
Constructing fifteen infinite classes of nonregular

bipartite integral graphs∗

Ligong Wang1,†and Cornelis Hoede2

1Department of Applied Mathematics, School of Science,
Northwestern Polytechnical University, Xi’an, Shaanxi 710072, P. R. China.

ligongwangnpu@yahoo.com.cn
2Department of Applied Mathematics,

Faculty of Electrical Engineering, Mathematics and Computer Science,
University of Twente, P.O. Box 217, 7500AE Enschede, The Netherlands.

hoede@math.utwente.nl

Submitted: Oct 5, 2007; Accepted: Dec 16, 2007; Published: Jan 1, 2008

Mathematics Subject Classifications: 05C50, 11D09, 11D41

Abstract

A graph is called integral if all its eigenvalues (of the adjacency matrix) are
integers. In this paper, the graphs S1(t) = K1,t, S2(n, t), S3(m,n, t), S4(m,n, p, q),
S5(m,n), S6(m,n, t), S8(m,n), S9(m,n, p, q), S10(n), S13(m,n), S17(m,n, p, q),
S18(n, p, q, t), S19(m,n, p, t), S20(n, p, q) and S21(m, t) are defined. We construct the
fifteen classes of larger graphs from the known 15 smaller integral graphs S1 − S6,
S8 − S10, S13, S17 − S21 (see also Figures 4 and 5, Balińska and Simić, Discrete
Math. 236(2001) 13-24). These classes consist of nonregular and bipartite graphs.
Their spectra and characteristic polynomials are obtained from matrix theory. We
obtain their integral property by using number theory and computer search. All
these classes are infinite. They are different from those in the literature. It is proved
that the problem of finding such integral graphs is equivalent to solving Diophantine
equations. We believe that it is useful for constructing other integral graphs. The
discovery of these integral graphs is a new contribution to the search of integral
graphs. Finally, we propose several open problems for further study.

1 Introduction

We use G to denote a simple graph with vertex set V (G) = {v1, v2, . . . , vn} and edge set
E(G). The adjacency matrix A = A(G) = [aij] of G is an n × n symmetric matrix of 0’s
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and 1’s with aij = 1 if and only if vi and vj are joined by an edge. The characteristic
polynomial of G is the polynomial P (G) = P (G, x) = det(xIn − A), where and in the
sequel In always denotes the n × n identity matrix. The spectrum of A(G) is also called
the spectrum of G and denoted by Spec(G) ([5]).

A graph G is called integral if all eigenvalues of the characteristic polynomial P (G, x)
of G are integers. The research on integral graphs was initiated by Harary and Schwenk
[7]. In general, the problem of characterizing integral graphs seems to be very difficult.
Thus, it makes sense to restrict our investigations to some interesting families of graphs.
So far, there are many results for some particular classes of integral graphs [1]. For all
other facts or terminology on graph spectra, see [5].

In [9] we successfully constructed integral trees of diameters 4 and 6 by identifying the
centers of two trees. In [10, 11] we investigated the structures of some classes of graphs and
deduce their characteristic polynomials by spectral graph theory. Integral graphs in these
classes were given by using number theory and computer search. In this paper, a new
method of constructing fifteen infinite classes of integral graphs is presented. In getting
the results we proceed as follows: firstly, we give the construction of the (infinite) families
of new graphs from the 15 finite classes of integral graphs identified by Balińska and
Simić [2], then calculate their characteristic polynomials (Theorem 3.2) by using matrix
theory, and then, by making use of number theory (Diophantine equations) and computer
search, we obtain fifteen infinite classes of integral graphs in these classes. These classes
are connected nonregular and bipartite graphs except for several disconnected graphs for
which one or several of their parameters are taken zero. Finally, we propose several open
problems for further study.

2 Some facts in matrix theory and number theory

In this section, we shall give a useful property of matrices and some facts in number
theory.

First of all, we give the following notations. All other notations and terminology on
matrices can be found in [6].
(1) R denotes the set of real numbers.
(2) Rm×n denotes the set of m × n matrices whose entries are in R.
(3) AT denotes the transpose of the matrix A.
(4) Jm×n and 0m×n denotes the m × n all 1 and all 0 matrix, respectively.

Lemma 2.1. ([6], page 181) Let A =

[

A0 A1

A1 A0

]

, where Ak ∈ Rr×r, k = 0, 1. Then the

eigenvalues of A are those of A0 + A1 together with those of A0 − A1.

Secondly, we shall give some facts in number theory. All other notations and termi-
nology on number theory can be found in [4, 8].

