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Abstract

An even (resp. odd) lollipop is the coalescence of a cycle of even (resp. odd)
length and a path with pendant vertex as distinguished vertex. It is known that
the odd lollipop is determined by its spectrum and the question is asked by W.
Haemers, X. Liu and Y. Zhang for the even lollipop. A private communication of
Behruz Tayfeh-Rezaie pointed out that an even lollipop with a cycle of length at
least 6 is determined by its spectrum but the result for lollipops with a cycle of length
4 is still unknown. We give an unified proof for lollipops with a cycle of length not
equal to 4, generalize it for lollipops with a cycle of length 4 and therefore answer
the question. Our proof is essentially based on a method of counting closed walks.
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1 Introduction

Let G be a simple graph with n vertices and A its adjacency matrix, Q¢ (X) denotes its
characteristic polynomial and A\ (G) > A\o(G) > - -+ > A\, (G) the associated eigenvalues;
A1(G) is the spectral radius of G. It is known that some informations about the graph
structure can be deduced from these eigenvalues such as the number of edges or the length
of the shortest odd cycle; but the reverse question Which graphs are determined by their
spectrum ¢ (asked, among others, in [4]) is far from being solved; some partial results
exist |5, 10, 12| which contribute to answer this question.

Let us remind that the coalescence of two graphs GGy with distinguished vertex v; and
Gy with distinguished vertex v, is formed by identifying vertices vy and vy that is, the
vertices vy and v, are replaced by a single vertex v adjacent to the same vertices in G, as
v1 and the same vertices in Gy as vo. If it is not necessary v; or vs may not be specified.

A lollipop L(p, k) is the coalescence of a cycle C,, with p > 3 vertices and a path Py,
with &+ 1 > 2 vertices with one of its vertex of degree one as distinguished vertex, figure
1 shows an example of a lollipop. The lollipop L(p,0) is C,. An even (resp. odd) lollipop
has a cycle of even (resp. odd) length. In this paper we shall show that the lollipop graph
is determined by its spectrum, answering an open question asked in |8, 3| for even lollipop.
It is known |8] that the odd lollipop is determined by its spectrum, but the proof given
in [8] cannot be generalized for even lollipops.

Figure 1: Lollipop L(6,4)
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We describe in section 2 some basic results of spectral graph theory we shall use in
the following of the paper. We also explain the method we use to count closed walks in
a graph and revisit the proof of a result about lollipops. We end this section with an
unified proof of the fact that a lollipop L(p, k), p # 4 is determined by its spectrum. The
main section of the paper (section 3) shows that the lollipop L(4, k) is determined by its
spectrum; in subsection 3.1 we show that a graph cospectral with a L(4, k) is connected,
then we expose in subsection 3.2 the toolbox we use to show that the graphs considered
in subsections 3.3 and 3.4 are not cospectral with a lollipop L(4, k).

To fix notations, the disjoint union of two graphs G and H is noted G U H.

As defined in [12] a T-shape tree S, (a,b,¢ > 0) is a tree with one and only one
vertex v of degree 3 such that S,, \{v} = P, U P, U P.. We extend this notation for all
b,c € Nby Sopec = Popet1-

Figure 2: Si9

By S,_1 we denote the star with n vertices and by 7,, the tree with n vertices drawn

on figure 3.
: B B E— :

n—6 vertices

Figure 3: T,

Finally let d(u, v) be the distance (the length of a shortest path) between two vertices
u and v and 0(v) the degree of a vertex v.

2 Basic results and revisited proofs

2.1 Counting the closed walks

It is a classical result that the number of closed walks of length k > 2 is >, \F
We describe here a method to count the number of closed walks of a given length
within a graph.
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Let M be a graph, a k-covering closed walk in M is a closed walk of length k in M
running through all the edges at least once. Let G be a graph, M(G) denotes the set
of all distinct subgraphs (not necessarily induced) of G isomorphic to M and |M(G)] is
the number of elements of M(G). According to that point of view, M may be called a
motif (or a pattern). The number of k-covering closed walks in a motif M is denoted
by wy(M) and we define the set My = {M, wg(M) > 0} and we note that the set
{M € My, |M(G)| > 0} is finite (if G is a finite graph).

As a consequence, the number of closed walks of length & in G is:

SN = 3 w(n(E) 1)

MeMy

In practice, there are at least two methods to determine wg(M): on one hand a
combinatorial way which counts the number of covering closed walks of length k in M,
on the other hand an algebraic method which uses the following straightforward formula:

o= > w() M (M)

Ai€Sp(M) M'eMy, M'#M

where Sp(M) denotes the spectrum of the adjacency matrix of M.
Using equation (1) and table 5 in appendix, we have the following proposition:

Proposition 1. i) If G is a graph without triangles and Cs then:
DN = 12(G(G)] + 2APAG) | + 121 Py(G)| + 6 PA(G)| +12151,14(G)
Z +48|C4(G)| + 12| L(4, 1)(G)|
i) If G is a graph without C,, p € {3,5,6,7} and of mazimal degree 3 then:
Z A = 2|Py(G)| + 28| P5(G)] + 32| Pu(G)| + 8| Ps5(G)]

+72|511,1(G)| + 16]51,1,2(G)| + 264|C4(G)|
+112|L(4, 1)(G)| + 16|L(4, 2)(G)| + 16|08(G)|

iii) If G is a graph without C,, p € {3,5,6,7,8,9}, of mazimal degree 3 and such that
d(u) =46(v) =3, u#v=d(u,v) > 1, then:

Z)\w = 2|Py(G)| + 60| P5(G)| + 120| Py(G)| + 60| P5(G)| + 10| Ps(G)|

4300|5111 (G)| 4 140|S1.1.2(G)| 4 20] 51 2.2(G)|
+20[51,1,3(G)| + 1320|C4(G)| + 840|L(4, 1)(G)|
+180|L(4,2)(G)| + 20| L(4, 3)(G)] + 20|C1o(G)|
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In this paper we shall have to count all the |M(G)|, M € M, of a given unicyclic
graph G. For that aim we describe here the steps of the process we follow to count the
P(G) which are the only motifs hard to count. Let p be the length of the cycle of G.

ALGORITHM to count P (G):

set H=G

set |P(G)| = 0.

while there exists a pendant vertex u in H do
count the number ¢ of paths P, of H containing
let [Pu(G)| = [Pi(G)] + ¢
let H = H\{u}

end while

if p > k then
[Pe(G)] = [Pe(G)] +p

end if

return |P(G)|

2.2 Known results

Proposition 2. [2/ Let G be a graph with n vertices and m edges and let \; its associated
eigenvalues. We have: Y, A} = 8|Cy(G)|+2m~+4|P5(G)|. Let ny be the number of vertices
of degree k in G, we have:

;A,%:scﬁ;;mk“z@nk

k>2

The following result relates the coefficients of the characteristic polynomial of a graph
with structural properties of this graph:

Theorem 1. [1] Let Qg(X) = X" + a1 X" ' 4+ ae X" 2 + ... + a,, be the characteristic
polynomial of a graph G. We call an “elementary figure” the graph P, or the graphs
Cq,q > 0. We call a “basic figure” U every graph all of whose components are elementary
figures. Let p(U) be the number of connected components of U and c(U) the number of
cycles in U. We note U; the set of basic figures with © vertices. Then

g =Y (-1pW2e® =12 _.n
Uel;

It follows this theorem:

Theorem 2. [1] Let Qg(X) = X" + a1 X" ' 4+ au X" 2 + ... + a,, be the characteristic
polynomial of a graph G. The length of the shortest odd cycle in G is given by the smallest
odd index p such that a, # 0 and the value of a, gives the number of p-cycles in G.

THE ELECTRONIC JOURNAL OF COMBINATORICS 15 (2008), #R74 )



It ensues that a bipartite graph (ie a graph with no odd cycles) cannot be cospectral
with a non-bipartite graph.

The following result is useful at many time in the paper, for instance to find bounds
on eigenvalues:

Theorem 3 (Interlacing theorem). /7/ Let G be a graph with n vertices and associated
etgenvalues \y > Ao > ... > N\, and let H be an induced subgraph of G with m vertices
and associates eigenvalues jt1 > fig > ... > fhym. Then for v =1,....m, A\p_mai < i < A\

The next theorems give a way to compute the characteristic polynomial of a graph by
deleting a vertex or an edge:

Theorem 4. [1] Let G be a graph obtained by joining by an edge a vertex x of a graph
G, and a vertex y of a graph Gy. Then

Qa(X) = Qa, (X)Qa,(X) — Qane(X)Qeyy (X)
Theorem 5. [1] Let G be a graph and x a vertex of G, then:
Qc(X) = XQe\u(X) — Z Qa\fryy (X) — 2 Z Qavc(X)
Yy~x C, zeC

where y ~ x means that yz is an edge of G and the second sum is on the set of the cycles
C' containing x.

Theorem 6. [1] Let G be a graph and x a pendant vertex of G. Then:
Qc(X) = XQc\e(X) — Qo (a,y (X)

where y s the neighbor of x.

Property 1. We have the following equalities:
Qc,(X) = XQp, ,(X) —2Qp, ,(X) — 2
Qp,(X) = XQp, ,(X) = Qp, ,(X)

Proof. A direct consequence of theorems 4 and 6.
O

The following theorem relates the behavior of the spectral radius of a graph by sub-
dividing an edge. An internal path of a graph G is an elementary path zoz; - - -z (ie
x; # x;j for all i # j but eventually xy = xy) of G with §(x¢) > 2,(xy) > 2,0(z;) = 2 for
all other 7’s.

Theorem 7. [11, 9] Let xy be an edge of a connected graph G not belonging to an internal
path, then the spectral radius strictly increases by subdividing xy.

Let xy be an edge of a connected graph G # T, belonging to an internal path, then the
spectral radius strictly decreases by subdividing xy.

Theorem 8. [6] Let G be a graph with mazimal degree 6y, then A\ (G) > \/Oyr.
Let B(p, q) be the coalescence of two cycles C, and C, (see figure 4 for an example).
Theorem 9. [11]/ For p > 3, ¢ > 3, M(B(p,q)) > % > /5.
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Figure 4: B(8,5)

2.3 Bounds on eigenvalues

Theorem 7 gives the following corollaries:
Corollary 1. \i(L(p,k)) > M (L(p+ 1, k)).
Corollary 2. \(L(p,k)) < M (L(p, k +1)).

Given p > 3, ¢ > 3, let H(p, q) be the coalescence of C), and L(g, 1) with the pendant
vertex as distinguished vertex (see figure 5 for an example).

Figure 5: H(6,8)

Theorem 10. A\ (H (p, q)) > /5.

