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Abstract

A combinatorial proof in terms of Schröder paths and other weighted plane
paths is given for a determinant representation of Laurent biorthogonal polynomials
(LBPs) and that of coefficients of their three-term recurrence equation. In this
process, it is clarified that Toeplitz determinants of the moments of LBPs and their
minors can be evaluated by enumerating certain kinds of configurations of Schröder
paths in a plane.

1 Introduction

Laurent biorthogonal polynomials (LBPs) appeared in problems related to Thron type
continued fractions (T-fractions), two-point Padé approximants and moment problems
(see, e.g., [6]), and are studied by many authors (e.g. [6, 4, 5, 11, 10]). We recall
fundamental properties of LBPs.

Notation remark. In this paper the symbols i, j, k,K,m, n and ` are used for nonnega-
tive integers and for integers, respectively. The symbol Xa,b,...,z with multiple subscripts,
if specifically undefined, denotes “Xa, Xb, . . . and Xz.”

Let K be a field. We call a sequence (Pn(z))∞n=0 a sequence of Laurent biorthogonal
polynomials with respect to a linear functional L : K[z−1, z] → K, if, for each n ≥ 0,
Pn(z) ∈ K[z] is a polynomial of degree n which possesses the orthogonality property

L
[
z−`Pn(z)

]
{

= 0, 0 ≤ ` ≤ n− 1,

6= 0, ` = n.

∗JSPS Research Fellow.
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In this paper we normalize the 0-th polynomial as P0(z) = 1 for simplicity. The LBPs
Pn(z) satisfy a three-term recurrence equation of the form

Pn+1(z) = (αnz − γn)Pn(z) − βnzPn−1(z), n ≥ 1 (1)

with P0(z) = 1 and P1(z) = α0z − γ0, where the coefficients αn, βn and γn are some
nonzero constants. The linear functional L is characterized by its moments

µ` = L
[
z`
]
, ` ∈ Z.

Then we have the following theorem related to Toeplitz determinants of the moments.

Theorem 1. The sequence (µ`)
∞
`=−∞ of the moments of L is 1-regular, namely, it satisfies

the condition that the Toeplitz determinants

∆(0)
n =

∣∣∣∣∣∣∣∣∣

µ0 µ1 · · · µn−1

µ−1 µ0 · · · µn−2
...

...
...

µ−n+1 µ−n+2 · · · µ0

∣∣∣∣∣∣∣∣∣

, ∆(1)
n =

∣∣∣∣∣∣∣∣∣

µ1 µ2 · · · µn

µ0 µ1 · · · µn−1
...

...
...

µ−n+2 µ−n+3 · · · µ1

∣∣∣∣∣∣∣∣∣

are nonzero for every n ≥ 0, where ∆
(0)
0 = ∆

(1)
0 = 1. Moreover, the coefficients αn, βn

and γn of the recurrence equation (1) satisfy the equalities with the determinants

αn

γn

=
∆

(0)
n+1∆

(1)
n

∆
(0)
n ∆

(1)
n+1

,
βn

αn−1αn

= −
∆

(0)
n−1∆

(1)
n+1

∆
(0)
n ∆

(1)
n

,
βn

γn−1γn

= −
∆

(0)
n+1∆

(1)
n−1

∆
(0)
n ∆

(1)
n

, (2a)

and the LBPs Pn(z) have the determinant representation

Pn(z) =

(
n−1∏

k=0

αk

)
(
∆(0)

n

)−1

∣∣∣∣∣∣∣∣∣∣∣

µ0 µ1 · · · µn

µ−1 µ0 · · · µn−1
...

...
...

µ−n+1 µ−n+2 · · · µ1

1 z · · · zn

∣∣∣∣∣∣∣∣∣∣∣

. (2b)

Our aim in this paper is to present a combinatorial interpretation of LBPs and their
properties. Especially we present to Theorem 1 a combinatorial proof in terms of Schröder
paths and other weighted plane paths. This paper is organized as follows. In Section 2, we
introduce and define several combinatorial concepts used throughout the paper: Schröder
paths and Favard-LBP paths which are weighted. Particularly, following [7], we interpret
the moments and the LBPs in terms of total weight of Schröder paths and that of Favard-
LBP paths, respectively. In Section 3, we evaluate the Toeplitz determinants and their
minors by enumerating “non-intersecting” and “dense” configurations of Schröder paths
(to be defined in there). In Section 4, we show a bijection between non-intersecting and
dense configurations and Favard-LBP paths and clarify a correspondence between them.
Finally, in Section 5, we give an immediate proof of Theorem 1.
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This combinatorial approach to orthogonal functions is due to Viennot [9]. He gave to
general (ordinary) orthogonal polynomials, following Flajolet’s interpretation [2] of Jacobi
type continued fractions (J-fractions), a combinatorial interpretation in terms of Motzkin
and Favard paths. Specifically he proved a claim for orthogonal polynomials similar to
Theorem 1, for which he evaluated Hankel determinants of moments and their minors with
non-intersecting configurations of Motzkin paths, and show a one-to-one correspondence,
or a duality, between such a configuration and a Favard path.

2 Combinatorial preliminaries

In this paper we deal with paths on a simple directed graph, for which we use the fol-
lowing notation. The symbol [v0, . . . , v`], ` ≥ 0, denotes the path going from v0 to v` via
v1, . . . , v`−1, where vi are vertices. Particularly we call a path of the form [v0], consisting
of one vertex and no edges, empty.

Weight of a finite graph is a fundamental concept in our combinatorial discussion.
First we weight each of its vertices and edges by a map w to K. Then we do a finite graph
F by

w(F ) =
∏

q in F

w(q) (3)

where the product is over all the vertices and edges in F . For example, a path weighs as

w([v0, . . . , v`]) =

(
∏̀

i=0

w(vi)

)(
`−1∏

i=0

w((vi, vi+1))

)

where (vi, vi+1) denotes the edge going from vi to vi+1.

2.1 Schröder paths and moments

Commonly, as in [1], a Schröder path is defined as a lattice path from (0, 0) to (n, n),
n ≥ 0, consisting of the three kinds of edges (1, 0), (0, 1) and (1, 1) and not going above
the line {x = y}. Such paths are counted by the large Schröder numbers (A006318 in [8]).
In this paper, instead, we use the following definition for convenience.