Let d be a positive integer but not a perfect square, let m 6= 0 be an integer. We shall
study the Diophantine equation

x2 − dy2 = m. (1)
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If x1, y1 is a solution of (1), for convenience, then x1 + y1

√
d is also called a solution

of Eq.(1). Let s + t
√

d be any solution of the Pell equation

x2 − dy2 = 1. (2)

Clearly, (x1+y1

√
d)(s+t

√
d) = x1s+y1td+(y1s+x1t)

√
d is also a solution of Eq.(1). This

solution and x1 + y1

√
d are called associate. If two solutions x1 + y1

√
d and x2 + y2

√
d of

Eq.(1) are associate, then we denote them by x1 + y1

√
d ∼ x2 + y2

√
d. It is easy to verify

that the associate relation ∼ is an equivalence relation. Hence, if Eq.(1) has solutions,
then all the solutions can be classified by the associate relation. Any two solutions in the
same associate class are associate each other, any two solutions not in the same class are
not associate.

The following Lemmas 2.2, 2.3, 2.4 and 2.5 can be found in [4].

Lemma 2.2. A necessary and sufficient condition for two solutions x1 + y1

√
d and x2 +

y2

√
d of Eq.(1) (m fixed) to be in the same associate class K is that

x1x2 − dy1y2 ≡ 0(mod|m|) and y1x2 − x1y2 ≡ 0(mod|m|).

Let x1 + y1

√
d be any solution of Eq.(1). By Lemma 2.2, we see that −(x1 + y1

√
d) ∼

x1 +y1

√
d, −(x1−y1

√
d) ∼ x1−y1

√
d. Let K and K ′ be two associate classes of solutions

of Eq. (1) such that for any solution x+y
√

d ∈ K, it follows x−y
√

d ∈ K ′. Then also the
converse is true. Hence, K and K ′ are called conjugate classes. If K = K ′, then this class
is called an ambiguous class. Let u0 + v0

√
d be the fundamental solution of the associate

class K, i.e. v0 is positive and has the smallest value in the class K. If the class K is
ambiguous, we can assume that u0 ≥ 0.

Lemma 2.3. Let K be any associate class of solutions of Eq.(1), and let u0 +v0

√
d be the

fundamental solution of the associate class K. Let x0 + y0

√
d be the fundamental solution

of the Pell equation (2). Then

0 ≤ v0 ≤







y0

√
m√

2(x0+1)
, if m > 0,

y0

√
−m√

2(x0−1)
, if m < 0.

(3)

0 ≤ |u0| ≤







√

1
2
(x0 + 1)m, if m > 0,

√

1
2
(x0 − 1)(−m), if m < 0.

(4)

Lemma 2.4.

(1) Let d be a positive integer but not a perfect square, m 6= 0, and let m be an integer.
Then there are only finitely many associate classes for Eq.(1), and the fundamental
solutions of all these classes can be found from (3) and (4) by a finite procedure.
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(2) Let K be an associate class of solutions of Eq. (1), and let u0 + v0

√
d be the fun-

damental solution of the associate class K. Then all solutions of the class K are
given by

x + y
√

d = ±(u0 + v0

√
d)(x0 + y0

√
d)n,

where n is an integer, and x0 + y0

√
d is the fundamental solution of Eq.(2).

(3) If u0 and v0 satisfy (3) and (4) but are not solutions of Eq.(1), then there is no
solution for Eq.(1).

Lemma 2.5. Let d (> 1) be a positive integer that is not a perfect square. Then there
exist solutions for the Pell equation (2), and all the positive integral solutions xk, yk of
Eq.(2) are given by

xk + yk

√
d = εk, k = 1, 2, . . . , (5)

where ε = x0 + y0

√
d is the fundamental solution of Eq.(2). Put ε = x0 − y0

√
d. Then we

have εε = 1 and

xk =
εk + εk

2
, yk =

εk − εk

2
√

d
, k = 1, 2, . . . . (6)

The following Lemmas 2.6, 2.9, 2.11 and Lemmas 2.7, 2.8 can be found in [8] and [4],
respectively.

Lemma 2.6. Let u, v be the fundamental solution of Eq.(2), where d(> 1) is a positive
integer but not a perfect square. Then the Pell equation

x2 − dy2 = −1 (7)

has solutions if and only if there exist positive integer solutions s and t for the equations

s2 + dt2 = u, 2st = v,

such that moreover s and t are the fundamental solution of Eq.(7).

Lemma 2.7. Suppose the Pell equation (7) is solvable. Let ρ = x0 + y0

√
d be the fun-

damental solution of Eq.(7), where d(> 1) is a positive integer but not a perfect square.
Then the following holds.

(1) All positive integral solutions xk, yk of Eq.(7) are given by

xk + yk

√
d = ρk, k = 1, 3, 5, . . . . (8)

(2) All positive integral solutions xk, yk of Eq. (2) are given by relation (8), k = 2, 4, . . . .