Proof. Without loss of generality we suppose that p > ¢. According to theorem 7
we have A\ (H(p,q)) > M (H(p,p)) so it is sufficient to prove the theorem for H(p,p). As
M, oo QH(pg)(T) = +0o0 it is sufficient to prove that Q) (V5) < 0
Theorem 4 gives:

Qupp)(X) = Qc,(X)Qc,(X) — Qp, ,(X)Qp, ,(X)
Qrp)(X) = [Qc, (X)) = [@p,, (X))
and by property 1 we have:
QH(p,p) (X) = [XQprl(X) - QQprz (X> - 2]2 - [Qprl (X>]2

Let (uy)nen be the sequence defined by u, = Qp,(v/5). We have (property 1): u, =

V/BUp_1 — Up_o. Since u; = v/2 and uy = 4 then u,, = 7" — B3+ where 5 = @ and
By = V31
=1
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QH(p,p)(\/g) = [\/gup—l — 2up_o — 2]2 - (Up—l)2
= [(VB+ 1B = 2[(V5 - 1) - 2]

We have [(v5+1)87 " —2] > 0 and [(v5 — 1)35" — 2] < 050 Qupp)(V5) < 0.

Theorem 11. For k # 0 we have A\ (L(p, k)) > 2 and Xo(L(p, k)) < 2.

Proof.

M (L(p, k)) > 2: the spectral radius of a cycle is 2 and a cycle is an induced subgraph
of L(p, k) so by the interlacing theorem we have \;(L(p, k)) > 2. It remains to show that
AM(L(p, k)) # 2. By theorem 4 we have Qrpr)(2) = Qc, (2)Qr,(2) — Qp, ,(2)Qp,_,(2) =
—Qp,_,(2)Qp, ,(2) # 0 (because the spectral radius of a path is strictly less than 2).

Aa(L(p, k)) < 2: the path P, 4 is an induced subgraph of L(p, k) so by the interlacing
theorem we have Ao(L(p, k)) < A (Ppip—1) < 2.

U

Theorem 12. i) We have, for p > 3, \i(L(p, k)) < /5 ~ 2.2361.
i) We have, for p >4, \i(L(p,k)) < V2 +2v/2 =~ 2.1974.
Proof. i) By corollary 1 we have A;(L(p,k)) < A (L(3,k)) so it is sufficient to prove

the theorem for p = 3. For k = 0, \;(L(3,0)) = 2 < /5. We now assume that k > 0.
Using theorem 4 and Qc,(X) = (X + 1)*(X — 2) we have:

Qren(X) = (X +1)X(X = 2)Qp (X) — (X = 1)(X + 1)Qp,_, (X)
and
Qremn(V5) = (2V5 —2)Qp, (V5) — 4Qp, , (V5)

Let us suppose that QL(gyk)(\/g) > 0.
We have
QL(3,I€+1)(\/5) = (2\/5 - 2)QPk+1 (\/5) - 4QPk(\/g)

but

QPk+1(\/g) = \/ngk(\/g) - kafl(\/g)

SO

Quian(V3) = 222 (215~ 2105, (vV5) — 401, (¥5)

and by induction on k£ > 1 we have QL(37,€+1)(\/5) > 0.

Since the polynomial (r3 k) has one and only one root in ]2, 4o00[ (theorem 11) then
Qri.x)(2) < 0 and Qre ) (V/5) > 0 implies that A;(L(3,k)) < V/5.
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ii) The proof of ii) is led in the same way. Let a = /2 + 21/2. We have:

Qraw(X) = X*(X* - 4)Qp, (X) — X(X* = 2)Qp,_,(X)
and
Qram (@) = 4Qp,(a) —2V2aQp,_,(a)
Let us suppose that Q. (a) > 0. As Qp,,, (o) = aQp,(a) — Qp,_, () we have

2—-42
2

QL(4,k+1)(a) = 0‘(4QPk (o) = QﬁaQPk—l(a))

and by induction on k& > 1 we have Qp4+1)(c) > 0.

O
Theorem 13. Let G be a graph cospectral with L(p, k), then
max{d(v), v € V(G)} < 4.
Proof. A direct consequence of theorems 12 and 8.
O

Theorem 14. Let G be a graph cospectral with a lollipop. Then, for p > 3 and q > 3,
C,UC, or H(p,q) or B(p,q) cannot be induced subgraphs of G

Proof. If C,UC, is an induced subgraph of G then as \y(C, UC,) = 2 by interlacing
theorem we get A\o(G) > 2, impossible by theorem 11.
H(p,q) or B(p,q) cannot be induced subgraphs of G because A;(G) < /5 (theorem 12)
and A\ (H(p,q)) > /5 (theorem 10), A\;(B(p,q)) > v/5 (theorem 9).

U

2.4 There are no cospectral non-isomorphic lollipops: revisited
proof

In [8] it is proved that two cospectral lollipops are isomorphic. We revisit here this result
in a shortest proof using closed walks.

Theorem 15. There are no cospectral non-isomorphic lollipops.

Proof. Let L(p,k) and L(p/, k') withn =p+k =p + k' and p < p’ be two non
isomorphic lollipops. To show that they have different spectra we show that there are less
closed walks of length p in L(p/, k') than in L(p, k).

Let e (resp. €') be an edge of the cycle of L(p, k) (resp. L(p, k")) incident to the vertex of

~

degree 3, W (resp W) the set of closed walks of length p of L(p, k) (vesp. L(p/, k'), W
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(resp W) the set of closed walks of length p of L(p, k) (resp. L(p, k")) not containing e
(resp. €') and W (resp W’) the set of closed walks of length p of L(p, k) (resp. L(p', k"))
containing e (resp. €’).

We have: [W| = [W| + [W]| (resp. [W'| = [W'| + [W!|). It’s obvious that W] = V|
because L(p, k)\{e} = L(p', ¥)\{¢'} = P,. We are going to show that [W| < |[\WW| by the

following equation:
W= > w(M)|M(G)
MeM,, e€E(M)

where E(M) is the set of the edges of M.

We denote by M€ a motif M containing e. The motifs containing e (resp €’) with at
least one p-covering closed walk are exactly:
o the P’s for 2 <i < Z 41 (if p is even) and we have |Pf (L(p/, K))| < |Pf(L(p, k))|.
o the S,..’s with a+b+c < & (if pis even) and we have |S¢, (L(p/, K'))| < |S¢, (L(p, k).
o the C,’s and 0 = |C¢ (L(p/, k)| < |CE(L(p, k))| = 1.

So, [W| < [W!'| and |[W| < |[W'| which concludes the proof.

2.5 The lollipop L(p, k), p # 4, is determined by its spectrum

This result mentionned in |8, 3| for even lollipops with p > 6 as a private communication
of Behruz Tayfeh-Rezaie is true for all lollipops L(p, k) with p # 4. The aim of the proof
is to determine the degree distribution. We already know that there are no vertices of
degree greater or equal than 5 (theorem 13).

Theorem 16. Let G be a graph cospectral with L(p, k), p # 4. Then G is isomorphic to
L(p, k).

Proof. Let n; be the number of vertices of degree i for i € {0,1,2,3,4}. We have
n = ng+mny +ns+ns+ny and 2n = ny + 2ns + 3nz + 4ny (the sum of the degrees is twice
the number of edges), so 2ny + ny = nz + 2n,.

Let ¢ = |Cy(G )| we have by proposition 2, >3, ¢ ) A} = 8¢+ 2m + 4(ny + 3nz + 6ny).
As Z,\ ESp(G ZA eSp(L(pk) )\ we get bny + 2n3 — ng — ny + 2¢ = 1 and, using
2ng + nq —n3+2n4, we have 3n4—|—n3—|—n0—|—2c— 1.

So ng = 0 and ¢ = 0. If ng = 0 then ny = 1 which contradicts 2ng +n; = n3 + 2n4. So
nz =1 and ng = 0. We deduce n; =1 and no, =n — 2.

As the sum of the degrees of a graph is even, the vertex of degree 1 and the vertex of
degree 3 belongs to the same connected component. If G is not connected there is a 2-
regular connected component (e a cycle) which is impossible (2 is not an eigenvalue of G).
As a result, G is a connected graph with degree distribution equal to (1,2,2,2,...,2,2,3),
so G is a lollipop and, by theorem 15, G is isomorphic to L(p, k).

O
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3 The lollipop L(4,k) is determined by its spectrum

Let G be a graph cospectral with L(4, k), let n;, i € {0,1,2,3,4}, be the number of vertices
of degree i of G and let ¢ = |C4(G)|. If we use the same method as previously to prove
that a lollipop L(4, k) is determined by its spectrum, we obtain Z)\iESp(L(4,k)) A= 6n+12
and we have to solve

3n4+n3+n0+2c:3

Noting that 2ng + ny = nz + 2n4, we have to consider the following cases:
e case : ny =0, n3 =1, ng =0, c =1 and consequently ny =1, no =n — 2.
e case II: ny = 0,ng = 2, ng = 1, ¢ = 0 and consequently n; =0, no =n — 3.
e case III: ny =0, ng = 3, ng = 0, ¢ = 0 and consequently n; = 3, ns =n — 6.
e case IV:ny =1, n3 =0, ng =0, c =0 and consequently n; = 2, no =n — 3.

The first case implies that the graph is L(4, k), it remains to show that the last three cases
are impossible, this is done in the next subsections. In order to simplify the enumeration
of graphs in the cases II, III and IV, we before establish the connectivity of a graph
cospectral with L(4, k).

3.1 Connectivity and case 11

In order to simplify the study of these three cases we show in this section that a graph
cospectral with a L(4, k) is connected. As noticed in [8| this is a difficult problem and to
lighten this section some technical proofs have been detailed in appendix.

Using results of section 2.2 we easily obtain the following property:

Property 2. Va,b,c € N, k € N, p > 2 : Q¢,(2) =0, Qp,(2) = k+1, Qs,,.(2) =
a+b+4c+2—abc, Qs,,,(2) =4

Let P(p1,p2,p3) be the graph obtained by identifying the three pendant vertices of
Spi+1,pa+1,ps+1 (an example is given in figure 6).

Figure 6: P(4,7,6)
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Theorem 17. The graph P(p1,p2, ps) cannot be an induced subgraph of a graph G cospec-
tral with a lollipop L(4, k).

Proof. Sketch of the proof:
We first show that for some values of p;, ps and p3 we have Ai(P(py,p2,p3)) >

V2 4 2v/2 and in these cases P(p1, p2, p3) cannot be an induced subgraph of G.
For the others cases we compute @ p(p, pops)(2)-

o if Qp(p,pops)(2) > 0 then P(py,p2,p3) and a fortiori G (interlacing theorem) pos-
sesses two eigenvalues greater than 2 which contradicts that G is cospectral with a
lollipop (theorem 11).

o if Qpp, pops)(2) < 0 then we show that P(pi,ps,p3) cannot be a connected com-
ponent of G so there is a vertex z not in P(py, ps, p3) adjacent to a vertex y of
P(p1,pa, p3) and we prove that this graph so constructed cannot be an induced
subgraph of G.

