =

1, . . . , r′) and Aµ′

j
(j = 1, . . . , s′) respectively and J ′ = J ′(1) + J ′(2), where J ′(1) =

r′∑

i=1

J
′(1)
λ′

i
and J ′(2) =

s′∑

j=1

J
′(2)
µ′

j
. Inspired by the concept of a double Young tableau in [14],

we identify J̄ with the ordered double set {(J (1); J ′(1)) , (J (2); J ′(2))} given by

{(
J

(1)
λ1

, . . . , J
(1)
λr

; J
′(1)

λ′

1

, . . . , J
′(1)

λ′

r′

)
,
(
J (2)

µ1
, . . . , J (2)

µs
; J

′(2)

µ′

1

, . . . , J
′(2)
µ′

s′

)}
,

where in addition the elements in each J
(1)
λi

, J
(2)
µj , J

′(1)
λ′

i
and J

′(2)
µ′

j
are ordered. Namely,

for λ1 ≥ λ2 ≥ · · · ≥ λr ≥ 0, µ1 ≥ µ2 ≥ · · · ≥ µs ≥ 1 and
r∑

i=1

(λi + 1) +
s∑

j=1

µj =

n, let Ψ =

r∑

i=1

Aλi
+

s∑

j=1

Cµj
be a subsystem of Φ then (λ, µ) = (λ1 + 1, . . . , λr +

1, µ1, . . . , µs) is a pair of partitions of n, and so the corresponding Weyl subgroup is
W (Aλ1

) × · · · × W (Aλr
) × W (Cµ1

) × · · · × W (Cµs
) which is isomorphic to the subgroup

Sλ1+1 × · · · × Sλr+1 ×Oµ1
× · · ·×Oµs

of the hyperoctahedral group On. Put k0 = 0, ki =

λ1+· · ·+λi+i (i = 1, . . . , r) and l0 = kr =

r∑

i=1

(λi+1), lj = l0+µ1+· · ·µj (j = 1, . . . , s),

then

J
(1)
ki

=
{
αki−1+1, αki−1+2, . . . , αki−1

}

=
{
eki−1+1 − eki−1+2, eki−1+2 − eki−1+3, . . . , eki−1 − eki

}

is a simple system for Aλi
and therefore J (1) =

r∑

i=1

J
(1)
ki

is a simple system for
r∑

i=1

Aλi
, and

J
(2)
lj

=
{
αlj−1+1, αlj−1+2, . . . , αlj−1, 2elj

}

=
{
elj−1+1 − elj−1+2, elj−1+2 − elj−1+3, . . . , elj−1 − elj , 2elj

}
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is a simple system for Cµj
and therefore J (2) =

s∑

j=1

J
(2)
lj

is a simple system for
s∑

j=1

Cµj
.

Thus, J = J (1) + J (2) is a simple system for Ψ =

r∑

i=1

Aλi
+

s∑

j=1

Cµj
, and the subsystem Ψ

may be represented by the rows of the (λ, µ)-tableau

t =




1 2 · · · k1 kr + 1 kr + 2 · · · l1
k1 + 1 k1 + 2 · · · k2 l1 + 1 l1 + 2 · · · l2
k2 + 1 k2 + 2 · · · k3 , l2 + 1 l2 + 2 · · · l3

· · · · · · · · · ·
kr−1 + 1 kr−1 + 2 · · kr ls−1 + 1 ls−1 + 2 · · · n




as in [14], the other 2nn! (λ, µ)-tableaux being obtained by allowing the elements of On

to act on this tableau. The orthogonal subsystem Ψ⊥ is the root system determined by
the elements in rows of length one in the first part of the (λ, µ)-tableau t. Let Ψ′ =
r′∑

i=1

Cλ′

i
+

s′∑

j=1

Aµ′

j
be the subsystem of Φ with simple system J ′ = J ′(1) + J ′(2), where

J ′ = J ′(1)+J ′(2) is represented by the columns of the (λ, µ)-tableau t (in [4], we showed how
to determine the J ′). Then the orthogonal subsystem Ψ′⊥ is the root system determined
by the elements in columns of length one in the second part of the (λ, µ)-tableau t. Hence,
W (J) ∼= Rt and W (J ′) ∼= Ct, where Rt (resp. Ct) is the row (resp. column) stabilizer
of the (λ, µ)-tableau t. Since W (J) ∩ W (J ′) = 〈e〉 and W (J⊥) ∩ W (J ′⊥) = 〈e〉 then

J̄ = {(J (1); J ′(1)) , (J (2); J ′(2))} is a useful system in Φ. The J
(1)
λi

and J
′(1)
λ′

i
(J

(2)
µj and

J
′(2)
µ′

j
) are called the rows and columns of the first part (second part) of the useful system

respectively. Note that there are, of course, useful systems that are not W -conjugate to
any of the useful systems corresponding to bipartitions.

1.3 Two ∆-tableaux J̄ and K̄ are row equivalent, written J̄ ∼ K̄, if there exists
w ∈ W (J) such that K̄ = wJ̄ . The equivalence class which contains the ∆-tableaux J̄

is {J̄} and is called a ∆-tabloid. Let τ∆ be the set of all ∆-tabloids, then we have τ∆ =
{{wJ̄} | w ∈ DΨ}, where DΨ = {w ∈ W | w(α) ∈ Φ+ for all α ∈ J} is a distinguished set
of coset representatives for W (Ψ) in W (see [12]). The Weyl group W acts on τ∆ according
to σ{wJ̄} = {σwJ̄} for all σ ∈ W . Let K be an arbitrary field and let M∆ be the K-space
whose basis elements are the ∆-tabloids. Extending this action to be linear on M∆ turns
M∆ into a KW -module. Define κJ̄ ∈ KW and eJ̄ by κJ̄ =

∑
σ∈W (J ′)(sgn σ)σ and eJ̄ =

κJ̄{J̄}, where sgn σ = (−1)l(σ) with l(σ) being the length of σ. Then eJ̄ is called the ∆-
polytabloid associated with J̄ . The Specht module S∆,∆′

is the submodule of M∆ generated
by ewJ̄ , where w ∈ W . A useful system J̄ in Φ is called a good system if wΨ ∩ Ψ′ = ∅ for
w ∈ DΨ then {wJ̄} appears in eJ̄ . If J̄ is a good system in Φ and the characteristic of K

is zero, then S∆,∆′

is irreducible.
As in the case of the symmetric group, generally the ∆-polytabloids that generate

S∆,∆′

are not linearly independent. Therefore, it would be nice to determine a subset
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which forms a basis for S∆,∆′

-e.g., for computing the matrices and characters of the
representation.