(3) Let ρ = x0 − y0

√
d, then ρρ = −1, and the solutions xk, yk in (1) and (2) can be

given by

xk =
ρk + ρk

2
, yk =

ρk − ρk

2
√

d
, k = 1, 2, . . . . (9)
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Lemma 2.8.

(1) If there is a solution for Eq.(1), where m 6= 0 is integer and d(> 1) is a positive
integer but not a perfect square, then Eq.(1) has infinitely many solutions.

(2) Let x1, y1 be the fundamental solution of the Diophantine equation

x2 − dy2 = 4, (10)

where d(> 1) is a positive integer but not a perfect square. Then all positive integral
solutions xk, yk of Eq.(10) are given by

xk + yk

√
d

2
= (

x1 + y1

√
d

2
)k, k = 1, 2, . . . . (11)

In the following symbol (a, b) = d denotes the greatest common divisor d of integers
a, b, while a|b (a - b) means that a divides b (a does not divide b) .

Lemma 2.9. Let m be a positive integer. If 2 - m or 4|m, then there exist positive integral
solutions for the Diophantine equation

x2 − y2 = m. (12)

Remark 2.10. We can give a method for finding the solutions of Eq.(12). Suppose that
m = m1m2. Let x − y = m1, x + y = m2 and 2|(m1 + m2). Then the solutions of Eq.
(12) can be found easily (see [8]).

Lemma 2.11. If x > 0, y > 0, z > 0, (x, y) = 1 and 2|y, then all positive integral
solutions of the Diophantine equation x2 + y2 = z2 are given by

x = r2 − s2, y = 2rs, z = r2 + s2,

where (r, s) = 1, r > s > 0 and 2 - r + s.

3 The characteristic polynomials of some classes of

graphs

In this section, we investigate the structures of the nonregular bipartite integral graphs
in [2]. Fifteen new classes of larger graphs are constructed based on the structures of 15
ones of the 21 smaller integral graphs in Figures 4 and 5 of [2].

Theorem 3.1. ( [2] ) The graphs in Figures 1 and 2 are nonregular bipartite integral
graphs with maximum degree four. (The graphs in Figure 1 are integral graphs with number
of vertices up to 16.)
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Figure 1: Nonregular bipartite integral graphs with maximum degree 4 and at most 16
vertices.

We can generalize the result of Theorem 3.1 and construct fifteen types of graphs
from 15 smaller integral graphs S1 − S6, S8 − S10, S13, S17 − S21 in Figures 1 and 2. The
following Theorem 3.2 on their characteristic polynomials is obtained from matrix theory.

Theorem 3.2. Let m, n, p, q and t be nonnegative integers. Then the characteristic
polynomials of the fifteen types of graphs in Figures 3 and 4 are as follows:

(1) (see [5]) P (K1,t, x) = xt−1(x2 − t), (t ≥ 0).

(2) P (S2(n, t), x) = xn(t−1)+2(x2 − t)n−1[x2 − (2n + t)], (n ≥ 1, t ≥ 0).

Figure 2: A nonregular bipartite integral graph with maximum degree 4 and 26 vertices.
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(3) P (S3(m, n, t), x) = xm+n+4(t−1)(x2 − t)2[x4 − 2(m + n + t + 2)x2 + (2m + t)(2n + t)],
(m ≥ 1, n ≥ 1, t ≥ 0).

(3.1) P (S3(n, n, t), x) = x2n+4(t−1)(x2 − t)2(x2 + 2x − 2n − t)(x2 + 2x − 2n − t), (n ≥ 1,
t ≥ 0).

(3.2) P (S3(m, n, 0), x) = xm+n[x4 − 2(m + n + 2)x2 + 4mn], (m ≥ 1, n ≥ 1).

(4) P (S4(m, n, p, q), x) = xmp+n+2q−2(x2−2m)p−1(x2−pq)[x4 − (2m+2n+4q+pq)x2 +
4mn + 8mq + 2npq], (m ≥ 0, n ≥ 0, p ≥ 1, q ≥ 1).

(4.1) P (S4(n, n, p, q), x) = xn(p+1)+2q−2(x2 − 2n)p(x2 − pq) [x2 − (2n + 4q + pq)], (n ≥ 0,
p ≥ 1, q ≥ 1).

(4.2) P (S4(n, n, p, p), x) = xn(p+1)+2p−2(x2−2n)p(x+p)(x−p) [x2−(2n+p2+4p)], (n ≥ 1,
p ≥ 1).

(4.3) P (S4(2, 2, p, p), x) = x4p(x+ p+2)(x+ p)(x+2)p(x− 2)p(x− p)(x− p− 2), (p ≥ 1).