Let G = G− ∪G+ be the union of the two simple directed graphs G− = (V −, E−) and
G+ = (V +, E+) consisting of the vertices

V − =

∞⋃

k=0

V −
k , V + =

∞⋃

k=0

V +
k ,

V −
k = {(2j + k, k); j ∈ Z}, V +

k = {(2j + k + 1, k); j ∈ Z}
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and the edges

E− =

∞⋃

k=0

U−
k ∪

∞⋃

k=1

D−
k ∪

∞⋃

k=0

H−
k , E+ =

∞⋃

k=0

U+
k ∪

∞⋃

k=1

D+
k ∪

∞⋃

k=0

H+
k ,

U−
k = {((j, k), (j − 1, k + 1)) ∈ V −

k × V −
k+1},

D−
k = {((j, k), (j − 1, k − 1)) ∈ V −

k × V −
k−1},

H−
k = {((j, k), (j − 2, k)) ∈ V −

k × V −
k },

U+
k = {((j, k), (j + 1, k + 1)) ∈ V +

k × V +
k+1},

D+
k = {((j, k), (j + 1, k − 1)) ∈ V +

k × V +
k−1},

H+
k = {((j, k), (j + 2, k)) ∈ V +

k × V +
k }.

Then a Schröder path is such a path on the graph G that both of its endpoints lie in
{y = 0} (namely ∈ V −

0 ∪ V +
0 ). See Figure 1 for example. As in the figure, in this paper,

we draw G with thin lines, in which we do G− and G+ with (black) solid lines and (red)
dotted ones, respectively. Additionally we draw a vertex and an edge in a Schröder path
with a small circle and a bold line segment, respectively, in which we draw those on G−

with a (black) filled circle and a solid line segment while we do those on G+ with a (red)
not filled one and a dotted one. Note that the graphs G− and G+ are disjoint and that a
path on G− goes from right to left while that on G+ does from left to right.

We call edges in U−
k ∪U+

k , in D−
k ∪D+

k and in H−
k ∪H+

k up-diagonal, down-diagonal and
horizontal, respectively. We assume that, when we focus the set {y = k} ⊂ R2, we may see
the vertices in V −

k ∪V +
k , the horizontal edges inH−

k ∪H+
k and no more, while, when we focus

{k < y < k + 1} ⊂ R2, we may see the up-diagonal edges in U−
k ∪U+

k , the down-diagonal
edges in D−

k+1∪D
+
k+1 and no more. (Thus, for example, when we focus {k ≤ y < k + 1} ⊂

R2, we may see the vertices in V −
k ∪V +

k , the edges in (U−
k ∪U+

k )∪(D−
k+1∪D

+
k+1)∪(H−

k ∪H+
k )

and no more.)
We order the vertices in V −

0 from left to right as

(2j, 0) < (2j ′, 0) on V −
0 ⇐⇒ j < j ′ on Z. (5)

We call a Schröder path on G− from (2j, 0) to (2j ′, 0) where j ≥ j ′ or that on G+ from
(2j + 1, 0) to (2j ′ − 1, 0) where j < j ′ a path froward (2j, 0) toward (2j ′, 0). We use the
symbol Ω−j+j′ for the set of all the Schröder paths froward (2j, 0) toward (2j ′, 0) where

1086420 1 3 5 7 9-1 11 12 13 14

ω
+

ω
−

Figure 1: Schröder paths ω− (the left one on G−) and ω+ (the right one on G+) on G.
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we identify two paths if they coincide by a translation in the horizontal (x-axis) direction.
For example, the paths in Figure 1 are classified as ω− ∈ Ω−3 and ω+ ∈ Ω5, and the set
Ω3 has the six paths in Figure 2.

For a Schröder path ω, by deleting its vertices and edges in {0 ≤ y < 1} and then by
translating the remaining by (−1,−1), we obtain a set of Schröder paths, for which we
use the symbol r(ω). For example, as in Figure 3, for the paths ω− and ω+ in Figure
1, r(ω−) and r(ω+) are sets of two and one paths, respectively. Moreover, for a set ξ of
Schröder paths, we set r(ξ) = ∪ω∈ξr(ω). Then we clearly have the following.

Lemma 2. Let ξ be a set of Schröder paths. Then the set r(ξ) has a path froward
(2j, 0) (resp. toward (2j, 0)) if and only if ξ has a path going through the square region
(2j + 1, 2j + 2)× (0, 1) with an up-diagonal edge (resp. going through (2j, 2j + 1)× (0, 1)
with a down-diagonal edge).

We weight a Schröder path by (3), where we do its vertices and edges, using the
coefficients αn, βn and γn of the recurrence equation (1), by

w(q) =





(γk)
−1, q ∈ V −

k ,

1, q ∈ U−
k ,

βk, q ∈ D−
k ,

αk, q ∈ H−
k ,





(αk)
−1, q ∈ V +

k ,

1, q ∈ U+
k ,

βk, q ∈ D+
k ,

γk, q ∈ H+
k .

(6)

For example, the paths in Figure 1 weigh as

w(ω−) =
α1(β1)

2

(γ0)
3(γ1)

3 , w(ω+) =
β1(β2)

2β3

(α0)
2(α1)

3(α2)
3α3

.

We can equivalently rewrite the way (3) with (6) to weight a Schröder path into the
edge-oriented way

w(ω) =






(γ0)
−1
∏

e in ω

w(e) if ω goes on G−,

(α0)
−1
∏

e in ω

w(e) if ω goes on G+

where the product is over all the edges in ω, with

w(e) =






1, e ∈ U−
k ,

βk(γk−1γk)
−1, e ∈ D−

k ,

αk(γk)
−1, e ∈ H−

k ,






1, e ∈ U+
k ,

βk(αk−1αk)
−1, e ∈ D+

k ,

γk(αk)
−1, e ∈ H+

k .

Thus, since [7], we can interpret the moments µ` in terms of Schröder paths.