A detailed proof is given in appendix A.
O

Theorem 18. Let G be a graph cospectral with a lollipop L(4,k). Then G is connected.

Proof. The graph G has as many edges as vertices, so if G is not connected, it
possesses at least two cycles. The subgraph induced by the two cycles of minimal length
is C, Uy, B(a,b), H(a,b) or P(p1,ps,ps) but this is impossible (theorems 14 and 17).

O

Corollary 3. A graph cospectral with a lollipop L(4,k) is unicyclic.
This section solves the case II:
Corollary 4. There are no graphs cospectral with L(4, k) and withng =2, ny =0, ng = 1,

c=0 and no =n — 3.

3.2 Our toolbox: some results on L(4,k)

In the following we are going to prove that L(4, k) is not cospectral with the unicyclic
graphs of cases III and IV. For that purpose we use several tools detailed in this section:
counting closed walks of length 6, 8 or 10, evaluating the characteristic polynomial in 1
or 2, using the fact that a lollipop has only one eigenvalue greater than 2.
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Proposition 3. i) For L(4,k), k > 1 we have:

> A =20n+ 96

ii) For L(4,k), k > 2 we have:

> A =170n + 59

iii) For L(4,k), k > 3 we have

> A0 =252n + 3360

Proof. Counting closed walks, we check that
i) For k> 1, [Py(L(4, k)| = n, [Ps(L(4, k)| = n+1, [Py(L(4, k)| = n+2, [Ca(L(4, k)| =
1, [L(4, 1)(L(4, k)] = 1.
i1) Moreover, for k > 2, |P;(L(4,k))| = n — 1, |S111(L(4,k))| = 3, [S112(L(4,k))| = 3,
|L(4,2)(L(4, k)| = L.
i11) Moreover, for k > 3, |Ps(L(4,k))|
|L(4,2)(L(4, k)| = 1, |L(4,3)(L(4, k))|
and apply proposition 1.

=n =2, [S122(L(4, k)| = 2, [S115(L(4, k)] = 1,
=1

U
Property 3. We have Qp,(1) = Qp,(1) and Qc,(1) = Qc,(1) where p is p modulo 6 and:

Qr,(1)=1  Qc;(1)=0
Qr(l) =1 Qc(1)=-1
Qr(1) =0 Qc(1) = -3
Qry(l) = -1 Qcy(1) = —4
Qp, (1) =—1 Qc,(1)=-3
Qr(1) =0 Qc(1)=-1

Proof.  According to property 1, Qp,(1) = Qp,_,(1) — Qp,_,(1) = —Qp,_,(1) =
Qp,_s(1) and Qc,(1) = Qp, (1) — 2Qp, ,(1) — 2. Then we can easily compute @)p, and
Qc; for 0 <7 <5,

O

Property 4. We have:

[ (=% ifk is even
@r.(0) = { 0 if k is odd

and if k is odd we have R(0) = (—1)%% where R(X) = QPkTQ()
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Proof. Proofs by induction with the relation Qp, (X) = XQp,_,(X) — Qp,_,(X).
O
Proposition 4. We have:

(1 ifn=0[6]
3 ifn=1[6]
2 ifn=2[6
Qrm(l) = _1Zfz'7; n 5[3][6]
=3 if n = 4[6]
-9 an = 5[6]

\

Proof. Theorem 4 gives Qrur)(X) = Qc, (X)Qp,(X) — Qp,(X)Qp, ,(X)
50 Qrm(l) = =3Qp, (1) + Qp, ,(1) and we conclude with property 3.

Proposition 5. Q) (2) = —4n + 16.

Proof. Qrumn(X) = Qc,(X)Qp,(X) — Qp,(X)Qp, ,(X) and with property 2 we
have QL(4J§)(2) = —4k = —4n + 16.

O
Remark This proposition can be generalized for all lollipops: Qpx)(2) = —pk.

Proposition 6. If n = 4 + k is even then 0 is an eigenvalue of L(4,k) with multiplicity
2 and R(0) = (—1)%+1n where R(X) = QL(“X*’Q(X)

Proof.  Since Qrur(X) = Qc, (X)Qp,(X) — Qp,(X)Qp, ,(X) we have R(X) =
(X2 —4)Qp(X) — (X*— 2)QP’“*T1(X) and property 4 gives the result.

U

3.3 Case III: graphs with ng=n1=3,n90=0,c=0and no =n —6

Let G be a graph cospectral with L(4, k) such that n3 = ny = 3, np = 0, ¢ = 0 and
ne = n — 6. As G is connected there are three possibilities to construct such a graph,
these possibilities are exposed in the subsections 3.3.1, 3.3.2, 3.3.3.
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Figure 7: A graph G € G,

3.3.1 Unicyclic graphs with exactly three vertices of maximal degree 3 of
which only one belongs to the cycle

Let T be a tree with exactly two vertices of maximal degree 3. Let G; be the set of the
coalescences of T with a pendant vertex as distinguished vertex and a cycle Cp,, p > 6. In
the following we assume that the vertex of degree 3 belonging to the cycle is denoted by u
and v, w are the other two vertices of degree 3 such that v is between u and w; x,y, z are
the pendant vertices of G such that d(z,v) < d(z,w) and d(z,w) < d(y,w). An example
is given in figure 7.

The aim of this section is to show the following theorem whose proof is summed up in
table 1:

Theorem 19. The lollipop L(4,k) cannot be cospectral with a graph G € G;.

As L(4, k) cannot be cospectral with a non-bipartite graph we suppose in the following
that a graph G € G, is bipartite (the length of the cycle is even).

Proposition 7. Let G € Gy. If one of the following properties is true:
i) d(u,v) > 2

i) d(u,v) =2, d(v,w) > 1 and d(y,w) > 2

iii) d(u,v) =2, d(v,w) >4, d(y, w) > 2

then G 1s not cospectral with a lollipop.

Proof. Let p be the length of the cycle of G. If one of these properties is true then
G possesses an induced subgraph with twice the eigenvalue 2. By the interlacing theorem
it cannot be cospectral with a lollipop (theorem 11).

This subgraph is C, UT,. (for an r € N) in the case i), C,, U Sy 33 in i) and C, U S} 25
in iii).

O

Proposition 8. Let G € Gy. If one of the following properties is true:

i) d(u,v) =1, dv,w) =1,

i) d(u,v) =1 and d(v,w) > 1 and (d(v,z) > 1 ord(z,w) > 1 ord(y,w) > 1),

iii) d(u,v) > 1 and d(v,w) > 1 and ( (d(v,z) > 1 and d(y,w) > 1) or d(z,w) > 1),
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Graph || Tool |Prop. ||

p==6 AP | 8w)
d(v,w) =1 AP | 84)
d(f’lv) d(v, w) d(v,z) > 1or d(z,w) > 1 x| s
N i’iy or d(y,w) > 1 2N "
d(v,z) =1 and d(z,w) = Qa(1) 9
and d(y,w) =1 ¢
dly, w) =1 Qe(2) | 11
p=8 5 .
dv,w) =1 AV | 8iv)
d(z,w) d(g,;u) d(v,z) > 1 d(v,w) > 1 SN | 8 i)
d(u,v) =1 N d(v,w) =1 YAV | 8iv)
=2 d(v,z) = 2 <d(v,w) <3| DA 10
d(v,w) >4 Ao > 2 | T it)
d(y, w) d(v,w) =1 SNV | 8iw)
> 2 (v, w) > 1 N2 | 70
d(z,w) dv,w) =1 SAY | 8iw)
> 1 dv,w) > 1 S| 8 ddi)
d(u,v) > 2 Ao >2 | Ti)

Table 1: Proof of theorem 19 using a case disjunction over the possibilities for the values
of d.

) dv,w) =1 and (d(v,z) > 1 ord(y,w) > 1 ord(z,w) > 1),
v) p=6.
then
> AP >20n+96
X €5p(G)

and G cannot be cospectral with L(4,k).

Proof. For the cases from 7) to iv) we have | Py (G)| = n, |P3(G)| = n+3, [S111(G)| =
3, |P4(G)| > n + 4 and apply proposition 1.
For the case v) we have |P(G)| = n, |P3(G)] = n+ 3, [S1.11(G)| = 3, |P(G)| >
n+2, |Cs(G)| =1 and apply proposition 1.

O

Proposition 9. Let G € G; such that d(u,v) =1 and d(w,z) = d(w,y) = d(v,z) = 1.
Then G cannot be cospectral with L(4, k).

Proof. Let G € Gy, with n = p + ¢ vertices where p is the length of the cycle. We
have:

QG (X) = QCp (X)Q51,1,q73 (X) - XQPp71 (X)QSLqus (X)

= XQCP(X)(QPQA(X) - QPq—S(X))
~X?Qp, ,(X)(Qp, ,(X) = Qp, (X))

Using property 3 we compute Qg(1), the result depends on p and § which are p and
g modulo 6 and are summed up into the following table:
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_ “Wo|1]|2|3|45
p
0 0] 0] 01]0/0]|O0
2 -1 —-5|—-4|1|5|4
4 —5|—=T|—=2|5|7]|2
Comparing these results with proposition 4 ( @ = p + ) we conclude that G cannot

be cospectral with L(4, k).
U

Proposition 10. Let G € Gy such that p > 8, d(u,v) =2, 2 < d(v,w) < 3, d(y,w) = 2,
d(v,z) =1, d(x,w) = 1. Then G cannot be cospectral with L(4,k).

Proof. We have |P2(G)| = n, |P3(G)| =n+ 3, |P4(G)| =n-+ 4, |Sly172(G)| = 7,
|P5(G)| =n+6if d(v,w) =2 and |Ps(G)| =n+ 5 if d(v,w) > 3 and by proposition 1:

<
4,

ZAS | 70n + 588 +16|Cs(G)| if d(v,w) =2
© | 70n + 580 4 16|Cs(@)]| if d(v,w) =3

e If d(v,w) = 2 then, by proposition 3, G cannot be cospectral with L(4, k).

e If d(v,w) = 3 then, by proposition 3, G is cospectral with L(4, k) only if p = 8. We
then check that such a graph G (drawn on figure 8) is not cospectral with L(4,13)
by comparing spectral radii (see tables 11 and 12 in appendix).