(4.4) P (S4(0, n, p, q), x) = xn+2p+2q−4(x2 − pq)[x4 − (2n + 4q + pq)x2 + 2npq], (n ≥ 0,
p ≥ 1, q ≥ 1).

(4.5) P (S4(m, 0, p, q), x) = xmp+2q−2(x2 − 2m)p−1(x2 − pq)[x4 − (2m + 4q + pq)x2 + 8mq],
(m ≥ 0, p ≥ 1, q ≥ 1).

(5) P (S5(m, n), x) = xm+n−2(x+1)(x−1)[x4−(2m+2n+1)x2 +4mn], (m ≥ 0, n ≥ 0).

(5.1) P (S5(n, n), x) = x2n−2(x + 1)(x − 1)(x2 + x − 2n)(x2 − x − 2n), (n ≥ 0).

(5.2) P (S5(0, n), x) = P (S5(n, 0), x) = xn(x + 1)(x − 1)[x2 − (2n + 1)], (n ≥ 0).

(6) P (S6(m, n, t), x) = xn(t−1)+m+2(x2 − t)n−1[x4 − (2m + 2n + t + 2)x2 + 2n(2m + 1) +
2t(m + 1)], (m ≥ 0, n ≥ 1, t ≥ 0) or (m ≥ 0, n = t = 0).

(6.1) P (S6(m, 0, 0), x) = P (K2,m+1 ∪ K1, x) = xm+2[x2 − (2m + 2)], (m ≥ 1).

(6.2) P (S6(0, n, t), x) = xn(t−1)+2(x2 − t)n−1[x4 − (2n + t + 2)x2 + 2n+ 2t], (n ≥ 1, t ≥ 0).

(6.3) P (S6(m, n, 0), x) = xn+m[x4 − (2m + 2n + 2)x2 + 2n(2m + 1)], (m ≥ 0, n ≥ 0).

(6.4) P (S6(m, 1, t), x) = xm+t+1[x4 − (2m + t + 4)x2 + 2(2m + 1) + 2t(m + 1)], (m ≥ 0,
t ≥ 0).

(6.5) P (S6(n− 1, n, 1), x) = xn+1(x + 1)n−1(x− 1)n−1(x2 + x− 2n)(x2 − x− 2n), (n ≥ 1).

(6.6) P (S6(n + 1, n, 1), x) = xn+3(x + 1)n−1(x − 1)n−1(x2 + x − 2n− 2)(x2 − x − 2n− 2),
(n ≥ 0).

(6.7) P (S6(n + 1, n, 9), x) = x9n+3(x + 3)n−1(x− 3)n−1(x2 + x− 2n− 6)(x2 − x− 2n− 6),
(n ≥ 1).
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(7) P (S8(m, n), x) = (x + 1)m+n−2(x− 1)m+n−2[x4 − 4x3 − (m + n− 5)x2 + (2m + 2n−
2)x + mn − m − n][x4 + 4x3 − (m + n − 5)x2 − (2m + 2n − 2)x + mn − m − n],
(m ≥ 0, n ≥ 0).

(7.1) P (S8(n, n), x) = (x+1)2n−2(x−1)2n−2(x2 +x−n)(x2 −x−n)(x2 +3x−n+2)(x2−
3x − n + 2), (n ≥ 0).

(7.2) P (S8(0, n), x) = P (S8(n, 0), x) = (x+1)n(x−1)n(x2 +2x−n)(x2 −2x−n), (n ≥ 0).

(8) P (S9(m, n, p, q), x) = xm+n+p+q−2[x6 − (2m + n + 2p + q + nq + 1)x4 + (m + n +
mn + p + 4mp + 2np + q + 2mq + 2nq + 2mnq + pq + 2npq)x2 − (mp + np + 2mnp +
mq + nq + 2mnq + 2mpq + 2npq + 4mpq)], (m ≥ 1, n ≥ 1 p ≥ 1, q ≥ 1).

(8.1) P (S9(n, n, n, n), x) = x4n−2(x2 − 2n)2(x + n + 1)(x − n − 1), (n ≥ 1).

(9) P (S10(n), x) = x2(n−1)(x + 2)n−1(x + 1)(x− 1)(x− 2)n−1(x2 + 2x− n)(x2 − 2x− n),
(n ≥ 0).

(10) P (S13(m, n), x) = x2(x+1)n(m−1)(x−1)n(m−1)(x2+x−m)n−1[x2+x−m(n+1)](x2−
x − m)n−1[x2 − x − m(n + 1)], (m ≥ 1, n ≥ 1).

(11) P (S17(m, n, p, q), x) = xmq+p+n−1(x2 − 2m)q−1{x6 − (2m + 2n + p + q + pq + 1)x4 +
[m(2 + 4n + 2p + q + pq) + n + p + np + 2nq + 2pq + 2npq + pq2]x2 − [2m(n + p +
np + nq + pq + npq) + 2npq(q + 1)]}, (m ≥ 1, n ≥ 1, p ≥ 1, q ≥ 1).