In the next section, we shall consider how the definition of a good system can be
modified so that the set B∆,∆′

= {ewJ̄ | wJ̄ is a standard ∆ − tableau} is linearly
independent over K.

2 Linear independence

In the symmetric groups, in order to determine a K-basis for the Specht modules, standard
tableaux, tabloids and polytabloids are defined. We now define the counterparts in the
more general context of root systems and Weyl groups. In this section, our approach will
follow closely that due to Halicioglu [8].

Let J̄ be a good system in Φ, and w ∈ W . A ∆- tableau wJ̄ is row standard
(resp.column standard ) if w ∈ DΨ (resp. w ∈ DΨ′). A ∆-tableau wJ̄ is standard if
w ∈ DΨ ∩ DΨ′. A ∆-tabloid {wJ̄} is standard if there is a standard ∆-tableau in the
equivalence class {wJ̄}. A ∆-polytabloid ewJ̄ is standard if wJ̄ is standard. Thus, if wJ̄

is row standard (resp. column standard), then wJ ⊂ Φ+ (resp. wJ ′ ⊂ Φ+). Also, if wJ̄

is standard, then wJ ⊂ Φ+ and wJ ′ ⊂ Φ+.
To establish that the set B∆,∆′

is linearly independent over K, we shall need a partial
order on ∆-tabloids. Following Humphreys [11], the Bruhat order on the elements of a
Weyl group is defined as follows. Let w, w′ ∈ W and α ∈ Φ+. Write w

α
→ w′ if w′ = sαw

and l(w) < l(w′), where l(w) denotes the length of w. Then define w < w′ if there exists
a chain w = w0

α1→ w1
α2→ · · ·

αm→ wm = w′, where α1, . . . , αm ∈ Φ+. It is clear that the
resulting relation w ≤ w′ is a partial ordering of W , with e as the unique minimal element.
We call it the Bruhat ordering. Thus we have that w < w′ if there exist α1, . . . , αm ∈ Φ+

such that w′ = sαm
. . . sα1

w and l(sαi−1
. . . sα1

w) < l(sαi
. . . sα1

w) for all i = 1, . . . , m.
We now use this partial order on W in order to define a partial order on ∆-tabloids. It is
clear that the Bruhat order ≤ on W will also be a partial order when restricted to DΨ.

Now, let J̄ be a good system in Φ and let w, w′ ∈ DΨ. Then {w′J̄} dominates {wJ̄},
written {wJ̄} � {w′J̄} if and only if w ≤ w′. Clearly � is a partial order on ∆-tabloids.

A good system J̄ is called a very good system in Φ if w ≤ w′ for all w ∈ DΨ ∩ DΨ′,
w′ ∈ DΨ such that w′ = wσρ, where σ ∈ W (J ′), ρ ∈ W (J). With this definition, we have
the following.

Lemma 2.1 Let J̄ be a very good system in Φ and let w, w′ ∈ DΨ. If wJ̄ is a standard
tableau and {w′J̄} appears in ewJ̄ then {wJ̄} � {w′J̄}.

Proof See Lemma 3.7 [8].

The previous lemma says that {wJ̄} is the minimum tabloid in ewJ̄ .

Lemma 2.2 Let v1, v2, . . . , vm be elements of M∆. Suppose, for each vi, we can choose
a tabloid {wiJ̄} appearing in vi such that
(i) {wiJ̄} is the minimum in vi, and
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(ii) the {wiJ̄} are all distinct.
Then {v1, v2, . . . , vm} is linearly independent over K.

Proof See Lemma 3.8 [8].

Lemma 2.2 corresponds to Lemma 2.5.8 in Sagan [16].

Proposition 2.3 If J̄ is a very good system in Φ, then the set B∆,∆′

= {ewJ̄ | wJ̄ is

a standard ∆ − tableau} is linearly independent over K.

Proof By Lemma 2.1, {wJ̄} is minimum in ewJ̄ , and by hypothesis they are all distinct.
Thus Lemma 2.2 can be applied to complete the proof.

Thus, for a Weyl group, if we have a very good system J̄ in Φ then the set B∆,∆′

is linearly
independent over K. But the question arises whether this set is a K-basis for S∆,∆′

. In
that case, a very good system J̄ is called a perfect system in Φ if the set B∆,∆′

is a K-
basis for S∆,∆′

.