Figure 2: The Schröder paths in Ω3.

the electronic journal of combinatorics 15 (2008), #R76 5



r(ω+)

10864 5 7 9 11 12

r(ω−)

420 1 3 5-1

Figure 3: The sets r(ω−) and r(ω+) of Schröder paths obtained from the paths in Figure
1.

Theorem 3. The moments µ` of the functional L satisfy the equality with total weight of
Schröder paths

µ`

µ0
= γ0

∑

ω∈Ω`

w(ω), ` ∈ Z. (7)

For example, a few of them are

µ−2

µ0
= γ0

[
β1β2

(γ0)
2(γ1)

2γ2

+
α1β1

(γ0)
2(γ1)

2 +
(β1)

2

(γ0)
3(γ1)

2 + 2
α0β1

(γ0)
3γ1

+
(α0)

2

(γ0)
3

]
,

µ−1

µ0
= γ0

[
β1

(γ0)
2γ1

+
α0

(γ0)
2

]
,

µ0

µ0
= γ0 ·

1

γ0
,

µ1

µ0

= γ0 ·
1

α0

,

µ2

µ0
= γ0

[
β1

(α0)
2α1

+
γ0

(α0)
2

]
,

µ3

µ0

= γ0

[
β1β2

(α0)
2(α1)

2α2

+
β1γ1

(α0)
2(α1)

2 +
(β1)

2

(α0)
3(α1)

2 + 2
β1γ0

(α0)
3α1

+
(γ0)

2

(α0)
3

]
.

Note that the total weight of Schröder paths in (7) is a generalization of the large Schröder
number (A006318 in [8]), for it denotes the cardinality #Ω` when K = Q and αn = βn =
γn = 1.

2.2 Favard-LBP paths and LBPs

Favard-LBP paths were introduced in [7], following Viennot’s Favard paths for orthogonal
polynomials [9], to combinatorially interpret LBPs, especially their recurrence equation, in
which they are defined as paths from {y = 0} consisting of the three kinds of edges (1, 1),
(1, 2) and (0, 1). In this paper, instead, we use the following definition for convenience.
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Let GF = (V F, EF) be the simple directed graph consisting of the vertices

V F =

∞⋃

k=0

V F
k , V F

k = {(2j + k − 1/2, k − 1/2); j ∈ Z}

and the edges

EF =

∞⋃

k=0

LF
k ∪

∞⋃

k=0

RF
k ∪

∞⋃

k=1

UF
k ,

LF
k = {((j, k), (j − 1, k + 1)) ∈ V F

k × V F
k+1},

RF
k = {((j, k), (j + 1, k + 1)) ∈ V F

k × V F
k+1},

UF
k = {((j, k − 1), (j, k + 1)) ∈ V F

k−1 × V F
k+1}.

Then a Favard-LBP path is a path on the graph GF which starts in {y = −1/2} (namely,
whose first vertex belongs to V F

0 ). See Figure 4 for example. As in the figure, in this
paper we draw a vertex and an edge in a Favard-LBP path with a (blue) small triangle
and a dashed line segment, respectively.

We use the symbol ΩF
n,i, where n ≥ 0 and 0 ≤ i ≤ n, for the set of all the Favard-LBP

paths going from (2i− 1/2,−1/2) to (n− 1/2, n− 1/2).
We weight a Favard-LBP path by (3), where we do its vertices and edges, using the

coefficients αn, βn and γn of the recurrence equation (1), by

w(q) =





1, q ∈ V F,

αk, q ∈ LF
k ,

γk, q ∈ RF
k ,

βk, q ∈ UF
k .

(9)

For example, the paths in Figure 4 weigh as

w(ωF
1 ) = γ0γ1α2γ3, w(ωF

2 ) = γ0β2γ3α4, w(ωF
3 ) = α0α1β3γ4.

As in [7] we can interpret the LBPs Pn(z) in terms of Favard-LBP paths.

0

1

2

3

4

5

ω
F

1
ω

F

2
ω

F

3

Figure 4: Favard-LBP paths ωF
1 (left), ωF

2 (middle) and ωF
3 (right).
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Theorem 4. The LBPs Pn(z) which satisfy the recurrence equation (1) are represented
in terms of Favard-LBP paths as

Pn(z) =
n∑

i=0

(−1)n−izi



∑

ωF∈ΩF
n,i

w(ωF)


, n ≥ 0.

3 Configurations of Schröder paths and Toeplitz de-

terminants of moments

Let us consider the determinant ∆n,i, where n ≥ 0 and 0 ≤ i ≤ n, of the moments µ`

∆n,i =

∣∣∣∣∣∣∣∣∣

µ0 · · · µi−1 µi+1 · · · µn

µ−1 · · · µi−2 µi · · · µn−1
...

...
...

...
µ−n+1 · · · µ−n+i µ−n+i+2 · · · µ1

∣∣∣∣∣∣∣∣∣

obtained from the Toeplitz determinant ∆
(0)
n+1 by deleting the last row and the column

whose first element is µi, where ∆0,0 = 1. We have through the permutation expansion
with Theorem 3

∆n,i = (µ0γ0)
n
∑

σ

∑

(ωj)
n−1
j=0

sgn(σ)

n−1∏

j=0

w(ωj) (10)

where the first sum is over all the bijections σ : {0, . . . , n− 1} → {0, . . . , n} \ {i}, the
second sum is over all of such n-tuples (ωj)

n−1
j=0 of Schröder paths that ωj ∈ Ω−j+σ(j),

and sgn(σ) = (−1)#{(j,j′)∈{0,...,n−1}2; j < j′ and σ(j) > σ(j′)}. Here we can configure the paths
in (ωj)

n−1
j=0 on the graph G so that ωj goes froward (2j, 0) toward (2σ(j), 0) for each

0 ≤ j ≤ n. Thus, in this section, we try to evaluate the determinant ∆n,i by enumerating
such configurations of Schröder paths.

3.1 Configurations of Schröder paths

First we give a formal definition of a configuration of Schröder paths. Let S and T be
such two finite subsets of V −

0 that #S = #T = n ≥ 0 and minS = (0, 0) if n ≥ 1. (The
order on V −

0 is defined in (5).) Then a configuration of Schröder paths with sources S and
sinks T is such a set of n Schröder paths that exactly one path starts froward s for each
s ∈ S and exactly one path ends toward t for each t ∈ T . See Figure 5 for example. We
use the symbol Ξ(S, T ) for the set of all such configurations.