(11.1) P (S17(n, n, n, n), x) = xn2+2n−1(x + n + 1)(x − n − 1)(x2 − 2n)n+1, (n ≥ 1).

(11.2) P (S17(n, n, p, q), x) = xnq+n+p−1(x2−2n)q{x4− [2n+(p+1)(q+1)]x2 +(q+1)[n(p+
1) + p(q + 1)]}, (n ≥ 1, p ≥ 1, q ≥ 1).

(11.3) P (S17(n, n, 1, q), x) = xnq+n(x2 − 2n)q(x2 − q − 1)(x2 − 2n − q − 1), (n ≥ 1, q ≥ 1).

(11.4) P (S17(m, n, m, n), x) = xmn+m+n−1(x2 − 2m)n−1(x2 −m−n)[x4 − (2m+ 2n+ mn +
1)x2 + 2m(n + 1)2], (m ≥ 1, n ≥ 1).

(11.5) P (S17(2, n, 2, n), x) = x3n+1(x + 2)n−1(x − 2)n−1(x2 − n − 2)(x2 + x − 2n − 2)(x2 −
x − 2n − 2), (n ≥ 1).

(12) P (S18(n, p, q, t), x) = x2n(t−1)(x + 1)p+q−2(x− 1)p+q−2(x2 − t)2(n−1)[x6 − 4x5 − (2n +
p + q + t− 6)x4 + (6n + 2p + 2q + 4t− 4)x3 − (6n + p− np + q − nq − pq + 6t− pt−
qt − 1)x2 + (2n − np − nq + 4t − 2pt − 2qt)x − t + pt + qt − pqt][x6 + 4x5 − (2n +
p + q + t − 6)x4 − (6n + 2p + 2q + 4t − 4)x3 − (6n + p − np + q − nq − pq + 6t −
pt− qt− 1)x2 − (2n− np− nq + 4t− 2pt− 2qt)x− t + pt + qt− pqt], (n ≥ 1, p ≥ 0,
q ≥ 0, t ≥ 0).

(12.1) P (S18(n, p, p, t), x) = x2n(t−1)(x + 1)2p−2(x − 1)2p−2(x2 − t)2(n−1)[(x + 1)2 − p][(x −
1)2 − p][x4 − 2x3 − (p + t + 2n− 1)x2 + 2(n + t)x + t(p− 1)][x4 + 2x3 − (p + t + 2n−
1)x2 − 2(n + t)x + t(p − 1)], (n ≥ 1, p ≥ 0, t ≥ 0).
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(12.2) P (S18(n, t, t, t), x) = x2n(t−1)(x+1)2t−2(x−1)2t−2(x2− t)2(n−1)[(x+1)2− t][(x−1)2−
t][x4 − 2x3 − (2t + 2n − 1)x2 + 2(n + t)x + t(t − 1)][x4 + 2x3 − (2t + 2n − 1)x2 −
2(n + t)x + t(t − 1)], (n ≥ 1, t ≥ 0).

(12.3) P (S18(n, 1, 1, 1), x) = x4(x + 2)(x + 1)2n−1(x − 1)2n−1(x − 2)(x2 + x − 2n − 2)(x2 −
x − 2n − 2), (n ≥ 1).

(12.4) P (S18(2k
2, k2, k2, k2), x) = x4k2(k2−1)(x+k+1)(x+k)2(2k2−1)(x+k−1)(x+1)2k2−2(x−

1)2k2−2(x − k + 1)(x − k)2(2k2−1)(x − k − 1)[x2 + (2k + 1)x − k(k − 1)][x2 − (2k +
1)x − k(k − 1)][x2 + (2k − 1)x − k(k + 1)][x2 − (2k − 1)x − k(k + 1)], (k ≥ 1).

(13) P (S19(m, n, p, t), x) = xmn(t−1)+n(x + 1)n(p−1)(x − 1)n(p−1)[x4 − (m + t + p + 1)x2 +
m + t + pt]n−1(x2 − t)n(m−1){x6 − (m + n + mn + p + np + t + 1)x4 + [m + n + mn +
mn2−2np+2mnp+mn2p+np2 + t(1+n+p+np)]x2 −n(p−1)2(mn+ t)}, (m ≥ 1,
n ≥ 1, p ≥ 1, t ≥ 0).

(13.1) P (S19(m, n, 1, t), x) = xmn(t−1)+n+2(x2− t)n(m−1)[x4−(m+ t+2)x2 +m+2t]n−1[x4−
(m + 2n + mn + t + 2)x2 + (n + 1)(m + 2mn + 2t), (m ≥ 1, n ≥ 1, t ≥ 0).