Example 2.4 Let Φ = C3 with simple system π = {αi = ei − ei+1 (i = 1, 2), α3 = 2e3}.
Let wαi

be denoted by wi, i = 1, 2, 3. Let Ψ = C2 + C1 be a subsystem of C3 with
simple system J = {e1 − e2, 2e2, 2e3}. Then W (J) = 〈w1, w2w3w2〉 × 〈w3〉 and DΨ =
{e, w2, w1w2}. In this case the possible good systems in Φ are
(i) {J, J ′

1}, where Ψ′
1 = A1 with simple system J ′

1 = {e1 − e3},
(ii) {J, J ′

2}, where Ψ′
2 = A1 with simple system J ′

2 = {e1 + e3},
(iii) {J, J ′

3}, where Ψ′
3 = A1 with simple system J ′

3 = {e2 − e3},
(iv) {J, J ′

4}, where Ψ′
4 = A1 with simple system J ′

4 = {e2 + e3}.
In case (ii) DΨ ∩ DΨ′

2
= DΨ and W (J ′

2) = 〈w1w3w2w3w1〉. Now, let w = w1w2 ∈
DΨ ∩ DΨ′

2
and w′ = w2 ∈ DΨ. Then there exist σ = w1w3w2w3w1 ∈ W (J ′

2) and ρ =
w1w2w3w2w1w3 ∈ W (J) such that w′ = wσρ. But w 6≤ w′. Hence {J, J ′

2} is not a very
good system in Φ. Similarly it can be verified that {J, J ′

4} is not a very good system in
Φ.

In case (i) DΨ ∩DΨ′

1
= {e, w2} and W (J ′

1) = 〈w2w1w2〉. Now let w = w2 ∈ DΨ ∩DΨ′

1

and let w′ = w2 ∈ DΨ. Then there exist σ = e ∈ W (J ′
1) and ρ = e ∈ W (J) such that

w′ = wσρ. Then w = w′. Let w = w2 ∈ DΨ ∩ DΨ′

1
and w′ = w1w2 ∈ DΨ. Then there

exist σ = w2w1w2 ∈ W (J ′
1) and ρ = e ∈ W (J) such that w′ = wσρ. Then w < w′. Hence,

{J, J ′
1} is a very good system in Φ. Similarly it can be verified that {J, J ′

3} is also a very
good system in Φ ( since DΨ ∩ DΨ′

3
= {e}).

The very good system {J, J ′
1} corresponds to the one constructed in (1.2) for the

bipartition (λ, µ) = (∅, 21), and so we have the isomorphism SJ,J ′

1 ∼= Sλ,µ. Also, by
Proposition 3.9 of [10], we have SJ,J ′

3 ∼= SJ,J ′

1. But {J, J ′
3} is not a perfect system, since

there is only one standard tableau corresponding to DΨ∩DΨ′

3
= {e} whereas SJ,J ′

3 ∼= Sλ,µ

has dimension 2, where (λ, µ) = (∅, 21). In the next section, we show that {J, J ′
1} is a

perfect system in Φ.
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As seen in Example 2.4, note that not all the useful systems (resp. good systems, very
good systems) are good system (resp. very good system, perfect system).

For the special case W (Cn), the useful systems constructed in (1.2) can be translated
to the language of (λ, µ)-tableaux in the hyperoctahedral groups context; that is, the key
concepts (i.e., the useful systems, good systems, very good systems and perfect systems)
are reduced to the standard (λ, µ)-tableaux for the systems constructed in (1.2). Thus,
in these cases, there are isomorphisms between the Specht modules S∆,∆′

and the Specht
modules Sλ,µ given in [1], which send the ∆-polytabloids (resp. standard polytabloids) to
the (λ, µ)-polytabloids (resp. standard polytabloids). Therefore, if charK = 0 then the
S∆,∆′

give a complete set of irreducible KW -modules (cf. Theorem 2.6 of [1] or Theorem
3.21 of [2]). In the following section, we shall give the Garnir relations for the systems
constructed in (1.2) only.

3 Garnir relations for type Cn

Let Φ be a root system associated with W = W (Cn). We now show that standard ∆-
polytabloids span S∆,∆′

; that is, if wJ̄ is an arbitrary ∆-tableau, where w ∈ W , then ewJ̄

is a linear combination of standard ∆-polytabloids.
To determine the Garnir element of wJ̄ associated with ewJ̄ , we use the following

relations which correspond to the work in [1].

Lemma 3.1 Let J̄ be a very good system in Φ. Let wJ̄ be a ∆-tableau, where w ∈ W . If
α is any root in wJ ′, then

(e + wα)ewJ̄ = 0 (alternacy relation).

Proof Let α ∈ wJ ′. Then α ∈ Φ, and so α = wα1
. . . wαk

(β) for suitable roots
α1, . . . , αk, β ∈ π, by 2.1.8 of [5]. Thus wα = wα1

. . . wαk
wβwαk

. . . wα1
, and

so sgn wα = −1. Since wα ∈ W (wJ ′), the result follows immediately from wαewJ̄ =
(sgn wα)ewJ̄ = −ewJ̄ .

Note that we have used no special properties of Φ in the proof of Lemma 3.1, so the result
remains true for any root system.

Remark 3.2 By Lemma 3.10 of [10], if w = dρ, where d ∈ DΨ′ and ρ ∈ W (J ′), then we
have ewJ̄ = (sgn ρ)edJ̄ . Hence one can always assume that w ∈ DΨ′, which means that
wJ̄ is column standard.

Now, let J̄ be a very good system in Φ with notation as in (1.2). Let wJ̄ be a ∆-tableau,
where w ∈ W . Suppose that wJ̄ is column standard but not row standard. Then β ∈ Φ−

for some β ∈ wJ . If β = −2ei for some i, then β ∈ wJ (2). Let π ∈ W (wJ ′). Then
wβπ = πwπ−1(β) and π−1(β) appears in W (wJ (2))wJ (2), so that wπ−1(β) ∈ W (wJ) and
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wπ−1(β){wJ̄} = {wJ̄}. Thus,

wβewJ̄ =
∑

π∈W (wJ ′)

(sgn π)wβπ{wJ̄}

=
∑

π∈W (wJ ′)

(sgn π)πwπ−1(β){wJ̄} = ewJ̄ .

Therefore, we have the following lemma.

Lemma 3.3 Let J̄ be a very good system in Φ with notation as in (1.2) and wJ̄ be a
∆- tableau, where w ∈ W . Suppose that wJ̄ is column standard but not row standard. If
β = −2ei appears in wJ (2) for some i, then

(e − wβ)ewJ̄ = 0 (sign change relation).