A configuration ξ ∈ Ξ(S, T ) of Schröder paths induces such a bijection σξ : S → T
that ξ has a Schröder path froward s toward σξ(s) for each s ∈ S. We define a signature
of the bijection in terms of its inversions by

sgn(σξ) = (−1)#{(v,v′)∈S2; v < v′ and σξ(v) > σξ(v′)}. (11)

the electronic journal of combinatorics 15 (2008), #R76 8



1086420 1 3 5 7 9-1

Figure 5: A configuration of Schröder paths with sources {(2j, 0); j = 0, 1, 2, 3, 4} and
sinks {(2j, 0); j = 0, 1, 2, 4, 5}.

For example, the configuration in Figure 5, letting it be ξ, induces the monotone decreasing
bijection σξ((0, 0)) = (10, 0), σξ((2, 0)) = (8, 0), σξ((4, 0)) = (4, 0), σξ((6, 0)) = (2, 0) and
σξ((8, 0)) = (0, 0).

3.2 A combinatorial representation of determinants of moments
in terms of configurations of Schröder paths

We may evaluate the right hand side of (10) by enumerating all the configurations of
Schröder paths in Ξ(Sn, Tn,i), where n ≥ 0 and 0 ≤ i ≤ n, with the sources and sinks

Sn = {(2j, 0); 0 ≤ j ≤ n− 1}, Tn,i = {(2j, 0); 0 ≤ j ≤ n} \ {(2i, 0)},

where S0 and T0,0 are the empty sets.
Let ξ ∈ Ξ(Sn, Tn,i). It is contained in the region

Hn = {x− y > −1} ∩ {x+ y < 2n},

and we draw its border with (green) dashed lines for simplicity. On ξ, we call a square
region (2i − 1, 2i) × (−1, 0) or that (j, j + 1) × (k, k + 1) ⊂ {0 ≤ y < n} ∩ Hn through
which no paths in ξ go a sparse square, and draw its border with (blue) solid line segments.
See Figure 6 for example. We assume that, when we focus {y = k} ∩ Hn, we may see
the top sides of sparse squares in {k − 1 < y < k} ∩ Hn, the bottom ones of those in
{k < y < k + 1} ∩Hn and no more, while, when we focus that in {k < y < k + 1} ∩Hn,
we may see the left and right sides of those in {k < y < k + 1} ∩Hn and no more.

Thus we can rewrite the equality (10) into

∆n,i = (µ0γ0)
n

∑

ξ∈Ξ(Sn,Tn,i)

sgn(σξ)w(ξ).

We may evaluate ∆n,i more strictly.

Theorem 5. The determinant ∆n,i, where n ≥ 0 and 0 ≤ i ≤ n, of the moments µ` is
expanded with configurations of Schröder paths as

∆n,i = (−1)
n(n−1)

2 (µ0γ0)
n

∑

ξ∈eΞ(Sn,Tn,i)

w(ξ),

the electronic journal of combinatorics 15 (2008), #R76 9
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Figure 6: A configuration of Schröder paths in Ξ(S5, T5,3) contained in H5, and the sparse
squares on it.

where Ξ̃(Sn, Tn,i) is the set of all the non-intersecting and dense configurations in ξ ∈
Ξ(Sn, Tn,i).

Here the terms “non-intersecting” and “dense” are defined as follows. We call a configu-
ration of Schröder paths non-intersecting if it has no vertices shared by its two or more
paths, and do intersecting if it is not non-intersecting. We call a configuration of Schröder
paths in Ξ(Sn, Tn,i) dense in {0 ≤ y < K} ∩ Hn if we have at most one sparse square in
{k ≤ y < k + 1}∩Hn for each 0 ≤ k ≤ K− 1, and do sparse in {K ≤ y < K + 1}∩Hn if
we have two or more sparse squares in there. Then we call a configuration in Ξ(Sn, Tn,i)
dense if it is dense in {0 ≤ y < n− 1}∩Hn, and do sparse if it is not dense. For example,
in Figure 7, the left configuration is intersecting and dense while the right one is non-
intersecting and sparse, for the left has a vertex at (4, 2) shared by its two paths and the
right has three sparse squares in {3 ≤ y < 4} ∩H5. On the other hand, the configuration
in Figure 6 is non-intersecting and dense. We use the symbol Ξ′(S, T ) for the set of all
the non-intersecting configurations in Ξ(S, T ).

In the case n = 0, the theorem clearly holds since the set Ξ̃(S0, T0,0) has the unique
configuration of no paths which weighs 1. Thus we assume n ≥ 1 in the rest of this
section.

Figure 7: An intersecting configuration (left) and a sparse one (right) in Ξ(S5, T5,3).
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Using the Gessel-Viennot methodology [3] we have

∑

ξ∈Ξ(Sn,Tn,i)\Ξ′(Sn,Tn,i)

sgn(σξ)w(ξ) = 0,

since there exists an involution ϕ on Ξ(Sn, Tn,i)\Ξ′(Sn, Tn,i) of intersecting configurations
satisfying for each ξ ∈ Ξ(Sn, Tn,i) \ Ξ′(Sn, Tn,i)

sgn(σξ) = −sgn(σϕ(ξ)), w(ξ) = w(ϕ(ξ)). (12)

Hence the following two lemmas shall validate the theorem. First we will extend the
involution ϕ into Ξ′(Sn, Tn,i) \ Ξ̃(Sn, Tn,i).

Lemma 6. There exists an involution ϕ on Ξ′(Sn, Tn,i) \ Ξ̃(Sn, Tn,i) of non-intersecting
but sparse configurations which satisfies the equalities (12) for each ξ ∈ Ξ′(Sn, Tn,i) \

Ξ̃(Sn, Tn,i).

Second we will explicitly determine the bijection σξ induced from a configuration ξ.

Lemma 7. For every non-intersecting and dense configuration ξ ∈ Ξ̃(Sn, Tn,i) the bijec-
tion σξ : Sn → Tn,i is monotone decreasing.

The rest of this section is devoted to prove these two lemmas.