(13.2) P (S19(2, n, 1, 1), x) = xn+2(x + 1)2n−1(x− 1)2n−1(x + 2)n−1(x− 2)n−1(x2 + x− 2n−
2)(x2 − x − 2n − 2), (n ≥ 1).

(14) P (S20(n, p, q), x) = (x+1)p(n−1)+q(x− 1)p(n−1)+q(x2 −x−n)p−1(x2 +x−n)p−1(x2 −
x − pq − n)(x2 + x − pq − n), (n ≥ 1, p ≥ 1, q ≥ 1).

(15) P (S21(m, t), x) = x2m(t−1)+2(x2−x−t)m−1(x2+x−t)m−1(x2−x−m−t)(x2+x−m−t),
(m ≥ 1, t ≥ 0).

Proof. We only prove (2) and (10). The characteristic polynomials of the other 13 types
can be obtained similarly.

(2). By properly ordering the vertices of the graph S2(n, t), the adjacency matrix
A = A(S2(n, t)) of S2(n, t) can be written as the (nt + n + 2) × (nt + n + 2) matrix such
that

A = A(S2(n, t)) =



















A11 A12 . . . A1n B1 0t×2

A21 A22 . . . A2n B2 0t×2
...

...
. . .

...
...

...
An1 An2 . . . Ann Bn 0t×2

BT
1 BT

2 . . . BT
n 0n×n Jn×2

02×t 02×t . . . 02×t J2×n 02×2



















,

where Aij = 0t×t for i = 1, 2, . . . , n and j = 1, 2, . . . , n, and

Bk = [a
(k)
ij ] =

{

1 if j = k
0 otherwise

, Bk ∈ Rt×n, for k = 1, 2, . . . , n.

Then we have
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Figure 3: Nonregular bipartite graphs.

P [S2(n, t), x] = |xInt+n+2 − A(S2(n, t))|=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

xIt 0t×t . . . 0t×t −B1 0t×2

0t×t xIt . . . 0t×t −B2 0t×2
...

...
. . .

...
...

...
0t×t 0t×t . . . xIt −Bn 0t×2

−BT
1 −BT

2 . . . −BT
n xIn −Jn×2

02×t 02×t . . . 02×t −J2×n xI2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

By careful calculation, we can prove that the characteristic polynomial of S2(n, t) is

P (S2(n, t), x) = xn(t−1)+2(x2 − t)n−1[x2 − (2n + t)].

(10). By properly ordering the vertices of the graph S13(m, n), the adjacency matrix
A = A(S13(m, n)) of S13(m, n) can be written as the (2mn + 2n + 2) × (2mn + 2n + 2)
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Figure 4: Nonregular bipartite graphs.

matrix such that

A = A(S13(m, n)) =

[

A0 A1

A1 A0

]

,

where

A0 =



















0m×m 0m×m . . . 0m×m B1 Jm×1

0m×m 0m×m . . . 0m×m B2 Jm×1
...

...
. . .

...
...

...
0m×m 0m×m . . . 0m×m Bn Jm×1

BT
1 BT

2 . . . BT
n 0n×n 0n×1

J1×m J1×m . . . J1×m 01×n 0



















,
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A1 =



















Im 0m×m . . . 0m×m 0m×n 0m×1

0m×m Im . . . 0m×m 0m×n 0m×1
...

...
. . .

...
...

...
0m×m 0m×m . . . Im 0m×n 0m×1

0n×m 0n×m . . . 0n×m 0n×n 0n×1

01×m 01×m . . . 01×m 01×n 0



















,

and

Bk = [a
(k)
ij ] =

{

1 if j = k
0 otherwise

, Bk ∈ Rm×n, for k = 1, 2, . . . , n.

In view of Lemma 2.1, we distinguish between the following two cases.

Case 1. Let b0 = |xImn+n+1 − (A0 + A1)|. Then we have

b0 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(x − 1)Im 0m×m . . . 0m×m −B1 −Jm×1

0m×m (x − 1)Im . . . 0m×m −B2 Jm×1
...

...
. . .

...
...

...
0m×m 0m×m . . . (x − 1)Im −Bn −Jm×1

−BT
1 −BT

2 . . . −BT
n xIn 0n×1

−J1×m −J1×m . . . −J1×m 01×n x

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

By careful calculation, we can find

b0 = x(x − 1)n(m−1)(x2 − x − m)n−1[x2 − x − m(n + 1)].

Case 2. Let b1 = |xImn+n+1 − (A0 − A1)|. Then we have

b1 =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(x + 1)Im 0m×m . . . 0m×m −B1 −Jm×1

0m×m (x + 1)Im . . . 0m×m −B2 Jm×1
...

...
. . .

...
...