Remark 3.4 The previous two lemmas say that we can find the elements of W which
make wJ̄ column standard (alternacy relation) and which turn any negative long roots
−2ei of wJ associated with ewJ̄ into positive long roots (sign change relation), i.e., the
tableau wJ̄ associated with ewJ̄ may be reorganized so that all columns are standard and
no negative long roots remain in wJ . Note that at this point, alternacy relations, unlike
sign change relations, are direct consequences of the definition of the polytabloids.

Example 3.5 Let Φ = C7 with simple system π = {αi = ei−ei+1 (i = 1, 2, . . . , 6), α7 =
2e7} and corresponding Weyl group W = W (Φ). Let wαi

be denoted by wi, i =
1, 2, . . . , 7. Let Ψ = A1 + A1 + C2 + C1 be a subsystem of C7 with simple system
J = J (1) +J (2) = {e1 − e2, e3 − e4}∪{e5 − e6, 2e6, 2e7}. Then the corresponding Dynkin
diagram ∆ for Ψ is

e
1

u
2

e
3

u
4

e
5

u
6

e
7

e

2e6

where the nodes corresponding to α1, . . . , α7 are denoted by 1, . . . , 7 respectively, the
nodes 2, 4, 6 have been deleted and the node 2e6 has been added. On the other hand, the
subsystem Ψ = A1 +A1 +C2 +C1 corresponds to the pair of partitions (λ, µ) = (22, 21) of
7. Thus the subsystem Ψ = A1 + A1 + C2 + C1 is represented by the rows of the tableau

t =

(
1 2
3 4

,
5 6
7

)
,

as in [14]. Now by applying Algorithm 3.1 of [4], the subsystem of Φ which is contained
in Φ\Ψ is obtained to be Ψ′ = C2 + C2 + A1 with simple system J ′ = J ′(1) + J ′(2) =
{e1−e3, 2e3, e2−e4, 2e4}∪{e5−e7}. This means that Algorithm 3.1 of [4] enables us to
construct the subsystem Ψ′ such that its simple system J ′ is represented by the columns
of the above tableau t. Thus, it follows from the discussion in Section 2 that

J̄ = {(e1 − e2, e3 − e4 ; e1 − e3, 2e3, e2 − e4, 2e4) , (e5 − e6, 2e6, 2e7 ; e5 − e7)}

the electronic journal of combinatorics 15 (2008), #R73 8



is a very good system in Φ. If w = w2w3w7 ∈ W , then

wJ̄ = {(e1 − e3, e4 − e2 ; e1 − e4, 2e4, e3 − e2, 2e2) , (e5 − e6, 2e6, − 2e7 ; e5 + e7)}

is a ∆-tableau. Since the root α = e3 − e2 is in wJ ′ and the root β = −2e7 appears in
w3w7J

(2), then we have

ewJ̄ = −wαewJ̄ = −ew3w7J̄ (alternacy relation)

= −wβew3w7J̄

= −ew3J̄ (sign change relation).

Now we shall find elements of the group algebra of W which annihilate the given ∆-
polytabloid ewJ̄ . Let w ∈ W , and let wJ̄ be a ∆-tableau associated with ewJ̄ such that
the entries of wJ̄ were reorganized by the alternacy relations so that all columns were
standard. Suppose that wJ̄ is not row standard. Then there must be some negative roots
in wJ . For example, for the root α∗ ∈ wJ , say α∗ ∈ Φ−. Then we know that −α∗ ∈ Φ+.
Now, define J−α∗

= {γ ∈ wJ ′ | (γ,−α∗) ≤ 0} and J−α∗ = {−α∗} ∪ J−α∗

. Then we have
the following proposition.

Proposition 3.6 The set J−α∗ is linearly independent over R. Furthermore, J−α∗ yields
a subsystem of Φ.

Proof Let J−α∗ = {γ1, . . . , γk} with γ1 = −α∗ and J−α∗

= {γ2, . . . , γk}. Then by
definition of the set J−α∗, we have (γi, γj) ≤ 0 for all i 6= j. Suppose that J−α∗ is linearly

dependent over R, i.e., let
k∑

i=1

aiγi = 0 be a non-trivial relation.

Put M = {i | ai > 0} and N = {i | ai < 0}, and write λi = ai, i ∈ M and
µi = −ai, i ∈ N . Then

γ =
∑

i∈M

λiγi =
∑

j∈N

µjγj 6= 0,

where λi, µj > 0 for all i ∈ M and j ∈ N . But we have

0 < (γ, γ) =
∑

i, j

λiµj(γi, γj) ≤ 0.

This forces γ = 0 which is a contradiction. Thus J−α∗ must be linearly independent over
R.

Now, denote by W (J−α∗) the group generated by all reflections wγi
with γi ∈ J−α∗,

i = 1, . . . , k, then W (J−α∗) is a subgroup of W and so W (J−α∗) is a finite reflection
group. Thus, by (4.2) of [6] J−α∗ is a root graph. Let Ψ−α∗ = W (J−α∗)J−α∗, then the set
Ψ−α∗ is the pre-root system corresponding to J−α∗ with W (Ψ−α∗) = W (J−α∗) by (4.10)
(i) of [6]. But, by (4.11) (ii) of [6] the set Ψ−α∗ is a root system and so is a subsystem of
Φ. Hence, we have the required result.
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By (1.4) of [3], we say that Ψ−α∗ is a subsystem of Φ with simple system J−α∗ ⊂ Φ+. We
know that W (J−α∗) and W (wJ ′) are subgroups of W . Now, define S = W (J−α∗)∩W (wJ ′),
and so S is a subgroup of W (J−α∗). Let σ1, . . . , σr be coset representatives for S in
W (J−α∗), and let

W (J−α∗) =

r⊎

j=1

σjS and GwJ̄ =

r∑

j=1

(sgn σj)σj.