U

Figure 8:

Proposition 11. Let G € Gy such that d(u,v) = 2, d(z,w) = d(y,w) = 1. Then
Qc(2) = —4p and G cannot be cospectral with a lollipop L(4, k)

Proof. Set b =d(v,w) and a = d(z,v), using theorems 4 and 6 we have
QG(X) = Qcp (X)QT(X) - Qprl (X)Qsl,l,a+b71 (X)

(where T is a tree) and using property 2 we get Q¢(2) =0—p x4 =—4n+4(n—p). As
n — p > 4, proposition 5 implies that G cannot be cospectral with a lollipop L(4, k).

O
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3.3.2 Unicyclic graphs with exactly three vertices of maximum degree 3 of
which exactly two belong to the cycle

Let T be a tree with exactly one vertex w of maximum degree 3 and L(p,k), p > 6,
a lollipop (the vertex of degree 3 is denoted by v and the pendant vertex by z). Let
G- be the set of coalescences of a lollipop with a vertex u of degree 2 of the cycle as
distinguished vertex and 7" with a pendant vertex as distinguished vertex. The pendant
vertices different from z are denoted by = and y such that d(x,w) < d(y,w). Such a graph
is drawn in figure 9.

Figure 9: A graph G € G,

The aim of this section is to show the following theorem whose proof is summed up in
table 2.

Theorem 20. A L(4,k) cannot be cospectral with a graph G € Gs.
As in the previous section we can assume the length of the cycle of G is even.

Proposition 12. Let G € Gy. If one of the following properties is true
i) d(x,w) > 1 or (d(y,w) > 1 and d(z,v) > 1),
i) d(u,v) =1 and (d(z,v) > 1 or d(y,w) > 1),
iii) d(u,v) =1 and d(u,w) =1,
i) d(u,w) =1 and (d(z,v) > 1 or d(y,w) > 1),
v)p=6,
then
> A > 20n + 96

and G cannot be cospectral with a lollipop L(4, k).

Proof. For all cases we have |Po(G)| = n, |P3(G)| =n+3, |S11.1(G)| = 3. Moreover,
for the cases i) to iv) |Py(G)| > n+4 and for the case v) |P;(G)| > n+2 and |Cs(G)| = 1
and we apply proposition 1.

O

Proposition 13. Let G € Gy such that p > 8, d(u,v) > 1, d(u,w) > 1, d(z,v) =
1, dlw,z) = d(w,y) = 1, then >, A} < 20n + 96 and G cannot be cospectral with a
lollipop L(4, k).
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Graph || Tool | Prop. ||

p==6 SN 12 v)
d(v,z) > 1 or d(z,w) > 1 or d(y,w) > 1 YN8 12 i7)
dlw,u) =1 Z /\? 12 4i7)
d(v,z) =1 and Qc(2)
- d(z,w) =1 and and 14
d(u,v) =1 d(y, w) = 1 and d(w,u) > 1 Qc(1)
d(z,w) > 1 or (d(y,w) > 1 and d(z,v) > 1) SN 12 4)
B d(v,z) > 1or 6 )
d(w,w) = 1 d(u,w) =1 d(y, w) > 1 STAY 12 iv)
and d(v,z) =1 and
d(y,w) =1 d(y,w) =1 Qs2) 1o
d(v,z) =1 and 6
p>8 | du,v) >1 or d(u, w) > 1 d(y,w) =1 2N 13
d(v,z) =1 and 16
d(z,w) =1 d(y,w) > 1
and d(v,z) > 1 and 17
d(z,0) = 1 dlyw) = 1

Table 2: Proof of theorem 20 using a case disjunction over the possibilities for the values
of d. An empty cell in the column tool means that the proof uses more than three tools.

Proof. The subgraphs M of G with we(G) > 0 are Py, P, Py, S111 and |Py(G)| = n,
|P3(G)| =n+3,|5111(G)| =3, |P4(G)| =n + 3 and we apply proposition 1.

U

Proposition 14. Let G € Gy such that d(u,v) =1, d(z,v) =1, d(w,y) =1, d(w,u) > 1,
then G is not cospectral with L(4,k).

Proof.  Since d(w,z) < d(w,y) = 1 we have d(w,z) = 1. Let a = d(u,w) (so
n =p+ «a+ 3), by theorem 4 we get:

QG(X) = QL(p,l)(X)QS171,a71 (X) - QPp (X)QSLLafz (X)
= (XQCp(X> - Qprl (X))Qsl,l,afl(X) - QPp(X>Qsl,l,a72 (X)

and (with property 2) Q¢(2) = —=8p — 4. So Q¢(2) = Qrur)(2) if and only if —8p — 4 =
—4n 4+ 16 that is a = p + 2.
As a consequence

QG(X) = (XQC'p (X) - Qprl (X)) QS1,1,p+1 (X) - QPp (X)Qsl,l,p (X)
= (XQcq,(X) = Qp, (X)) X (Qr,., (X) = Qp,., (X))
~Qp, (X)X (Qp,,»(X) = Qp, (X))

By property 3 we have (let’s note that n = 2p + 5):
e Ifp=0 (som=5) then Qg(1) = 1.
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e If p =2 (so m = 3) then Qg(1) = —4.
e Ifp=14 (som=1) then Qg(1) =0.

where p and 7 are p and n modulo 6. And by proposition 4, GG is not cospectral with
L(4,k).

U

Proposition 15. Let G € Gy such that d(u,v) > 1, d(w,z) = d(w,y) = d(v,2) =
d(u,w) =1, then G cannot be cospectral with L(4,k).

Proof. Set a = d(u,v) and b = p — a. We have:
QG(X) = QL(pJ)(X)QPS(X) - X2Q51,a71,b71 (X)
= (XQCp (X) - Qqu (X>>QP3 (X) - X2QS1,a71,b71(X)

and Q¢(2) = —4p—4(2a+2b—ab). As n = p+4 we have Q¢(2) +4n— 16 = —4(2p — ab)
s0 Q¢ (2) + 4n — 16 = 0 if and only if ab = 2p.

e If a = 2 then 2b = 4 4 2b, impossible.
e [f a =3 then b =6 and p =9, p odd is impossible.
o If a = 4 then b = 4 and p = 8 we check that this graph is not cospectral with L(4,38).
e If a > 4 then as p < 2b we have 2p — ab < 0.
As a result G is not cospectral with L(4, k).
O

Proposition 16. Let G € Gy such that p > 8, d(u,v) > 1, d(w,u) > 1, d(w,y) > 1,
d(w,z) =d(v,z) = 1. Then G is not cospectral with a lollipop L(4,k).

Proof. Let a =d(u,v),b=p—a, a =d(u,w), f=d(w,y) > 2. We have a < b and
p<2bandn=p+a+[+2.

QG(X) = QL(pvl)(X)Qsl,a—l,ﬁ (X> - QSl,afl,bfl(X)Qsl,aflﬁ (X>
= (XQCp(X) - QPpﬂ(X))QSl,afl,ﬁ (X> - QS1,a71,b71 (X)Qsl,a—Z,ﬁ (X>

Using property 2 we obtain
Qc(2) = —pla+28—af+2)—(2a+2b—ab)(a+ 30 —af + 1)
The following inequality will be useful: ab = (a—1)(b—1)+p—1>b—1+p—1> 3p—2.

The main argument of this proof is that Qg(2) # —4n + 16 so G cannot be cospectral
with a lollipop L(4, k) (proposition 5).
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o Case f=2. Q¢(2) — (—4n + 16) = (3a — 16)p + (7 — a)ab + 4.
— If @ = 2 then Q¢(2) — (—4n + 16) = —10p + 5ab + 8 # 0 (otherwise 5 divides
8)

If o = 3 then Q¢(2)—(—4n+16) = —Tp+4ab+12. Ifa > 4 then —Tp+4ab+12 >
0 (because p < 2b). If a = 3 then —7p+4ab+12 = 5b—9 # 0 (because b € N).
If @ =2 then —7p+4ab+12=b—2# 0 (because a +b=p > 8).

— If4<a<7then

(Ba—16)p + (7 — oz)(ép —2) + 4«

Qu(2) ~ (~4n +16) > :
311
> §+10>0

If o > 7 then the disjoint union C,, U S 25 is an induced subgraph of G with
twice the eigenvalue 2 and by the interlacing theorem and theorem 11, G is
not cospectral with a lollipop.

e Case 0 > 3:

— a = 2. We have |P2(G)‘ =nNn, |P3(G)‘ = n—i—3, |P4(G)| = n+4, ’51,171(G)‘ = 3,
1S112(G)] = 7, |P5(G)] = n+6ifa > 2 and |P5(G)] = n+ Tifa = 2.
By proposition 1 we have > A% = 70n + 588 + 16|Cs(G)| if @ > 2 and in
that case G in not cospectral with L(4,k) (proposition 3). If a = 2 then
Qc(2) = —4p —4(B+3) = —4n+ 4 # —4n + 16.

—a=3. Q¢(2)+4n—16 = —p(—F+5)— (2p—ab) x4+4(p+3+5)—16 = p(5—
9)+4ab+48+4. But 8>3 and ab > 3p—2, 50 Qc(2) +4n—16 > 43 —4 > 0.

— o =4.

x If 8 > 5 the disjoint union C, U S 25 is an induced subgraph of G with
twice the eigenvalue 2 and by the interlacing theorem and theorem 11, G
is not cospectral with a lollipop.

* If f =4 then Q¢(2) = ab > 0 and Qrur)(2) <0

« If B =3 then Q¢(2) = 2(ab—2p), n =p+9 and Q¢(2) — (—4n + 16) =
2ab+20 >0

— o > 4. The disjoint union C), U S} 33 is an induced subgraph of G' with twice
the eigenvalue 2 and by the interlacing theorem and theorem 11, G is not
cospectral with a lollipop.
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Property 5. Let r € R, r > 2, we have Qp,(r) = a1 0] + a5y with [y = 7’“+V2’“2—4 > 1,

ﬁgz%<1 ap = ﬁr%>1 ag=1—0q <0.

Proof. Let (u,)nen be the sequence u, = Qp,(r). We have w,, = ru,_1 — t,_2, SO
Up = a1 B+ 3% where 3y, B are roots of X2—7rX +1 and we note that 1 = uy = a; +ax,
r=1u; = a1 + azfs.