3.3 Pieces of a non-intersecting configuration

Let ξ ∈ Ξ′(Sn, Tn,i) be a non-intersecting configuration of Schröder paths, where n ≥ 1
and 0 ≤ i ≤ n. We call what we see when we look at ξ through a window of the form
([j, j ′]× [k, k + 1)) ∩Hn, j < j ′, a piece of a configuration. We may construct a complete
configuration by putting pieces as they fit together. Our first step to prove Lemmas 6
and 7 is to clarify what pieces we can have. For two pieces p and q, if they fit together,
we represent as pq the piece obtained by gluing the right side of p and the left side of q.

Proposition 8. Let ξ ∈ Ξ′(Sn, Tn,i) be a non-intersecting configuration of Schröder paths
which is dense in {0 ≤ y < K} ∩Hn, where n ≥ 1, 0 ≤ i ≤ n and 0 ≤ K ≤ n− 1. Then
its portion in {0 ≤ y < K + 1} ∩ Hn consists of the pieces p1,2,2′,3,4,4′,U,U′,L1,L2,L2′,R1,R1′,R2

and pS1,...,S6 in Figure 8. More precisely

• ξ has in {0 ≤ y < K} ∩Hn no pieces more than p1,2,2′,3,4,4′,U,U′,L1,L2,L2′R1,R1′,R2,

• ξ is sparse in {K ≤ y < K + 1}∩Hn if and only if it has in there at least one piece
of pS1,...,S6, and

• ξ has pU′ in [2j + k, 2j + k + 1] × [k, k + 1) if and only if it has pU in [2j + k, 2j +
k + 1] × [k − 1, k).

This proposition follows the next three claims.
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p4′p2p1 p2′ p3

pL1 pL2 pL2
′ pR1

′pR1 pR2

pU pU′p4

pS1 pS2 pS3 pS4 pS5 pS6

Figure 8: Pieces of a non-intersecting configuration of Schröder paths.

Claim 9. The portion of ξ in {0 ≤ y < 1} ∩ Hn consists of p1,2,2′,3,4,4′,U,L1,L2,L2′,R1,R1′,R2

and pS1,...,S6, where ξ is sparse in there if and only if it has at least one of pS1,...,S6.

Proof. When we look at ξ through [2j, 2j + 1] × [0, 1), 0 ≤ j ≤ n − 1, we see either
(2j, 0) ∈ V −

0 or (2j + 1, 0) ∈ V +
0 with no edge connecting it, since ξ has exactly one

path froward (2j, 0). Thus we see any of the top six in Figure 9. When we look at ξ
through ([2j − 1, 2j] × [0, 1)) ∩Hn, 0 ≤ j ≤ n, we should have a piece which fits that in
[2j−2, 2j−1]× [0, 1) if j ≥ 1 and that in [2j, 2j+2]× [0, 1) if j ≤ n−1, where we cannot
have the one only of the vertex (2j − 1, 0) ∈ V +

0 and (2j, 0) ∈ V −
0 since ξ has at most

one path toward (2j, 0). Thus we see any of the lower seventeen in Figure 9. Then, after
gluing two pieces as they share a horizontal edge or a bottom corner without a vertex,
we obtain the pieces in Figure 8, except pU′, and no more. The latter of the claim comes
from the fact that every two of pL1,L2,L2′,R1,R1′,R2 do not go together, for we have only one
sparse square (2i− 1, 2i) × (−1, 0) in {−1 ≤ y < 0} ∩Hn.

Claim 10. Suppose that ξ is dense in {0 ≤ y < 1}∩Hn and has pU in [2i− 1, 2i]× [0, 1).
Then the portion of ξ in {1 ≤ y < 2}∩Hn consists of pU′ in [2i− 1, 2i]× [1, 2), p1,2,2′,3,4,4′

and pS1,S2,S4,S5, where ξ is sparse in there if and only if it has at least one of pS1,S2,S4,S5.

Figure 9: Possible pieces (before gluing).
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Proof. Since Claim 9, ξ has in {0 ≤ y < 1} ∩ Hn no more than p1,2,2′,3,4,4′,U. Thus, for
every square region (j, j + 1) × (0, 1), 0 ≤ j ≤ 2n − 2, ξ has exactly one path which
diagonally goes through there, except [2i− 1, 2i]× [0, 1) for which it has exactly two such
paths. Hence, since Lemma 2, r(ξ) is such a set of paths that exactly one path starts
froward each s ∈ {(2j, 0); 0 ≤ j ≤ n− 2}\ (2i− 2, 0), exactly two start froward (2i− 2, 0)
and exactly one ends toward each t ∈ {(2j, 0); 0 ≤ j ≤ n− 1}. Then, with this fact, we
may prove the claim as we did Claim 9.

In a similar way, since Claims 9 and 10 with Lemma 2, we have the following.

Claim 11. Suppose that ξ is dense in {0 ≤ y < 1} ∩ Hn. Then ξ has in there any of
pL1,L2,L2′,R1,R1′,R2,U as includes the top side of the border of the sparse square (2i− 1, 2i)×
(−1, 0), and






r(ξ) ∈ Ξ′(Sn−1, Tn−1,i−1) if ξ has any of pL1,L2,L2′ in ([2i− 2, 2i] × [0, 1)) ∩Hn,

r(ξ) ∈ Ξ′(Sn−1, Tn−1,i) if ξ has any of pR1,R1′,R2 in ([2i− 1, 2i+ 1] × [0, 1)) ∩Hn,

r2(ξ) ∈ Ξ′(Sn−2, Tn−2,i−1)

if ξ has pU in [2i− 1, 2i] × [0, 1) and is dense in {1 ≤ y < 2} ∩Hn.

We obtain Proposition 8 by using these claims recursively.

3.4 An involution for non-intersecting but sparse configurations

Using Proposition 8, we may construct an involution ϕ for non-intersecting but sparse
configurations of Schröder paths which satisfies the equalities (12), and prove Lemma 6.
In the case n = 1, a non-intersecting configuration in Ξ′(S1, T1,i), 0 ≤ i ≤ 1, cannot have
any piece of pS1,...,S6 in Figure 8 since they need at least two paths. Thus, since Proposition
8, it is dense, that makes the lemma trivial. Hence we assume n ≥ 2 in this subsection.