...
0m×m 0m×m . . . (x + 1)Im −Bn −Jm×1

−BT
1 −BT

2 . . . −BT
n xIn 0n×1

−J1×m −J1×m . . . −J1×m 01×n x

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

By careful calculation, we can find

b1 = x(x + 1)n(m−1)(x2 + x − m)n−1[x2 + x − m(n + 1)].

Hence, the characteristic polynomial of S13(m, n) is

P (S13(m, n), x) = x2(x + 1)n(m−1)(x − 1)n(m−1)(x2 + x − m)n−1[x2 + x
−m(n + 1)](x2 − x − m)n−1[x2 − x − m(n + 1)].

The proof is now complete.

We note that these classes of graphs in Figures 3 and 4 are constructed from the
smaller graphs in Figures 1 and 2 (or Figures 4 and 5 of [2]). We believe that it is useful
to construct new classes of integral graphs by using this method.
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4 Nonregular integral bipartite graphs

In this section, by using number theory and computer search, we shall obtain some new
classes of integral graphs from Theorem 3.2. All these classes are infinite and consist of
connected graphs except for several disconnected graphs for which one or more of their
parameters are taken zero.

Theorem 4.1. (see [5, 7]) The tree K1,t is integral if and only if t is a perfect square.

Theorem 4.2. The graph S2(n, t) is integral if and only if one of the following holds: (i)
t and 2n + t are perfect squares, or (ii) n = 1 and t + 2 is a perfect square, where t (≥ 0)
and n (≥ 1) are integers.

In particular, we have the following results for the graph S2(n, t).

(1) If the graph S2(n, t) is integral, and n (≥ 2), t (≥ 0) are integers, then for any positive
integer k the graph S2(nk2, tk2) is integral.

(2) If the graph S2(1, t − 2) = K1,t is integral, and t is positive integer, then for any
positive integer k the graph S2(1, tk

2 − 2) = K1,tk2 is integral.

(3) If t = a2 ≥ 0, n = b2−a2

2
≥ 1, b > a, and a, b, n (≥ 1), t (≥ 0) are integers, then for

any positive integer k the graph S2(nk2, tk2) is integral.

Proof. By (2) of Theorem 3.2, we know
P (S2(n, t), x) = xn(t−1)+2(x2 − t)n−1[x2 − (2n + t)], (n ≥ 1, t ≥ 0).

Hence, a sufficient and necessary condition for the graph S2(n, t) to be integral is the
following: (i) when n ≥ 2, t and 2n + t are perfect squares, or (ii) when n = 1, t + 2 is a
perfect square, where t (≥ 0) and n (≥ 1) are integers.

By (2) of Theorem 3.2, we also get
P (S2(nk2, tk2), x) = xnk2(tk2−1)+2(x2 − tk2)n−1[x2 − (2n + t)k2], (n ≥ 1, t ≥ 0, k ≥ 1).
(1) Because the graph S2(n, t) is integral, and n (≥ 2), t (≥ 0), k (≥ 1) are integers,

we get that t and 2n + t are perfect squares. Then the graph S2(nk2, tk2) is integral.
(2) Because the graph S2(1, t − 2) = K1,t is integral, and t, k are positive integers.

Then t must be a perfect square. Hence the graph S2(1, tk
2 − 2) = K1,tk2 is integral.

(3) Because t = a2 ≥ 0, n = b2−a2

2
≥ 1, b > a, and a, b, n (≥ 1), t (≥ 0), k (≥ 1) are

integers, by (2) of Theorem 3.2, it follows

P (S2(
b2−a2

2
, a2), x) = x

b
2
−a

2

2
(a2−1)+2(x2 − a2)

b
2
−a

2

2
−1(x2 − b2).

So, the graph S2(n, t) = S2(
b2−a2

2
, a2) is integral. By Theorem 4.2 or Theorem 3.2 (2),

also the graph S2(nk2, tk2) = S2(
b2−a2

2
· k2, a2k2) is integral.

Theorem 4.3. The graph S3(m, n, t) (n ≥ m ≥ 1, t ≥ 0) is integral if and only if one of
the following holds:

(1) For m = n, t is a perfect square, and 2n + t = k(k + 2), where k is a positive integer.
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(2) For m < n, let (2m + t, 2n + t) = d, d is a positive integer but not a perfect square,
and m, n, t are given via

2m + t = d(
yk − yl

2
)2, 2n + t = d(

yk + yl

2
)2, k > l > 0, and t = t21

where yk, yl are odd or even, yk, yl ∈ {yn|y0 = 0, y1 = b1, yn+2 = a1yn+1−yn, (n ≥ 0)},
t1 is a nonnegative integer, and a1 + b1

√
d is the fundamental solution of Eq.(10).