O
Lemma 1. Let G € Gy with d(u,v) = 2, d(w,z) = d(w,y) = 1, d(v,z) > 1, d(u,w) >
d(v, z), then G is not cospectral with a L(4, k).
Proof. Let a =d(u,w), | =d(v,z), we have n = p + o + [ + 2. Applying theorem 5
to the vertex at distance 1 of u and v, we have:
QG(X> = XQ51,1,7L74 (X) - QP[ (X>Qsl,l,a+p73 (X)
_QPl«l»pr (X>QSI,1,Q71 (X) - 2QPL (X>Q5'1,1,a71 (X)

and applying theorem 5 to the vertex of degree 2 of the cycle of L(4, k) at distance 2 from
the vertex of degree 3, we have:

QL(4J€) (X) = XQS1,1,n74 (X> - 2QPn72 (X> - 2QP’n74 (X>

Noting that Qs , . = X(Qp..,(X) — Qr.(X))
and Qp, ,(X)+ Qp, ,(X)=XQp, ,(X) we have:
Qc(X) — Qrumn(X) = —XQr(X)Qp.,, .(X)+XQr(X)Qp,,, ,(X)
~XQp,, ,(X)Qp, ,(X)+ XQp,, ,(X)Qp,_,(X)
—2XQp(X)Qp,.,(X) +2XQr(X)Qr, ,(X)
+2XQp, (X)

According to the previous property, we have for r» > 2:

_ 1 1
Qa(r) — Qrumy(r) = —rai By —ragBy™ — rajasBi By ' — rajan TG,
+ o267 + 128070 4 ranan LAY 4 ragan B0 TR 6Y

—rad BT = raj —Hhaﬁ”pzw“—waalp“@#%2
+ mz%ﬁ"_‘:’ + mz%ﬁ"_s + ralagﬁl+p Zgo—1 4 mzlagﬁ éﬂ)_z
—2ra2pitett — 2pa2pltett — 27’04104251 ot 2rayan OB

+ 2ra2pitet 4 27"0426”0‘ L 2rananBL B9 + 2raran B0 B
+ 27’0(151 -3 + 27"0[262
Let r=a+p—Il—landy=Il+p—a—1,z=a+l+1,t=a+1—1, we have z > v,
r>—y+2 x>t z>t Using By = 3", we have:
Qa(r) = Qramn(r) = 2r ((an —a?)B; +af) B77° + 27 ((ag — a3) 35 + a3) 43 7°
—2raifB; — 2rasBy + 27"04%5'2_2 + 2ra3 Bt
_7"041042(61 +51 61 x+2+5 Y= 2+ﬂ y+2
—W—@—w@—w@—wf”—wl>
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but we have the three following equalities:

SO

10 = 1 —Oé% =

—1
r2—4

(1 —af)fi+af =0

(g —a3)B5+0a5=0

Qa(r) = Quum(r) = —2raifi — 2ra3f* + 2raifi— + 2razf; "
r T —x T— —x —y— —
+m(ﬁ1+ﬂ1 — BT = BT BT B

—BY — BrY + 287 + 28] — 2671 — 2B17%)

and we have

lim Qa(r) — Quiup (r) = {

r——400

and G is not cospectral with L(4, k).

+ooifz+1<z—1
—0ifz+1>2-1

U

Proposition 17. Let G € Gy with p > 8, d(u,v) > 1, d(w,z) = d(w,y) =1, d(v, z) > 1,
d(u,w) > 1, then G is not cospectral with a L(4, k).

e For cases 1 and 4 we have |P(G)| =n, |P3(G)| =n+3, |PyG)|=n+4, |S111(G
3, |S112(G)| =17, |Ps(G)] =n+6, |L(4,1)(G)] =0, |L(4,2)(G)| = 0 so (proposition
S A8 = T0n + 588 + 16|Cs(G)| and G is not cospectral with L(4, k) (proposition 3).

Proof. We distinguish the following cases:

e case 1: d(u,v) > 2 and d(u,w) > 2 and d(z,v) > 2

e case 2: d(u,v) > 2 and d(u,w) > 2 and d(z,v

e case 4: d(u,v) > 2 and d(u,w) =2 and d(z,v

e case H: d(u,v) =2

(u,v)
(u,v)
o case 3: d(u,v) > 2 and d(u,w) = 2 and d(z, v
(u,v)
(u,v)

D

e For cases 2, 3 and 5, let us compute Q¢(2). Let a = d(u,v), b = p —a, a = d(u,w),
[ =d(v,z).

cospectral with L(4, k) only if Q¢(2) + 4n — 16 = 0 that is a =1(2p —ab— 1) + 2.

QG(X) = QL(pJ)(X)QSLLaﬂ(X) - Qsa—l,b—l,l (X)QSLLafz (X)
= (Pcp (X)QPL (X> - QPpA(X)QPLq (X>)QSI,1,Q71 (X>

_Qsa—l,b—l,l (X)Qsm,afz (X>

Using property 2 we have Qg(2) + 4n — 16 = —8Ip + 4abl + 4o + 41 — 8 and G is
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For case 3 we have @« = 2 s0 2p —ab—1 = 0 and a is odd. If a = 3 then
b =>5and p = 8 We have |P(G)| = n, |P3(G)] = n+ 3, |PiG)|] = n + 4,
1P5(G)| =n+7, [S111(G)] =3, [S112(G)| = 7, |Cs(G)| = 1. So 35} = 70n + 612
and in this case G is not cospectral with L(4,k) (proposition 3). If a > 5 then
2p —ab—1<4b—5b—1 < 0 and this finishes the case 3.

For case 2, |P2(G)| =n, |P3(G)| = TL+3, |P4(G)| = TL+4, |817171(G)| = 3, |517172(G)| =
7, |Ps(GQ)] = n+5, |L(4,1)(G)] = 0, |L(4,2)(G)| = 0 so (proposition 1) S\ =
70n + 580 + 16|Cs(G)| and G is cospectral with L(4, k) only if p = 8. We have [ = 2
and o = [(2p — ab— 1) + 2 so the graphs that can be cospectral with L(4, k) are the
ones with a = 3,0 =5 so a = 2, impossible, or a = 4,b = 4 so a = 0, impossible.

For case 5, G is cospectral with L(4,k) only if & = 3l 4 2, but this is impossible
according to lemma 1.

O

3.3.3 Unicyclic graphs with exactly three vertices of maximum degree 3, all

of them belonging to the cycle

Let G3 be the set of the graphs G obtained in the following way:

Coalesce a lollipop L(p, k), p > 6, k > 1 with a vertex of degree 2 of the cycle as
distinguished vertex and a path with a pendant vertex as distinguished vertex.

Coalesce the previous graph with a vertex of the cycle of degree 2 as distinguished
vertex and a path with a pendant vertex as distinguished vertex.

We denote by uy, us, ug the three vertices of degree 3 and by 1, zs, x5 the pendant
vertices such that d(z;,u;) = min; d(z;, u;). An example is given in figure 10.

The aim of this section is to show the following theorem whose proof is summed up in
table 3:

Theorem 21. A lollipop L(4,k) cannot be cospectral with a graph G € Gs.

As in the previous sections we assume that the cycle of G is even.

Figure 10: A graph G € G
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PLU# (8002) QT SOIMOLVNIIINOD A0 TYNUNOL DINOULOHATH HHL

°té

Graph Tool P?o'po—
sition
p=06 SN0 18 i)
Ji,j, i # 7 d(z,u;) > 1 and d(zj,u;) > 1 SoA8 18 4)
Iy s, t, r#£s,sAt,r#t: duus) =1 and d(ug,uy) =1 S8 18 i)
d(up, ug) > 1 SN0 19
d(zg,ug) =1 Ay, ug) = 1 d(u,, us) =2 or d(us, uy) = 2 STAE 20
p>8 A d(uy, us) > 2 and d(us, u;) > 2 STAY 20
and d(up,ug) =1 SN0 18 i)
two by two Vi, lo, d(ugy,u,) > 2 STAE 22 i)
distinct dr, s, t
dr, s, t d(u,,us) =2 and ,
two by two d(u,,ug) > 2 and 2N 22 i)
distinct: d(ug, ug) > 2
d(z,u;) = d(zg,up) > 1 d(uj,uj) =2 | p=38 STAE 22 1)
d(zj,uj) = dur,w) > 1 d(zy, ug) > 2 and
d(xg,ug) > 1 dujur) =2 |[p>10] SA° 23
d(ur,us) >1 d(ul, uk) =2 Q(;(2)
d(ug,ug) >1 and and 24
d(u;,u) =2 R(0)
Table 3: QPr&o)f of theorem 21 using a case disjunction over the possibilities for the values of d. R denotes the polynomial
R(X) = *%




Proposition 18. Let G € G3. If one of the following properties is true:
i) 3i, g, 0 #J o dlxg,w) > 1, d(zy,uy) > 1,
i) Ir,s,t, r E s, r#Et s E b duy,us) = d(us, ug) =1,
iii) iyt s d(xg,ug) > 1, d(uy,uy) =1,
iv) p =6,
then
> A > 20n + 96

and G cannot be cospectral with a lollipop L(4,k).

Proof. For cases i) to iii) we have |P(G)| = n, |P3(G)| = n+ 3, |S11.1(G)] =
3, |P4(G)| > n + 4 and we apply proposition 1.
For case iv) we have |P(G)| = n, |P5(G)| = n+ 3, [S111(G)| = 3, |Py(G)| > n +
2, |Cs(G)| =1 and we apply proposition 1.
0

Proposition 19. Let G € G3 such that p > 6, Vi,r,s, d(u;, x;) =1, d(u,,us) > 1. Then

> A =20n+ 90

and G cannot be cospectral with a lollipop L(4, k).

Proof. We have |P(G)| = n, |P3(G)| =n+ 3, |PiA(G)| =n+ 3, [S11.1(G)] = 3 and
no p-cycle for p < 6. We conclude with proposition 1.
O

The following three propositions compute > A? for some G € Gs, their proofs are
based on counting motifs M € Mg, |M(G)| > 0 which is done in a summary table 4. In
the following |Cs(G)| is denoted by cs.

Proposition 20. Let G € Gz such that p > 8, Vi, d(u;, x;) = 1, and 3r,s,t two by two
distinct © d(up,u) = 1, d(uy,us) > 1, d(us,ur) > 1. Then:

Z \E 70n + 588 + 16¢s if d(uy, us) = 2 or d(us, u) = 2
— " 7 T0n + 580 + 16¢g  otherwise

and G cannot be cospectral with a L(4,k).

Proof. Using table 4, we apply proposition 1 to compute Y, A\}. The only case for
which >~ A% = 70n+596 is when Vi, d(u;, z;) = 1, 3r, s,t two by two distinct : d(u,, us) =
1, d(uy,us) > 2, d(us,us) > 2 and ¢g = 1. This case is drawn in figure 11 and we check
that it is not cospectral with L(4,7) by comparing spectral radii (see tables 11 and 12 in
appendix).