GwJ̄ is called a Garnir element associated with wJ̄ .

Remark 3.7 The coset representatives σ1, . . . , σr are, of course, not unique, but for
practical purposes note that we may take σ1, . . . , σr so that σ1wJ̄, . . . , σrwJ̄ are all
the column standard tableaux.

Example 3.8 Referring to Example 3.5, we have ewJ̄ = −ew3J̄ . Since α∗ = e4 − e3 is a
negative root in w3J ,

w3J̄ = {(e1 − e2, e4 − e3 ; e1 − e4, 2e4, e2 − e3, 2e3) , (e5 − e6, 2e6, 2e7 ; e5 − e7)}

is not row standard. Now, put J−α∗

= {γ ∈ w3J
′ | (γ,−α∗) ≤ 0} = {2e4, e2−e3, e5−e7}

and J−α∗ = {−α∗} ∪ J−α∗

= {e2 − e3, e3 − e4, 2e4, e5 − e7}. By Proposition 3.6,
Ψ−α∗ = C3 + A1 is a subsystem of Φ with simple system J−α∗ and Dynkin diagram

e e e e

In this case, W (J−α∗) = 〈w2, w3, w4w5w6w7w6w5w4〉 × 〈w5w6w5〉, W (w3J
′) =

〈w1w2w3w2w1, w4w5w6w7w6w5w4〉 × 〈w2, w3w4w5w6w7w6w5w4w3〉 × 〈w5w6w5〉 and
S = W (J−α∗) ∩ W (w3J

′) = 〈w2w3w4w5w6w7w6w5w4w3w2〉 × 〈w3w4w5w6w7w6w5w4w3〉 ×
〈w4w5w6w7w6w5w4〉 × 〈w5w6w5〉 × 〈w2〉.

Let e, w3, w2w3 be coset representatives for S in W (J−α∗). Then Gw3J̄ = e−w3+w2w3

is the Garnir element associated with w3J̄ .

Let H be any subset of W . Define

H =
∑

σ∈H

(sgn σ)σ

and if H = {σ} then we write σ̄ = (sgn σ)σ for H.

Lemma 3.9 Let Υ be a subsystem of Φ with simple system Γ.
(i) If α is any root in Υ, then we can factor W (Γ) = k(e − wα) for some k ∈ KW .
(ii) If J̄ is a useful system in Φ with the root α ∈ Ψ such that wα ∈ W (Γ), then
W (Γ){J̄} = 0.
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Proof (i) Consider the subgroup P = {e, wα} of W (Γ). Select coset representatives

σ1, . . . , σs for P in W (Γ) and write W (Γ) =

s⊎

i=1

σiP . But then

W (Γ) =

(
s∑

i=1

σ̄i

)
(e − wα),

as desired.
(ii) Since α ∈ Ψ, wα ∈ W (J) and so wα{J̄} = {J̄}. Thus,

W (Γ){J̄} = k(e − wα){J̄} = k({J̄} − {J̄}) = 0.

Proposition 3.10 Assume that J̄ is a very good system in Φ with notation as in (1.2).
Suppose that wJ̄ is column standard but not row standard, where w ∈ W . Let J−α∗, S be
as in the definition of a Garnir element, and let Ψ−α∗ be the subsystem of Φ determined
by J−α∗. If πwΨ ∩ Ψ−α∗ 6= ∅ for all π ∈ W (wJ ′), then

GwJ̄ewJ̄ = 0 (Garnir relation).

Proof Let
W (J−α∗) =

∑

σ∈W (J
−α∗)

(sgn σ)σ and S =
∑

σ∈S

(sgn σ)σ.

Consider any π ∈ W (wJ ′). Then by the hypothesis, there exists a root α ∈ πwΨ such
that wα ∈ W (J−α∗). Thus, by Lemma 3.9 W (J−α∗){πwJ̄} = 0. Since this is true for
every π appearing in κwJ ′, we have W (J−α∗)ewJ̄ = 0.

Now W (J−α∗) =
r⊎

j=1

σjS, so W (J−α∗) = GwJ̄S. Since S ⊂ W (wJ ′) then S is a factor

of κwJ ′ and SewJ̄ = |S|ewJ̄. Therefore,

0 = W (J−α∗)ewJ̄ = |S|GwJ̄ewJ̄ .

Thus, GwJ̄ewJ̄ = 0 when the base field is Q, and since all the tabloid coefficients here are
integers, the same holds over any field K.

Remark 3.11 For the negative long roots −2ei, we now show that the Garnir relations
are equivalent to the sign change relations. Let J̄ be a very good system in Φ with
notation as in (1.2). Suppose that wJ̄ is column standard but not row standard, where
w ∈ W . If we do not use the sign change relation, then an element of wJ ∩ Ψ− can be of
the form −2ei for some i, and so −2ei ∈ wJ (2). Now, put −α∗ = 2ei. Then by definition
of the set J−α∗

, all the elements of wJ ′ occur in J−α∗

except for the element ek + ei

for some k when ek + ei occurs in wJ ′(2) (for if whenever ek + ei occurs in wJ ′(2) then
(ek +ei,−α∗) > 0). Namely, if ek +ei occurs in wJ ′(2) then we have J−α∗

= wJ ′ \{ek +ei}
and J−α∗ = {−α∗}∪(wJ ′\{ek+ei}). But if ek+ei does not occur in wJ ′(2) then J−α∗

= wJ ′
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and J−α∗ = {−α∗}∪wJ ′. Thus by Proposition 3.6, the corresponding subsystem for −α∗

is Ψ−α∗ with simple system J−α∗.
Now, consider the subgroup S = W (J−α∗) ∩ W (wJ ′). Then by construction of the

J−α∗, S is a subgroup of W (J−α∗) of index 2. But then by considering Remark 3.7,
the construction of the W (J−α∗) enables us to choose the elements e and w−α∗ for S

in W (J−α∗) as the coset representatives. Hence, GwJ̄ = e − w−α∗ is the Garnir element
associated with wJ̄. Furthermore, by construction of the part wJ (2), suppose that we
have the long roots 2ei1 , 2ei2 , . . . , 2eir in wΨ ( of course, one of them is −α∗ since
α∗ ∈ wJ (2)). If π ∈ W (wJ ′), then there exists 2eij ∈ wΨ such that π(2eij ) = ±α∗ for
some j ∈ {1, 2, . . . , r}. Thus, we always have ±α∗ ∈ πwΨ ∩ Ψ−α∗ for all π ∈ W (wJ ′),
and so by Proposition 3.10 we have the Garnir relation GwJ̄ewJ̄ = (e − w−α∗)ewJ̄ = 0,
which turns out to be the sign change relation.