Let ξ ∈ Ξ′(Sn, Tn,i) \ Ξ̃(Sn, Tn,i) be a non-intersecting configuration which is dense in
{0 ≤ y < K} ∩Hn but is sparse in {K ≤ y < K + 1} ∩Hn, where n ≥ 2, 0 ≤ i ≤ n and
0 ≤ K ≤ n − 2. Since Proposition 8, ξ has in {K ≤ y < K + 1} ∩Hn at least one piece
of pS1,...,S6 in Figure 8. Moreover the proposition tells us the following.

Claim 12. If K ≥ 1, for each piece pSν in {K ≤ y < K + 1}∩Hn, ξ has a portion whose
form is any of ppS

1,...,14 in Figure 10 as contains the piece.

Here everything is ready to construct an involution.

Definition 1 (Involution ϕ on Ξ′(Sn, Tn,i) \ Ξ̃(Sn, Tn,i)). Let n ≥ 2 and 0 ≤ i ≤ n.

For a given configuration ξ ∈ Ξ′(Sn, Tn,i) \ Ξ̃(Sn, Tn,i) of Schröder paths, which is dense
in {0 ≤ y < K}∩Hn but is sparse in {K ≤ y < K + 1}∩Hn, 0 ≤ K ≤ n− 2, we make a

configuration ϕ(ξ) ∈ Ξ′(Sn, Tn,i)\Ξ̃(Sn, Tn,i), referring Figures 8, 10 and 11, as follows. Let
� ⊂ R2 be the leftmost set which minimally contains a piece of ξ in {K ≤ y < K + 1}∩Hn

whose form is any of pS1,...,S6.
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Figure 10: Portions containing any of the pieces pS1,...,S6 in Figure 8.
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Figure 11: Portions of ξ ′ and ϕ(ξ′) in �
′.

• Case K = 0: Transform ξ into ϕ(ξ) by replacing the piece in �, say pSν , with
pS(v+3 mod 6).

• Case K ≥ 1: Let �
′ ⊂ R2 be the set which minimally contains � and the portion

whose form is any of ppS
1,...,14.

(i) Transform ξ into ξ ′ by replacing the portion in �
′, say ppS

ν, with ppS′

ν .

(ii) Transform ϕ(ξ′) into ϕ(ξ) by replacing the portion in �
′, whose form is

ppS′

(ν+7 mod 14), with ppS
(ν+7 mod 14).

For example, the non-intersecting but sparse configuration in Figure 7 (the right one)
is transformed by ϕ into that in Figure 12, and vice versa. This ϕ is an involution on
Ξ′(Sn, Tn,i)\Ξ̃(Sn, Tn,i) satisfying the equalities (12), which is easily validated by induction
with respect to K ≥ 0, by using the definition (3) with (6) of weight. Note that ξ ′ in
Definition 1 is a non-intersecting configuration which is dense in {0 ≤ y < K − κ}∩Hn and
is sparse in {K − κ ≤ y < K − κ+ 1}∩Hn, where κ = 2 if the portion of ξ in �

′ is any of
ppS

7,14 and κ = 1 otherwise. However it is worth to show how to validate the first equality of

(12) between signatures for ξ ∈ Ξ′(Sn, Tn,i)\Ξ̃(Sn, Tn,i) which is sparse in {0 ≤ y < 1}∩Hn.
Suppose that, for example, ξ has the piece pS1 in � = [2j, 2j+2]×[0, 1). Then ξ has a path
ωs̄ of the form [s̄, . . . , (2j+2, 0), (2j, 0), . . . , t̄], s̄ ≥ (2j+2, 0) and t̄ ≤ (2j, 0), on G− and an
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Figure 12: The non-intersecting but sparse configuration to which the right one in Figure
7 is mapped by the involution ϕ.

empty path ω(2j,0) = [(2j + 1, 0)] on G+, for which σξ(s̄) = t̄ and σξ((2j, 0)) = (2j + 2, 0).
Note that ϕ(ξ) is obtained from ξ only by dividing ωs̄ into two paths [s̄, . . . , (2j + 2, 0)]
and [(2j, 0), . . . , t̄] by deleting its horizontal edge ((2j + 2, 0), (2j, 0)) ∈ H−

0 and removing
the empty path ω(2j,0). Thus σϕ(ξ)(s̄) = (2j + 2, 0), σϕ(ξ)((2j, 0)) = t̄ and σϕ(ξ)(s) = σξ(s)
for the other s ∈ Sn \ {(2j, 0), s̄}. Hence, since the definition (11), we have the equality.
The other cases can be validated similarly.

We have proven Lemma 6.

3.5 The bijection induced from a non-intersecting and dense

configuration

Using Proposition 8, we may explicitly show the bijection induced from a non-intersecting
and dense configuration of Schröder paths, and prove Lemma 7.

Let ξ ∈ Ξ̃(Sn, Tn,i) be a non-intersecting and dense configuration, where n ≥ 1 and
0 ≤ i ≤ n. Since Proposition 8, the portion of ξ in {0 ≤ y < n}∩Hn consists of the pieces
p1,2,2′,3,4,4′,U,U′,L1,L2,L2′R1,R1′,R2 in Figure 8.

Claim 13. ξ has in each {k ≤ y < k + 1}∩Hn, 0 ≤ k ≤ n− 1, no pieces of p3,4,4′L2,L2′,R2

in the left of each of p1,2,2′,L1,R1,R1′.

Proof. Suppose that ξ does not follow the claim in {k ≤ y < k + 1} ∩ Hn. Then, since
Proposition 8, it has in {k < y < k + 2} ∩ Hn at least one portion whose form is any in
Figure 13. Thus, by induction, ξ does not follow the claim also in {n− 1 ≤ y < n} ∩

Figure 13: Portions should appear in a non-intersecting and dense configuration if it did
not follow Claim 13.
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Hn, which is a contradiction, for the portion of ξ in there is either p2′pL2′ , p2′pU′p4′ or
pR1′p4′.