0
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Figure 11:

Proposition 21. Let G € Gs such that p > 8, Fi,j,k : d(u,z;) = d(uj,x;) =
1, d(ug,xy) = 2. We distinguish the three following cases

e case 1: Ar,s,t, r £ s,r #t, s £ t: d(uy,us) = d(ug, uy) = 2.
e case 2: Ar;s,t, r #s,r £t s #t: dluy,us) =2 and d(u,,uy) > 2 and d(ug,uy) > 2.
o case 3: Vs, t, d(ug,uy) > 2.

Then:
70n + 588 4 16¢g  for the case 1

Z A=< 70n + 580 + 16¢g  for the case 2
i 70n + 572 for the case 3

and G cannot be cospectral with a lollipop L(4,k).

Proof. Using table 4, we apply proposition 1 to compute ) . A8, Under the hypothe-
ses of the proposition, the only cases for which > A% = 70n+596 is when cg = 1 in case 2.
These cases are drawn in figure 12 and we check that they are not cospectral with L(4, 8)
by comparing spectral radii (see tables 11 and 12 in appendix).

FogEe!

Figure 12:

U

Proposition 22. Let G € Gy such that p > 8, Ji,j,k : d(u;,z;) = d(uj,x;) =
1, d(ug,zg) > 2. We distinguish the three following cases

e case 1: Ir,s,;t, v # s,r #t,8#t: d(uy, us) = d(ug, uy) = 2.
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[ M [uws(M) | [ M(Ga) | [ M(Gh)| | | M(G.)| |

b 2 n n n
P 28 n+3 n+3 n—+3
P, 32 n+4 n+4 n+4
4 1 n 4+ 6 case 1 n 4+ 7 case 1
P 8 21322222 n + 5 case 2 n + 6 case 2
n + 4 case 3 n 4+ 5 case 3
Si1a 72 3 3 3
Si12 16 8 7 7
Cy 264 0 0 0
L(4,1)| 112 0 0 0
L(4,2) 16 0 0 0
cg case 1 cg case 1
Cy 16 C8 cg case 2 cg case 2
0 case 3 0 case 3
70n + 588 + 16¢g 70n + 596 + 16¢g
70 + 588 + 16¢s for the case 1 for the case 1
. for the case L1 70, 1 580 4 1605 | 70n + 588 + 1605
2N = for the case 2 for the case 2
70n + 580 + 16¢g
for the case 2 70n + 572 70n + 530
for the case 3 for the case 3

Table 4: Count of the motifs of some graphs G € G3. We denote by G, (resp. Gy, G.) a
graph described in proposition 20 (resp. 21, 22).
o case 2: dr;s,t, r £ s, r#t,sF#t: duy,us) =2 and d(u,, us) > 2 and d(ug, uy) > 2.

o case 3: Vs, t, d(us,u;) > 2.

Then:
70n + 596 4 16¢g  for the case 1

Z AP =< 70n+ 588+ 16¢y for the case 2
i 70n + 580 for the case 3

and G cannot be cospectral with a lollipop in the cases 2 and 3 and in the case 1 if cg = 1.
The two following propositions solve the case 1 of proposition 22 when cg = 0.

Proposition 23. Let G € G3 such that p > 10, 3,5,k : d(w;,z;) = d(uj,z;) = 1,
d(ug, o) > 2, d(u;, u;) = d(uj, u) = 2.
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Then:
Z \10 _ 252n + 3340 + 20c¢19 if d(ug, vx) =
| 2520 + 3350 + 20¢19 if d(ug, ) >

i

where c¢1gp = |C10(G)|. And G cannot be cospectral with L(4, k).

Proof. We have |P(G)| = n, |P3(G)| =n+3, |[P(G)| =n+4, |P(G)| =n+T7,
|P6(G)‘ =n+6if d(uk,xk) = 3, |P6(G)‘ =n+7if d(uk,xk) >3 |SL171(G)‘ = 3,
1S112(G)| = 7, |S122(G)| = 5, |S1.13(G)| = 11, and no others subgraphs M such that
wy(M) > 0. We then apply proposition 1. The only case for which > A1 = 252n + 3360
is for the graph of figure 13, and we check that it is not cospectral with L(4,11) by
comparing spectral radii (see tables 11 and 12 in appendix).

U

Figure 13:

Proposition 24. Let G € G3 such that p > 10, 3,5,k : d(w;,z;) = d(uj,z;) = 1,
d(ug, xg) > 2, d(u;, u,) = d(uj, ur) = 2. Then G cannot be cospectral with L(4,k).

Proof. Let G be a graph cospectral with L(4,k) and let ¢ = d(uy, zx) (we have
n=p-+q+2). Applying theorem 5 to the vertex wuy, we have:

Qc(X) = XQr,,(X)Qp,(X) —2Qs,,, 5(X)Qp,(X)
—Qr,,,(X)Qp, ,(X) —2X?Qp,(X)

Property 2 gives Q¢ (2) = —16(q + 1) and according to proposition 5 G is cospectral with
a lollipop L(4, k) only if —16(q + 1) = —4n + 16 ie p = 3¢ + 6 and ¢ is necessarily even.

Using Qs,, . (X) = X(Qp.,,(X) — Qp.(X)) we have that if ¢ is odd then 0 is an

eigenvalue of S ; . with multiplicity 2 and if R(X) = 9s, % c Y then R(0) = (=1)% (c+2).
The relation QTH( ) = XQs,,1, (X)) = XQg,,, +(X) 1mphes that 0 is an eigenvalue of
T, with multiplicity 2.

Let R(X) = Qg;(—(gx) Property 4 gives

—92pif ¢ = 04
R(0) = { _2p —]i 4 iqfq 5[2][4]
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If ¢ = 0[4] then according to proposition 6, G is cospectral with a lollipop L(4, k) only if
—2p = —n e p = q + 2 which contradicts p = 3¢ + 6.

If ¢ = 2[4] then according to proposition 6, G is cospectral with a lollipop L(4, k) only if
—2p+4 = —n te p = ¢+ 6 which contradicts p = 3¢ + 6.

U

3.4 Case IV: Graphs with ngy =1, n3=0n; =2, ng =0, c=0 and
no=n-—3

The graph 7, x, x, is the coalescence of a lollipop L(p, k;) with the vertex of degree 3 as
distinguished vertex and a path Py,;; with a pendant vertex as distinguished vertex (cf
figure 14 for an example). A connected graph with ny =1, ng =0 n; = 2, ng = 0 and
Nog =n—318 & Vpk ko

Figure 14: v623

Proposition 25. For a graph vp i, x, with p > 4 we have:

DN =S 20n+108+12¢5 if by > 1 kp =1

where cg = |Cs(G)|.
Proof. We have |P(G)| =n, |Ps(G)| =n+ 3, |S111(G)| = 4 and
o PG =n+2ifki=ky=1
o PG =n+4ifk >k =1
o PG| =n+6ifk >k >1

and we apply proposition 1.
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Proposition 26. A lollipop L(4,k) cannot be cospectral with a graph Y1 1.

Proof. The graphs L(4,k) and 7,1, have n = k+4 = p + 2 vertices. Let us show
that Qrr(2) # P,,.,(2). Using twice the theorem 6:

P, (X) = XQrpy(X)—XQp, ,(X)

= X(XQCP(X> - Qprl (X)) - XQprl (X)

And by property 2, P.

o1 (2) = —4p = —4n+8 which contradicts Q) (2) = —4n+16
(proposition 5).

L]
Theorem 22. A lollipop L(4,k) cannot be cospectral with vy g, k,, D > 4.

Proof. It is a straightforward consequence of propositions 3, 25 and 26.

4 Conclusion

In this paper we give a way to count closed walks, which is relevant to show that two
graphs cannot be cospectral and that provides a new approach to show that there are no
cospectral non-isomorphic lollipops. We then show that the lollipop graph is determined
by its spectrum. We first give a proof, based on computing the degree distribution, for
lollipops L(p, k) with p # 4. The most difficult case, as it was noted in [8, 3|, is for the
lollipops L(4, k); we solved this case following the same idea as the general case. Showing
connectivity of a graph cospectral with a L(4, k) and non-cospectrality of a given graph
with a L(4, k) are both quite long to establish and have required the use of a large variety
of tools.
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A Appendix

A.1 Counting covering closed walks

M ’LUG(M) wg(M) wlo(M)
Py 2 2 2
Ps 12 28 60
Py 6 32 120
P 0 8 60
P 0 0 10
Cy 48 264 1320
Cs 12
Cs 0 16
Cho 0 0 20
Sii 12 72 300
Si1s 0 16 140
Siaz | O 0 20
Siaa | O 0 20
L(4,1)] 12 112 840
L(4,2)| 0 16 180
L(4,3)| 0 0 20

Table 5: Number of covering closed walks on a given graph.

A.2 Proof of theorem 17

First, we notice the following relations which will be useful to prove lemmas 3 and 6 and
whose proof is straightfoward by induction on p.

Vp >0, Qp,(a) > BQp, (@) (2)
where a = v/2+2v/2 and 3 = @a. Obviously equation 2 is true if we replace § by
B <p.

Lemma 2. >\1(P(p1,p2,p3)) > 2.

Proof. On one hand A\(P(0,1,1)) > 2 and A\ (P(1,1,1)) > 2. On the other hand,
if there exists p; > 2 (we assume ps > 2) then the lollipop L(p; + p2 +2,1) is an induced
subgraph of P(pi, ps,p3). Since \i(L(p; + ps + 2,1)) > 2 (theorem 11) the interlacing
theorem gives the result.

O
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Applying theorem 5 to a vertex of degree 3 of P(pi,ps,ps) we can get the following
expression of the characteristic polynomial of P(py, pa, p3), p; > 0 which will be useful for
the next results.

QP(PLP%PS)(X) = XQSm,pz,pg (X) o Q5p1,1,p2,p3 (X> - Qsmvpzflypg (X)

3
~ Q8 mmes (X) = 2Qp, (X) = 2Qp,, (X) — 2Qp, (X) (3)

where
@5, (X) = XQp, (X)Qp(X)Qr.(X) — Qp,_, (X)Qp,(X)Qp.(X)
—Qp,(X)Qp, ,(X)Qp.(X) = Qp,(X)Qp,(X)Qp._,(X)
Lemma 3. If p; <3, po <3 thenVp € N: M\ (P(p1,p2,p)) > V2 +2V2.

Proof. According to theorem 7 it is sufficient to prove the result for p; = 3, p, = 3.

Let o = v/2+2v/2. We shall show that Qp@3,) () < 0. Using equations (3) and (4)
and Qprz(X> = XQPp—l(X) - QPP(X); Qp,(X) = X? -1, Qp,(X) = X3 — 2X and
Qp,(X)=X*—3X%2+1, we get:

Qpiasp(X) = Qp(X)(X® - 9X° +24X" - 20X7?)
+Qp, (X)(— X7+ 8X° —16X° + 8X) — 4(X® — 2X)

Qresp(@) = (16 —16v2)Qp,(a) + a(16 — 8v2)Qp,_, (o) — 8V2a

- (—16 n 16\/5) (—Qpp(a) + %Qppl(a)) — 8v2a < 0 by (2)

As a result \(P(3,3,p)) > a.