To illustrate this fact, referring to Example 3.5, let

w7J̄ = {(e1 − e2, e3 − e4 ; e1 − e3, 2e3, e2 − e4, 2e4) , (e5 − e6, 2e6, − 2e7 ; e5 + e7)}

be a ∆-tableau, where w7 ∈ W . Then w7J̄ is column standard but not row standard.
Now, put −α∗

1 = 2e7, then we have J−α∗

1 = {e1 − e3, 2e3, e2 − e4, 2e4} = w7J
′ \ {e5 + e7}

and J−α∗

1
= {−α∗

1} ∪ J−α∗

1 = {e1 − e3, 2e3, e2 − e4, 2e4, 2e7}. By Proposition 3.6,
Ψ−α∗

1
= C2 + C2 + C1 is a subsystem of Φ with simple system J−α∗

1
. Now take the

subgroup S = W (J−α∗

1
) ∩ W (w7J

′). By considering Remark 3.7, let e and w−α∗

1
= w7 be

coset representatives for S in W (J−α∗

1
). Then the corresponding Garnir element associated

with w7J̄ is Gw7J̄ = e − w7. Since ±α∗
1 ∈ πw7Ψ ∩ Ψ−α∗

1
for all π ∈ W (w7J

′) then by
Proposition 3.10 we have (e − w7)ew7J̄ = 0, which is the sign change relation. Referring
to Example 3.5 once again, let

w6w7w6J̄ = {(e1−e2, e3−e4 ; e1−e3, 2e3, e2−e4, 2e4) , (e5 +e6, −2e6, 2e7 ; e5−e7)}

be a ∆-tableau, where w6w7w6 ∈ W . Then w6w7w6J̄ is column standard but not row
standard. Now, take −α∗

2 = 2e6, then we have J−α∗

2 = w6w7w6J
′ and J−α∗

2
= {−α∗

2} ∪
J−α∗

2 = {e1 − e3, 2e3, e2 − e4, 2e4, e5 − e7, 2e6}. By using a similar argument as above,
we have Gw6w7w6J̄ = e−w6w7w6, where w−α∗

2
= w6w7w6, and so (e−w6w7w6)ew6w7w6J̄ = 0,

which means the sign change relation again.

Since the sign change relations are faster in practical calculation, one can use them. But
we recall that we shall confine the role of them as a theoretical approach.

Example 3.12 Referring to Example 3.5 and Example 3.8, since πw3Ψ ∩ Ψ−α∗ 6= ∅ for
all π ∈ W (w3J

′) then we have 0 = Gw3J̄ew3J̄ = ew3J̄ − eJ̄ + ew2J̄ , so ew3J̄ = eJ̄ − ew2J̄ ,
where w2 ∈ DΨ ∩ DΨ′ . Thus

ewJ̄ = −ew3J̄ = −eJ̄ + ew2J̄ ,

which if we use the traditional notation as in [14] corresponds to

e0
@ 1 3

4 2
,

5 6
−7

1
A

= −e0
@ 1 2

3 4
,
5 6
7

1
A

+ e0
@ 1 3

2 4
,
5 6
7

1
A
.
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Remark 3.13 We now impose a partial order on the column equivalence classes. To define
a partial order on the row equivalence classes in Section 2, we have used the DΨ. But
note that it is wrong to define the ordering by using DΨ′ . A partial order on the column
equivalence classes may be defined as follows: Let J̄ be a very good system in Φ with
notation as in (1.2). Then J̄ corresponds to the standard bitableau t given in (1.2). Let t̃

denote the standard bitableau obtained from the t by interchanging rows and columns, as

in a matrix. Now, take another standard ∆-tableau ˜̄J in Φ which corresponds to the t̃ as
in (1.2). (This is only for the purpose of defining the ordering on the column equivalence
classes; we are still considering the Specht module constructed from the original system

J̄ .) Then ˜̄J is W -conjugate to the original system J̄ . Write [˜̄J ] for the column equivalence

class of ˜̄J ; that is, [˜̄J ] = {˜̄L | ˜̄L = π˜̄J for some π ∈ W (J̃ ′)}. Then [w′˜̄J ] dominates [w˜̄J ]

(where w, w′ ∈ DeΨ′), written [w˜̄J ] � [w′˜̄J ], if w ≤ w′ in the Bruhat order given in
Section 2. For example, if J̄ = {(∅; ∅) , (e1 − e2, 2e2, e3 − e4, 2e4; e1 − e3, e2 − e4)},

which corresponds to the t =

(
∅,

1 2
3 4

)
, then t̃ =

(
∅,

1 3
2 4

)
and so we have ˜̄J =

{(∅; ∅) , (e1 − e3, 2e3, e2 − e4, 2e4; e1 − e2, e3 − e4)} which is W -conjugate to the J̄ .
If w = w1 ∈ W , then wJ̄ = {(∅; ∅) , (e2 − e1, 2e1, e3 − e4, 2e4; e2 − e3, e1 − e4)} is
column standard but not row standard. Thus GwJ̄ = e−w1 +w2w1 is the Garnir element
associated with wJ̄ . By Proposition 3.10 we have the Garnir relation GwJ̄ewJ̄ = 0, so that
ew1J̄ = eeJ̄ −ew2J̄ (e, w1, w2 ∈ DΨ′), which has no Bruhat order relation (since w1 appears
on the left-hand side and w2 appears on the right-hand side). But for w̃ = w1w2 ∈ W

we have wJ̄ = w̃˜̄J and GwJ̄e ewēJ = 0. Thus e
w1w2

ēJ = e
w2

ēJ − e
eēJ (e, w2, w1w2 ∈ DeΨ′), and

we have w2 < w1w2 and e < w1w2. (Note that w2
˜̄J = eJ̄ and e˜̄J = w2J̄ are standard