Using this claim we may prove Lemma 7 as follows. Let us divide the sources and
sinks as Sn = S− ∪ S+ and Tn,i = σξ(S

−) ∪ σξ(S
+) so that s ∈ S− if and only if the

path froward s goes on G− (namely iff s ≥ σξ(s)). Note that ξ has a path on G−

(resp. on G+) froward (2j, 0) if and only if it has p3 (resp. p1) in [2j, 2j + 1] × [0, 1),
any of pL2,L2′ (resp. pL1) in ([2j, 2j + 2] × [0, 1)) ∩ Hn, or pR2 (resp. any of pR1,R1′) in
([2j−1, 2j+1]× [0, 1))∩Hn. Similarly note that ξ has a path on G− (resp. on G+) toward
(2j, 0) if and only if it has any of p2,2′ (resp. p4,4′) in ([2j − 1, 2j] × [0, 1)) ∩ Hn. Thus,
since Claim 13, we have minS− > maxS+, minS− ≥ max σξ(S

−), maxS+ < min σξ(S
+)

and max σξ(S
−) < min σξ(S

+). Here σξ must be monotone decreasing respectively in S−

and in S+ since ξ is non-intersecting, and hence it is in the entire Sn.
We have proven Lemma 7.

4 A correspondence between non-intersecting and

dense configurations of Schröder paths and Favard-

LBP paths

The remaining task to prove Theorem 1 is to clarify a correspondence between non-
intersecting and dense configurations of Schröder paths and Favard-LBP paths, where
the former interpret determinants of moments by Theorem 5 and the latter do LBPs by
Theorem 4.

Theorem 14. Let n ≥ 0 and 0 ≤ i ≤ n. There exists such a bijection ψ : Ξ̃(Sn, Tn,i) →

ΩF
n,i that, for each ξ ∈ Ξ̃(Sn, Tn,i), the equality of weight

(
n−1∏

k=0

αk

)
w(ξ)

w(ξn,n)
= w(ψ(ξ)) (13)

holds, where ξn,n is the unique non-intersecting and dense configuration of Schröder paths

in Ξ̃(Sn, Tn,n).

This section is devoted to prove this theorem.

4.1 A structure of a non-intersecting and dense configuration

Before constructing a bijection, we clarify more explicit structure of a non-intersecting
and dense configuration of Schröder paths. Since Proposition 8, referring Claims 11 and
13, we have the following.

Proposition 15. Let ξ ∈ Ξ̃(Sn, Tn,i) be a non-intersecting and dense configuration, where
n ≥ 1 and 0 ≤ i ≤ n. Then,
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• we have on ξ two neighboring sparse squares (2j + k − 1, 2j + k) × (k − 1, k) and
(2j + k − 2, 2j + k − 1) × (k, k + 1) (resp. (2j + k, 2j + k + 1) × (k, k + 1)), if and
only if the portion of ξ in {k ≤ y < k + 1} ∩Hn is the piece

ppL
n,k,j =






p2′ (p1p2 · · · )︸ ︷︷ ︸
2j − 2 pieces

pL1 (p1p2 · · · )︸ ︷︷ ︸
m − 2j

(· · ·p4p3)︸ ︷︷ ︸
m − 1

p4′ , 1 ≤ j ≤
⌊

m
2

⌋
,

p2′ (p1p2 · · · )︸ ︷︷ ︸
m − 1 pieces

(· · · p3p4)︸ ︷︷ ︸
2j − m − 1

pL2 (· · · p4p3)︸ ︷︷ ︸
2m − 2j − 1

p4′ ,
⌊

m
2

⌋
+ 1 ≤ j ≤ m− 1,

p2′ (p1p2 · · · )︸ ︷︷ ︸
m − 1 pieces

(· · · p3p4)︸ ︷︷ ︸
m − 1

pL2′ , j = m

(resp.

ppR
n,k,j =





pR1′ (p2p1 · · · )︸ ︷︷ ︸
m − 1 pieces

(· · · p4p3)︸ ︷︷ ︸
m − 1

p4′, j = 0,

p2′ (p1p2 · · · )︸ ︷︷ ︸
2j − 1 pieces

pR1 (p2p1 · · · )︸ ︷︷ ︸
m − 2j − 1

(· · · p4p3)︸ ︷︷ ︸
m − 1

p4′ , 1 ≤ j ≤
⌈

m
2

⌉
− 1,

p2′ (p1p2 · · · )︸ ︷︷ ︸
m − 1 pieces

(· · · p4p3)︸ ︷︷ ︸
2j − m

pR2 (· · · p4p3)︸ ︷︷ ︸
2m − 2j − 2

p4′,
⌈

m
2

⌉
≤ j ≤ m− 1),

• we have on ξ those (2j+k−1, 2j+k)×(k−1, k) and (2j+k−1, 2j+k)×(k+1, k+2), if
and only if the portions of ξ in {k ≤ y < k + 1}∩Hn and in {k + 1 ≤ y < k + 2}∩Hn

are the pieces

ppU
n,k,j =





p2′ (p1p2 · · · )︸ ︷︷ ︸
2j − 1 pieces

pU (p1p2 · · · )︸ ︷︷ ︸
m − 2j

(· · · p4p3)︸ ︷︷ ︸
m − 1

p4′, 1 ≤ j ≤
⌊

m
2

⌋
,

p2′ (p1p2 · · · )︸ ︷︷ ︸
m − 1 pieces

(· · · p4p3)︸ ︷︷ ︸
2j − m

pU (· · · p4p3)︸ ︷︷ ︸
2m − 2j − 1

p4′ ,
⌈

m
2

⌉
≤ j ≤ m− 1

and

ppU′

n,k+1,j =






p2′ (p1p2 · · · )︸ ︷︷ ︸
2j − 2 pieces

pU′ (p2p1 · · · )︸ ︷︷ ︸
m − 2j

(· · · p4p3)︸ ︷︷ ︸
m − 2

p4′ , 1 ≤ j ≤
⌊

m
2

⌋
,

p2′ (p1p2 · · · )︸ ︷︷ ︸
m − 2 pieces

(· · ·p3p4)︸ ︷︷ ︸
2j − m

pU′ (· · ·p4p3)︸ ︷︷ ︸
2m − 2j − 2

p4′,
⌈

m
2

⌉
≤ j ≤ m− 1,

respectively,

where m = n− k.