Lemma 4. If p; <2, py <4 thenVp € N: A (P(p1,p2,p)) > 22> V2422

Proof. Mutatis mutandis the proof is the same as the one of lemma 3.

Lemma 5. For py,p3 > 0, p1 € {0,1} we have A\i(P(p1,p2,p3)) > V2 + 2v/2.

Proof. Let a = \/2+2v2. According to theorem 7 it is sufficient to prove the
result for P(1,p,p) where p = max(py, p3). Applying theorem 5 to the vertex at distance
one of the two vertices of degree 3 we have:

QP(L;DJJ) (X) = XQCQerZ (X) - 2Qp2p+1 (X) - 4QPp (X)
= X(XQP2p+1 (X) - 2QP2p (X) - 2) - 2QP2p+1(X) - 4Qpp (X)
= (X?=2)Qp,,,(X) = 2XQp, (X) —4Qp,(X) — 2X
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But (theorem 5 applied to a vertex at distance p of a pendant vertex in the graphs
Py,iq and Py ):
Qpyy, (X) = X(Q?DP(X)) —2Qp,(X)Qp,_,(X)
and
Qp, (X) = XQp,(X)Qp,_,(X) = QF _(X) — Qp,(X)Qp,_,(X).
So

Qrapp(X) = (X*=2)(XQF, (X) —2Qp,(X)Qp, (X))
—2X(XQp,(X)Qp, . (X) = @}, ,(X) = Qp,(X)Qp, ,(X))
—4Qp, (X) — 2X
= Qp,(X)((X° = 4X)Qp,(X) + (4 — 2X7)Qp, , (X) — 4)
+2XQF (X) —2X

Using Qp, (o) > BQp,_,(a) (equation (2)), we get

Qrapp(a) < Qpp(a>((a3_4a)Qpp(a)+(4_2a2+2§>Qpp1(a> 1)~ 2a.

We then notice that - = 3 and by equation (2) we have Qpq p)(a) < 0.

—a3+4a

O

Lemma 6. Given P(2,ps,ps) with ps > 3, denote by u and v the two vertices of degree
3. Let y be a vertex at distance 2 from u and at distance greater than or equal to 2 from
v, we define P(2,py,p3) as the graph obtained by adding to P(2,ps, p3) a pendant vertex

z toy. We have A\ (P(2,p2,p3)) > V2 + 2V/2.

Proof. Let a = V24 2v2. By theorem 7 it is sufficient to prove the result for
pa = p3 = p = max{ps,p3}. The aim of the proof is to show that Qﬁ(lpm)(o‘) < 0. The
following equations will be useful:

Qs,,,(0) = (0 = 1)Qp,,,, (@) — aQr,()Qp,(a)
QP2p+1(a) = OZQ%,,(O‘) - QQPP(Q)QPp,l(Q)
Qp,, (@) = QF,(a) — @}, (a)
Qpy, (@) = aQp,, (@) = Qpy,p (@) = —aQ, () +2Qp,()Qp, ()
and we deduce
Qs.,.,(@) = (0" = 20)Q%, (@) = 2(a* = 1)Qi () Qs , (@)

Q821 (@) = (@2 =1)Q} (@) = (® = 1)@}, _, (@) — aQp,(a)Qp, , (@)
Qsapirp (@) = (07 = @)QF (a) + (=30® +2)Qp, () Qp, (@) + aQF, , (a)
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Theorem 5 gives

Qp(lpm)(a) = aQpepp(a) — Qu(a)
where H = f’(2,p,p)\{x, y} Equation 3 gives

Qrepp (@) =aQs,, () = Qs,,, (@) —2Qs, , (@) — 4Qp,(a) — 2Qp,(a)
but Qs, ,, (@) = 2(Qs,, (@) + Qs,,, () 50

aQP(27P7P)(O‘) = (a2 - ]')QSZ,p,p (Oz) - 2aQS2,p,p71(a) - QP2p+1 (O./)
—4aQp, (@) — 2aQp,(a)
= (a” =50’ +30)Q% () + (20° — 20)Q% ()
+(—2a" +60°)Qp, (2)Qp, . (@) — 4aQp,(a) — 2aQp,(a)

Theorem 5 gives
QH(O‘) = a2QS2,p,p72 (O./) - aQSI,p,p72 (O./) - aQSZ,pfl,p72 (Oé) - QSZ,p,p72 (O./) - 2aQPp72 (Oé)

but QSQpp 2( ) = aQsz,p,pq (Oé) _Qsz,p,p (Oé), aQSI,p,p72 (O./) = QSQ,p,p*Q (a)_‘_QSO,p,pr (Oé) and
QSZp 1,p— 2( ) ( 2 1>Q52,p,p71 (Oé) - aQS2,p71,p+l (a) S0

QH(O‘) = _aQsz,p,pﬂ (Oé) - (&2 - 2)Q5'2,p,p (O_/) + a2QS2,p71,p+1 (Oé)
_QPprl (Oé) - 2OéQPp72 (Oé)
= (20 = 30)Q}, (@) + (20)Q3,_, (@)
+(—a* = 30” +2)Qp,()Qp, , (@) — 20Qp, ,(a)

So we have:

Qpappy(@) = (a®=70°+60)Q%, () —20QF,  (a)
+(—Oé4 —+ 90&2 — Q)Qpp (Oé)Qprl (Oé)
+2aQp, ,(a) —4aQp, (@) — 2aQp, (@)

Equation (2) gives 2aQp, ,(a) — 4aQp,(a) < 0.

Lets us show that Q% (@) +yQ% (@) + 2Qp,(@)Qp, ,(a) < 0 with z = a® — 7a® + 6a,
y = —2a, z = —a’ +9a® — 2. Note that ﬁ = —0, where 3 is defined in equation (2).

2Qp, (@) +yQp, ,(a) + 2Qp, (0)Qp, () =
Qr, (@) (2Qp,(a) = B2Qp,, (@) + Qp,_, (@) (2 + B)Qp,(a) + yQp,_ 1(a))
Qr,(0)z (Qp, (@) = BQp,, (@) + @, ()(z + f2) (Qp, (@) — fQp,, (@) <0

(2 +,B:E)(Qpp(0l) /BQP (a)) _ z+ﬁ:(3
(@ (@)—5Qr, (@)

because < [ and we use equation (2).
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Lemma 7. Given P(2,ps,p3) with ps > 3, denote by u and v the two vertices of degree
3. Let y be a vertex at distance 1 from u and at distance greater than or equal to 1 from
v, we denote by P(2,ps, ps) the graph obtained by adding to P(2,ps,p3) a pendant vertex

x toy. We have Al(p(2,p2,p3)) > /24 2V2.

Proof. A direct consequence of theorem 7 and lemma 6.
O

Theorem 17. For py,ps,p3 > 0, P(p1,p2,p3) cannot be an induced subgraph of a graph
cospectral with a L(4,k).

Proof. Without loss of generality we assume p; < py < p3. In order to lead a proof
by contradiction, let P(pq, p2, p3) be an induced subgraph of G cospectral with a L(4, k).
As G is bipartite, P(p1, p2, p3) doesn’t have odd cycles and the p;’s are all odd or all even.
Using equation (3) and property 2 we obtain:

QP(p1 pops)(2) = P1Dap3 — P1D2 — P1P3 — PaP3 — 3p1 — 3p2 — 3p3 — 5

i) First assume that py, po, po are odd.

By lemma 5 we have p; > 3 and by lemma 3 we have p, > 5.
o If P1 = 3 and P2 = 5 then QP(p17p27p3)(2) = 4p3 —44 > 0 if P3 > 11
o If p1 =3 and py > 7 then Qpp, pops)(2) > 2p3 — 14 > 0 (because pg > po > 7)

e If 5 S b1 S D2 S P3 then QP(pl,pg,pg)(2) 2 P3 — ) 2 0.

QPp1psps)(2) > 0 implies that P(py,ps,p3) has two eigenvalues greater than or equal
to 2 (we already know by lemma 2 that P(py, p2, p3) has at least one eigenvalue strictly
greater than 2) and since a lollipop has only one eigenvalue greater than 2 (theorem
11), the interlacing theorem provides a contradiction except when p; = 3, po = 5 and
ps € {5,7,9}.

According to tables 7 and 11, P(3,5, p3) cannot be a connected component of a graph
cospectral with L(4, k) because A\;(P(3,5,ps)) < 2.195 while A\;(L(4,k)) > A (L(4,5)) >
2.195 when k£ > 5. So there is a new vertex x adjacent to one vertex y of P(3,5,ps)
(and only one because otherwise there exists r, s € N such that P(1,r,s) is an induced
subgraph of G which is impossible by lemma 5). Let H be the subgraph induced by
P(3,5,p3) and x, denote by u and v the two vertices of degree 3 in P(3,5, p3).

1. If y = w or y = v then the graph 7" drawn on figure 15 is an induced subgraph

of H and A\ (T) > 2.20 > v/2+2v2 > A\ (L(p,k)) and H cannot be an induced
subgraph of G.

2. If min{d(y,u),d(y,v)} > 5 the disjoint union of a cycle and S; 33 is an induced
subgraph of H with twice the eigenvalue 2, so H cannot be an induced subgraph of
G (by the interlacing theorem and theorem 11).
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%

Figure 15: Tree T whose spectral radius is greater than 2.20

3. The cases where 1 < min{d(y,u),d(y,v)} < 4 are summed up in table 9. For
all these cases H cannot be an induced subgraph of G because either H has two

eigenvalues greater than 2 or H has a spectral radius greater than /2 + 2v/2.
As a result P(p1, pa, p3) with p;’s odd cannot be an induced subgraph of G.

ii) We now assume that py, ps, p3 are even.

By lemma 5 we have p; > 2.

e If p; = 2 and py < 4 then by lemma 4 P(py, ps, p3) cannot be an induced subgraph
of G.

o If py =2 and py = 6 then Qpp, popy)(2) =p3 — 41 > 0 if p3 > 42

)(2)
o If py =2 and py = 8 then Qppy, pops)(2) = 3ps — 51 > 0 if p3 > 18

o If py =2 and py = 10 then Qp(p, p,p)(2) = dp3 — 61 > 0 if p3 > 14
o If py =2 and py > 12 then Qp(p, pyps)(2) > 2ps — 11 > 0 (because ps > 12)

o If py =4 and py = 4 then Qpp, popy)(2) = 5ps — 45 > 0 if p3 > 10
o If p1 =4 and py > 6 then Qpg, pops)(2) > 4ps — 17 > 0 (because ps > 6)

o If 6 < p; < pa < p3 then Qpep, pyps)(2) > 9ps —5 > 0.