∆-tableaux since e, w2 ∈ DΨ ∩ DΨ′ .) Furthermore, since J̄ = w2
˜̄J for w2 ∈ W , then

J ′ = w2J̃ ′ and so Ψ′ = w2Ψ̃
′. On the other hand, since wJ̄ is column standard for

w = w1 ∈ W , then w ∈ DΨ′ = D
w2

eΨ′.

With the help of Remark 3.13, we shall now use the Garnir relations and alternacy
relations to prove that any polytabloid can be written as a linear combination of standard
polytabloids. We have already shown how to do this in Example 3.12.

Theorem 3.14 If J̄ is a very good system in Φ with notation as in (1.2), then the set
B∆,∆′

= {ewJ̄ | wJ̄ is a standard ∆ − tableau} spans S∆,∆′

.

Proof Let wJ̄ be any ∆-tableau associated with ewJ̄ , where w ∈ W . Then we may
assume that ewJ̄ may be written as a linear combination of column standard polytabloids
by Lemma 3.1. Thus, because of Remark 3.4, we may always take wJ̄ to have standard
columns. Suppose that wJ̄ = {(wJ (1); wJ ′(1)) , (wJ (2); wJ ′(2))} is not row standard. This
means that wJ (i) is not row standard, where i = 1 or 2.

Now, take another standard ∆-tableau ˜̄J in Φ which is W -conjugate to the J̄ as in

Remark 3.13. Then there exists w̃ ∈ W such that wJ̄ = w̃˜̄J by Remark 3.13. By induc-
tion, we may assume that e

dēJ can be written as a linear combination of the polytabloids

the electronic journal of combinatorics 15 (2008), #R73 13



e
d′ ēJ such that each d′J̃ (i) is standard, where i = 1 or 2, when [d˜̄J ] � [w˜̄J] and prove the

same result for ewJ̄ = e ewēJ by considering wJ (i) = w̃J̃ (i), where i = 1 or 2.

Now suppose that i = 1. Then there must be some negative roots in wJ (1). For
example, for the root α∗ ∈ wJ (1), say α∗ ∈ Φ−. But then α∗ = eaj

− ebj
with aj > bj for

some j. Let s = (sλ, sµ) be the (λ, µ)-tableau which corresponds to the wJ̄ . If we write
ak bk for eak

− ebk
∈ wJ (1), then we have the following situation in the part sλ of s:

a1 b1

a2 b2
...

...
aj > bj

aj+1
...

... bq

ap

where a1 < a2 < . . . < ap and b1 < b2 < . . . < bq with aj > bj for some j. (Here, the roots
ea1

− ea2
, ea2

− ea3
, . . . , eap−1

− eap
, 2eap

and eb1 − eb2 , eb2 − eb3 , . . . , ebq−1
− ebq

, 2ebq

belong to wJ ′(1).)
Now, take J−α∗

= {γ ∈ wJ ′ | (γ,−α∗) ≤ 0} then J−α∗ = {−α∗} ∪ J−α∗

yields the
subsystem Ψ−α∗ of Φ with W (Ψ−α∗) = W (J−α∗) by Proposition 3.6. Furthermore, the
following Dynkin diagram

e e . . . e e e . . . e e

eb1 − eb2 eb2 − eb3 ebj−1
− ebj

−α∗ eaj
− eaj+1

eap−1
− eap

2eap

is one of the indecomposable components of J−α∗ . Thus, if π ∈ W (wJ ′) then ±eak
± ebl

∈
πwJ (1)∩Ψ−α∗, for some k ∈ {j, j +1, . . . , p} and l ∈ {1, 2, . . . , j}. Therefore, we have
πwΨ ∩ Ψ−α∗ 6= ∅ for all π ∈ W (wJ ′). Now, consider the corresponding Garnir element
GwJ̄ = Σσ(sgn σ)σ. Then by Proposition 3.10, we have GwJ̄ewJ̄ = 0, so that

ewJ̄ = −
∑

σ 6=e

(sgn σ)eσwJ̄ .

Since wJ̄ = w̃˜̄J (w, w̃ ∈ W ) then we can express this equality as

e ewēJ = −
∑

σ 6=e

(sgn σ)e
σ ewēJ ,

which makes the tableaux σw̃˜̄J closer to being standard than w̃˜̄J . But the elements σ 6= e

send the tableau w̃˜̄J to ones strictly smaller than w̃˜̄J ; that is, [σw̃˜̄J ] � [w̃˜̄J ] for all σ 6= e

by Remark 3.13. Hence, the result follows from our induction hypothesis for the part
wJ (1) of wJ̄ . If the part wJ (2) of wJ̄ is also not row standard, then there must again
be some negative roots in wJ (2). For example, suppose that β∗ ∈ wJ (2) with β∗ ∈ Φ−.

the electronic journal of combinatorics 15 (2008), #R73 14



Then β∗ is either a negative short root or a negative long root. If β∗ is a negative short
root, then the result can be deduced when we repeat the above process by considering
the part wJ (2) of wJ̄ . But if β∗ is a negative long root then β∗ = −2ei for some i.