For example, the configuration in Figure 6 is obtained by gluing the pieces ppL
5,0,3, ppL

5,1,2,

ppU
5,2,1, ppU′

5,3,1 and ppR
5,4,0 from bottom to top. Let us define by (3) the weight of a piece
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F of a configuration of Schröder paths. Then the weight of these pieces is given since (3)
with (6) by

w(ppL
n,k,j) =

(βk+1)
n−k−1

(αk)
n−k−1(γk)

n−k
, w(ppR

n,k,j) =
(βk+1)

n−k−1

(αk)
n−k(γk)

n−k−1
,

w(ppU
n,k,j) =

(βk+1)
n−k

(αk)
n−k(γk)

n−k
, w(ppU′

n,k+1,j) =
(βk+2)

n−k−2

(αk+1)
n−k−1(γk+1)

n−k−1
.

(14)

4.2 A bijection between a non-intersecting and dense configu-
ration and a Favard-LBP path

Since Proposition 15, we can define a map ψ : Ξ̃(Sn, Tn,i) → ΩF
n,i, where n ≥ 0 and

0 ≤ i ≤ n, as follows.

Definition 2 (Bijection ψ : Ξ̃(Sn, Tn,i) → ΩF
n,i). On a given non-intersecting and dense

configuration ξ ∈ Ξ̃(Sn, Tn,i) of Schröder paths, where n ≥ 0 and 0 ≤ i ≤ n, we draw a
Favard-LBP path ψ(ξ) ∈ ΩF

n,i as follows.

(i) Put a vertex at the center of every sparse square on ξ.

(ii) Connect every two neighboring vertices with an edge.

For example, we draw on the configuration in Figure 6 as in Figure 14. Note that the
pieces ppL

n,k,j, ppR
n,k,j and ppU

n,k,j in a configuration induce the edges ((2j + k − 1/2, k −
1/2), (2j+ k− 3/2, k+ 1/2)) ∈ LF

k , ((2j + k− 1/2, k− 1/2), (2j + k+ 1/2, k+ 1/2)) ∈ RF
k

and ((2j + k − 1/2, k − 1/2), (2j + k − 1/2, k + 3/2)) ∈ UF
k+1 of a Favard-LBP path,

respectively. This ψ is clearly injective, while it is surjective since, for example, the piece
ppL

n,k,j (0 ≤ k ≤ n−2) in {k ≤ y < k + 1}∩Hn fits every piece in {k + 1 ≤ y < k + 2}∩Hn

of ppL
n,k+1,j−1 (if 2 ≤ j ≤ n − k), ppR

n,k+1,j−1 (if 1 ≤ j ≤ n − k − 1) and ppU
n,k+1,j−1 (if

2 ≤ j ≤ n− k − 1). Thus ψ is bijective.
The bijection ψ, with Proposition 15, tells us the following. The set ΩF

n,n of Favard-
LBP paths going from (n−1/2,−1/2) to (n−1/2, n−1/2) contains the unique path ωF

n,n

Figure 14: The Favard-LBP path in ΩF
5,3 drawn by ψ on the configuration of Schröder

paths in Figure 6. (Sparse squares are omitted.)
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only of left-diagonal edges. Thus the set Ξ̃(Sn, Tn,n) contains the unique non-intersecting
and dense configuration ξn,n = ψ−1(ωF

n,n) consisting of the pieces ppL
n,0,n, ppL

n,1,n−1, . . . ,
ppL

n,n−1,1 from bottom to top. (Similarly, ΩF
n,0 contains the unique ωF

n,0 only of right-

diagonal edges, and Ξ̃(Sn, Tn,0) does the unique ξn,0 = ψ−1(ωF
n,0) consisting of ppR

n,0,0,
ppR

n,1,1, . . . , ppR
n,n−1,n−1 from bottom to top.) See Figure 15 for example. Thus, since (14)

leads

αk

w(ppX
n,k,j)

w(ppL
n,k,n−k)

=





αk, X = L,

γk, X = R,

βk+1, X = U,

1, X = U′,

we have, with (3) with (6) and (9), the equality (13).
We have proven Theorem 14.

5 A proof of Theorem 1

In this final section, we accomplish our purpose, that is, we give a combinatorial proof of
Theorem 1, using Theorems 5 and 14 for configurations of Schröder paths and Favard-LBP
paths.

We found in Section 4 that Ξ̃(Sn, Tn,n) = {ξn,n} and Ξ̃(Sn, Tn,0) = {ξn,0}, which implies
through Theorem 5

∆(0)
n = ∆n,n = (−1)

n(n−1)
2 (µ0γ0)

nw(ξn,n), ∆(1)
n = ∆n,0 = (−1)

n(n−1)
2 (µ0γ0)

nw(ξn,0).

Hence, since the definition (3) with (6) of weight, both of the Toeplitz determinants ∆
(0)
n

and ∆
(1)
n are nonzero. Moreover, using these equalities, we may easily derive the equalities

(2a), for which the equalities, for n ≥ 0,

w(ξn+1,n+1)

w(ξn,n)
= w(ω̂−n) = (γ0)

−1
n∏

k=1

βk

γk−1γk

,
w(ξn+1,0)

w(ξn,0)
= w(ω̂n+1) = (α0)

−1
n∏

k=1

βk

αk−1αk

ξ5,0 ξ5,5

Figure 15: The unique configurations ξ5,0 ∈ Ξ̃(S5, T5,0) and ξ5,5 ∈ Ξ̃(S5, T5,5), and the
corresponding Favard-LBP paths ωF

5,0 = ψ(ξ5,0) and ωF
5,5 = ψ(ξ5,5) on them.
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shall be helpful, where ω̂` ∈ Ω` is the unique Schröder path with exactly one peak. (See
Figure 15.) Finally, through Theorem 5, we can rewrite the equality (13) in terms of
determinants into

(
n−1∏

k=0

αk

)
∆n,i

∆
(0)
n

=
∑

ωF∈ΩF
n,i

w(ωF)

by summing the equality over ξ ∈ Ξ̃(Sn, Tn,i), which, through Theorem 4, immediately
leads the determinant representation (2b) of the LBPs.

Thus we have completely proven Theorem 1.
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