As in the proof of the odd case, if Qpp, po.ps)(2) > 0 then P(p1,ps, ps) has two eigen-
values greater than or equal to 2 and cannot be an induced subgraph of G. We are now
going to study the remaining cases for p; = 2 and p; = 4.

First case p; = 2:

The only unsolved cases we are going to consider here are for ps € {6,8,10} with the
corresponding constraints on p3. As it was detailed in the proof of the odd case, none of
these graphs is a connected component of a graph cospectral with L(4, k) and so there is a
new vertex x adjacent to one and only one vertex y of P(2,ps,p3). Let H be the subgraph
induced by P(2,ps,p3) and x. With the same notations and arguments as for the odd
case, H cannot be an induced subgraph of G when min{d(y,u),d(y,v)} > 5 or y = u or

y = v. Moreover if min{d(y, v),d(y,v)} < 2 then by lemmas 7 and 6, \;(H) > V2 + 2/2
so H cannot be an induced subgraph of a lollipop. We are now going to examine the two
last tricky cases: min{d(y,u), d(y,v)} = 3 and min{d(y,u), d(y,v)} = 4.

THE ELECTRONIC JOURNAL OF COMBINATORICS 15 (2008), #R74 37



o If min{d(y,u), d(y,v)} = 3, we can assume that d(y,v) = 3. Let {b,c} = {p2,ps}
such that y is a vertex belonging to a path of length ¢+ 1 of P(2,b, ¢) between u and
v. Then applying theorem 6 to x we get Qu(X) = XQp2p,0)(X) — Qr@pe)\{y} (X)
and applying theorem 5 to v we have:

QP(Q,b,C)\{y} (X) = XQPz (X)Qslb,cfii (X) - QPz (X)Qsl,b,cfii (X)
_sz (X)Qszb—l,c—'s (X) - QPI (X)Qsz,b,cfs (X>
—2Qp,(X)Qp._,(X)

Using equation (3) and property 2 which gives the value in 2 of the characteristic
polynomials of paths and T-shape trees we obtain Qg (2) = bc — 5b + 4c — 56.

—Ifv<e

x If b = 6 (so ¢ > 6) then Qu(2) = 10c — 86 so if ¢ > 10, H has two
eigenvalues greater than 2 and cannot be and induced subgraph of G.

Otherwise for ¢ = 8 we check that \;(H) ~ 2.2050 > v/2 + 2v/2 and so H
cannot be an induced subgraph of G for ¢ < 8.

« If ¢ >b> 8 then Qy(2) > 7c—56 > 0 and H has two eigenvalues greater
than 2 and cannot be an induced subgraph of G.
—Ifb>c¢

« If ¢ = 6 then Qy(2) = b— 32 so0 if b > 32 then H has two eigenvalues
greater than 2 and cannot be an induced subgraph of G. Otherwise we

check that for b = 30 we have \{(H) ~ 2.2071 > /2422 and so H
cannot be an induced subgraph of G for b < 30.

x« If 8 < ¢ <bthen Qy(2) > 4c— 32> 0 and H has two eigenvalues greater
than 2 and cannot be an induced subgraph of G.

o If min{d(y,u),d(y,v)} = 4, note that ¢ > 8 (otherwise y is at distance less than 4
from w or v). In the same way as previously we compute Qg (2): Qp(2) = b+9c¢—86.

—Ifbv<e

« If b =6 then Qg (2) = 9¢ —80. So if ¢ > 10 then H has two eigenvalues
greater than 2 and cannot be an induced subgraph of G. Otherwise we

check that for ¢ = 8 we have A\ (H) ~ 2.2014 > /2 + 2/2.

« If b = 8 then Qg (2) = 9¢ — 78. So if ¢ > 10 then H has two eigenvalues
greater than 2 and cannot be an induced subgraph of G. The casec=0=8
is considered further in the proof.

« If 10 < b < ¢ then Qy(2) > 0 and H has two eigenvalues greater than 2
and cannot be an induced subgraph of G.

—Ifb>c¢
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« If ¢ = 8 then Qg (2) = b — 14. So if b > 14 then H has two eigenvalues
greater than 2 and cannot be an induced subgraph of G. Otherwise we
check for ¢ = 8 and 8 < b < 12 that A\(H) < 2.196 so H cannot be a
connected component of G because for k > 6 A\ (L(4,k)) > A\i(L(4,6)) >
2.196. And so there is a new vertex x’ adjacent to a vertex y’ of H. Let
H' be the graph induced by H and z’.

- If ¢’ = y then 2’ is not adjacent to another vertex of P(2, a,b) otherwise
there exists r, s € N such that P(1,r,s) is an induced subgraph of G
which is impossible by lemma 5 and z’ is not adjacent to x otherwise
G contains a triangle (impossible because G is bipartite). Hence 2z’ is
a pendant in H'. The graph H' then contains C, U Sy (for ¢ > 3) as
an induced subgraph and so has two eigenvalues greater than 2 which
is impossible.

- Assume that ' = z. If 2/ is adjacent to another vertex z of H dis-
tinct from y’ and y, then by the previous cases we necessarily have
min{d(z,u),d(z,v)} = 4. Either the graph S; 33U Ss22 or Cy U, is
an induced subgraph of H" and has two eigenvalues greater than 2 and
cannot be an induced subgraph of G.

- If ' # y and ¢y # x then by the previous cases we necessarily have
min{d(y’,u),d(y’,v)} = 4.
If 2’ is adjacent to another vertex z in H distinct from 3" and y then
by the previous cases we necessarily have
min{d(z,u),d(z,v)} = 4 and either S5 U Si 25 or C, U C is an an
induced subgraph of H' and has two eigenvalues greater than 2 and
cannot be an induced subgraph of G.
If 2" is not adjacent to another vertex of H then the graph T, U C,
or the graph S; 33U S35 is an induced subgraph of H’ and has two
eigenvalues greater than 2 and cannot be an induced subgraph of G.
« If 10 < b < ¢ then Qy(2) > 0 and H has two eigenvalues greater than 2
and cannot be an induced subgraph of G.

Second case: p; = 4.
We have p, =4 and p; € {4,6,8}.

According to table 8, A\;(P(4,4,4)) > \/2+2v/2 and P(4,4,4) cannot be an in-
duced subgraph of a graph cospectral with L(4, k) (table 11). When p3 € {6, 8},
P(4,4,p3) cannot be a connected component of a graph cospectral with L(4, k) be-
cause A\ (P(4,4, p3)) < 2.1854 while A, (L(4, k)) > M(L(4,3)) > 2.1888 when k > 3.
So there is a new vertex z adjacent to one vertex y of P(4,4,ps) (and only one
because otherwise there exists r;s € N such that P(1,7,s) is an induced subgraph
of G which is impossible by lemma 5). Let H be the subgraph induced by P (4,4, p3)
and x, these graphs H are summed up in table 10 which shows that that H cannot
be an induced subgraph of G because either H has two eigenvalues greater than 2

or H has a spectral radius greater than /2 + 2v/2. O

THE ELECTRONIC JOURNAL OF COMBINATORICS 15 (2008), #R74 39



A.3 Tables of some graphs eigenvalues

P2 6 8 10
D3

T vertices : 21087 | 2.1921 | 2.1891
1.9122 | 1.9426 | 1.19604
o o o o 91021 | 2.1853 | 2.1822
P, vertices 8 1.9426 | 1.9666 | 1.19805
" 91891 | 2.1822 | 2.1790
- 1.9604 | 1.9805 | 1.9922
0 21878 | 2.1808 | 2.1776
1.9716 | 1.9801 | 1.9994
iy 91872 | 2.1802 | 2.1770
1.9790 | 1.9947 | 2.0041
Iy 21870 | 2.1800 | 2.1767
1.9842 | 1.9986 | 2.0072

2.1868

40 1.9999

Table 6: The two largest eigenvalues of P(2,py, p3) with a 4 decimal place accuracy.

o 7
P3

3 vertices 5 2.1940 | 2.1847
1.9319 | 1.9696
e 7 2.1847 | 2.1753
’ 1.9696 | 2.0000
9 2.1804 | 2.1709
p, vertices 1.9890 2.0153
1 2.1785 | 2.1689
2.0000 | 2.0237

Table 7: The two largest eigenvalues of P(3,py, p3) with a 4 decimal place accuracy.
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4 vertices

p, vertices

p, vertices

Table 8: The two largest eigenvalues of P (4, po, p3) with a 4 decimal place accuracy.

Graph Eigenvalues

2.2346
2.0117

2.2288
2.0287

2.2249
2.0433

2.2247
1.9890

2.2109
2.0043

2.2026
2.0352

Ll

b2 4 6
D3
4 2.1987 2.1853
1.9122 1.9666
6 2.1853 2.1723
1.9666 2.0102
3 2.1790 2.1660
1.9922 2.0300
10 2.1762 2.1631
2.0058 2.0401

Graph

GOUELY

Eigenvalues

2.2062
1.9890

2.1925
2.0253

2.1999
1.9909

2.1882
2.0126

2.1976
1.9696

2.1870
2.0000

Table 9: The two largest eigenvalues of some graphs H with a 4 decimal place accuracy.
Note that the spectral radius increases when the number of vertices between two vertices

of degree 3 decreases (theorem 7).
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Graph Eigenvalues

Graph Eigenvalues

2.2292
2.0262

2.2037

1.9737
@ 2.2236
2.0460

2.1925

@ S o101
2.2143
1.9977

2.1889

@ 2.0000
2.2020
2.0341

Table 10: The two largest eigenvalues of some graphs H with a 4 decimal place accuracy.
Note that the spectral radius increases when the number of vertices between two vertices
of degre 3 decreases (theorem 7).

SERRTY

k vertices

1 2 3 4 5 6 7
M(L(4,k)) | 2.1358 | 2.1753 | 2.1889 | 2.1940 | 2.1960 | 2.1968 | 2.1971

8 9 10 11 12 13 14
M(L(4,k)) | 2.1973 | 2.1973 | 2.1974 | 2.1974 | 2.1974 | 2.1974 | 2.1974

Table 11: Spectral radius of L(4, k) with a 4 decimal place accuracy.
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Graph Spectral radius Graph Spectral radius

C 2.1856 /@
2.2025

( j 2.2005 J@»
QL 2.2047

2.1927 i)
2.2075

Q 2.1922 j
C 2.1894 2.1987

Table 12: Spectral radius of some unicyclic graphs with a 4 decimal place accuracy.
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