Thus, Remark 3.11 yields ewJ̄ = ew
−β∗wJ̄ . Since we have wJ̄ = w̃˜̄J then we can express

this equality as e ewēJ = e
w

−β∗ ewēJ (clearly, w−β∗w̃˜̄J is closer to being standard than w̃˜̄J),

where [w−β∗w̃˜̄J ] � [w̃˜̄J ] by Remark 3.13. Therefore, the result follows from our induction
hypothesis for the part wJ (2) of wJ̄. Hence, we have the required result.

Corollary 3.15 If J̄ is a very good system in Φ with notation as in (1.2), then the set
B∆,∆′

is a K-basis for S∆,∆′

, and J̄ is therefore a perfect system in Φ.

Proof The result follows from Proposition 2.3 and Theorem 3.14.

This paper may be taken to be the proposal of a recipe for Garnir elements in terms of
the root systems; that is, the construction of the Garnir elements proposed here may be
potentially applied to other Weyl groups. (Of course, the Garnir elements constructed
in this paper are valid for the Weyl groups of type An if J̄ is a very good system in
Φ = An obtained from the standard λ-tableau as in (1.2).) In the following example,
we show how a Garnir relation can be constructed for the Weyl group of type D4. In a
future publication, the method presented in this work for obtaining Garnir elements will
be extended to the Weyl group of any type.

Example 3.16 Referring to Example 3.24 of [10], let Φ = D4 with simple system π =
{αi = ei − ei+1 (i = 1, 2, 3), α4 = e3 + e4} and corresponding Weyl group W = W (D4).
Let wαi

be denoted by wi, i = 1, 2, 3, 4. Let Ψ = A3 be a subsystem of D4 with simple
system J = {e1 − e2, e2 − e3, e3 − e4} and let Ψ′ = 2A1 be a subsystem of D4 with simple
system J ′ = {e1 + e4, e2 + e3}. Then J̄ = {e1 − e2, e2 − e3, e3 − e4 ; e1 + e4, e2 + e3}
is a good system in Φ and the corresponding Specht module S∆,∆′

has dimension 3. The
set of standard ∆-polytabloids is B∆,∆′

= {eJ̄ , ew4J̄ , ew2w4J̄}. By definition of a very
good system, it follows that J̄ is a very good system in Φ, and so the set B∆,∆′

is linearly
independent over K by Proposition 2.3.

Now, let wJ̄ be any ∆-tableau associated with ewJ̄ , where w ∈ W . Then we may
always assume that wJ̄ is column standard (since alternacy relation is valid for every
Weyl group). If w = w1w4 ∈ W , then wJ̄ = {e2 − e1, e1 + e4, e3 − e4 ; e2 − e3, e1 − e4}
is a ∆-tableau. Since α∗ = e2 − e1 is a negative root in wJ̄, wJ̄ is not row standard.
Now, take J−α∗

= {e2 − e3} then J−α∗ = {−α∗} ∪ J−α∗

= {e1 − e2, e2 − e3} yields
the subsystem Ψ−α∗ = A2 of Φ with W (J−α∗) = 〈w1, w2〉 by Proposition 3.6. Since
W (wJ ′) = 〈w2〉 × 〈w1w2w3w2w1〉, we have S = W (J−α∗) ∩ W (wJ ′) = 〈w2〉.

Let e, w1, w2w1 be coset representatives for S in W (J−α∗). (Note that at this point
ewJ̄ , w1wJ̄, w2w1wJ̄ are all the column standard tableaux.) Then GwJ̄ = e − w1 + w2w1

is the Garnir element associated with wJ̄. Moreover, we have πwΨ ∩ Ψ−α∗ 6= ∅ for all
π ∈ W (wJ ′) and so GwJ̄ewJ̄ = 0, so that ew1w4J̄ = ew4J̄ − ew2w4J̄ (w1w4, w4, w2w4 ∈ DΨ′).

Now, take another standard ∆-tableau ˜̄J = w2w4J̄ . Clearly, ˜̄J is W -conjugate to the J̄ .
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Then for w̃ = w1w2 ∈ W we have wJ̄ = w̃˜̄J and so GwJ̄e ewēJ = 0. Thus e
w1w2

ēJ = e
w2

ēJ − e
eēJ

(e, w2, w1w2 ∈ DeΨ′), where w2 < w1w2 and e < w1w2. (Here, note that w2
˜̄J = w4J̄ and

e˜̄J = w2w4J̄ are standard ∆-tableaux.)
By a similar calculation to the above, it can be shown that any polytabloid can

be written as a linear combination of standard polytabloids. Hence, the set B∆,∆′

=
{eJ̄ , ew4J̄ , ew2w4J̄} is a K-basis for S∆,∆′

.

We conclude this paper with a difficult question. Let (λ, µ) be a pair of partitions of
n such that λ is a partition of |λ| and µ is a partition of |µ|, and |λ| + |µ| = n. Many
results about representations of the hyperoctahedral groups can be approached in a purely
combinatorial manner. The crucial link between these two viewpoints is the fact that
the dimension of the Specht module Sλ,µ is the number of standard (λ, µ)-tableaux (see
Theorem 2.18 in [14]). If J̄ is a very good system in Φ with notation as in (1.2), then
the Specht modules S∆,∆′

, Sλ,µ are isomorphic. Now, let hλ, hµ be the product of all
the hooklengths in the diagrams [λ], [µ], respectively, and let hλ,µ = hλhµ. To obtain a
standard (λ, µ)-tableau, choose |λ| elements from {1, 2, . . . , n}, construct a standard
λ-tableau from them, and construct a standard µ-tableau from the remainder. Thus

dimK S∆,∆′

=
n!

|λ|!|µ|!

|λ|!

hλ

|µ|!

hµ

=
n!

hλ,µ

(hook formula).

Question: How can we describe the above hook formula in terms of root systems?
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