(Examples are presented in Table 1. Table 1 is obtained by computer search, where a
and b be those of Eqs.(13) in Theorem 4.3, 1 ≤ a ≤ 15, a ≤ b ≤ a + 10, 1 ≤ m < n,
0 ≤ t ≤ 2500.)

a b m n t a b m n t a b m n t
5 9 13 37 1 5 9 9 33 9 5 9 1 25 25
14 20 100 196 0 14 20 98 194 4 14 20 92 188 16
14 20 82 178 36 14 20 68 164 64 14 20 50 146 100
14 20 28 124 144 14 20 2 98 196 / / / / /

Table 1: Integral graphs S3(m, n, t) = S3(n, m, t).

Proof. By (3) of Theorem 3.2, we know that the graph S3(m, n, t) (n ≥ m ≥ 1, t ≥ 0) is
integral if and only if t(= t21) is a perfect square, and there exist nonnegative integers a and
b such that x4−2(m+n+t+2)x2 +(2m+t)(2n+t) can be factorized as (x2−a2)(x2−b2).

Next we discuss the following two cases:
Case 1. When 1 ≤ m = n, t ≥ 0, by (3) of Theorem 3.2, we get
P (S3(n, n, t), x) = x2n+4(t−1)(x2 − t)2(x2 + 2x − 2n − t)(x2 + 2x − 2n − t).

Hence, the graph S3(n, n, t) is integral if and only if t is a perfect square, and 2n + t =
k(k + 2), where n (≥ 1), k (≥ 1) and t (≥ 0) are integers.

Case 2. When 1 ≤ m < n, t ≥ 0, by (3) of Theorem 3.2, the necessary and sufficient
condition for S3(m, n, t) to be an integral graph is that there are nonnegative integers a
and b such that the following Diophantine equations (13) have solutions.







t = t21,
a2 + b2 = 2m + 2n + 2t + 4,
a2b2 = (2m + t)(2n + t),

(13)

Let (2m + t, 2n + t) = d, 1 ≤ m < n, a < b. By (13), we find

2m + t = dm2
1, 2n + t = dn2

1, ab = dm1n1, (14)

where m1 and n1 are nonnegative integers, m1 < n1, and (m1, n1) = 1. By (13) and (14),
we obtain

(a + b)2 − d(m1 + n1)
2 = 4. (15)

We discuss the following two cases.

the electronic journal of combinatorics 15 (2008), #R8 14



Case 2.1 If d is a perfect square, clearly, the Diophantine equation (15) has no integral
solutions, then the graph S3(m, n, t) is not an integral graph.

Case 2.2 If d is a positive integer but not a perfect square, then the equation (15)

is a Pell equation. Let ε1 = a1+b1
√

d

2
, where a1 + b1

√
d is the fundamental solution of the

equation (10). From (15), we deduce that

a + b = εk
1 + ε1

k, m1 + n1 =
εk
1 − ε1

k

√
d

, k > 0, (16)

where ε1 = a1−b1
√

d
2

and ε1ε1 = 1 (see Lemma 2.8).
By using (16) and ab = dm1n1 (see (14)), we get

(2b − (εk
1 + ε1

k))2 − d(2n1 −
εk
1 − ε1

k

√
d

)2 = 4.

Thus, we have 2b = εk
1 +ε1

k +εl
1 +ε1

l, 2n1 =
εk
1 − ε1

k

√
d

+
εl
1 − ε1

l

√
d

, l > 0.

Hence, m1 =
εk
1 − ε1

k

2
√

d
− εl

1 − ε1
l

2
√

d
, n1 =

εk
1 − ε1

k

2
√

d
+

εl
1 − ε1

l

2
√

d
, k > l > 0.

Let yn =
εn
1 − ε1

n

√
d

, n = 0, 1, 2, . . . .

Then we get the Pell sequence

y0 = 0, y1 = b1, yn+2 = a1yn+1 − yn, (n ≥ 0).

Hence, all integral graphs S3(m, n, t) (where 1 ≤ m < n) are given via

2m + t = d(
yk − yl

2
)2, 2n + t = d(

yk + yl

2
)2, k > l > 0, and t = t21,

where t1 is a nonnegative integer.
The proof is now complete.

Corollary 4.4. For m = n the graph S3(n, n, t) is integral if and only if one of the
following holds: (i) m = n, t = n2, (ii) m = n = 2l(l + 1)− 2k2 ≥ 1, t = 4k2 ≥ 0, or (iii)
m = n = 2l(l + 2) + 1 − 2k(k + 1) ≥ 1, t = (2k + 1)2, where m = n (≥ 1), t (≥ 0), l
(≥ 0), k (≥ 0) are integers.

Proof. Because m = n, by Theorem 4.3 (1), we know that the graph S3(n, n, t) is integral
if and only if t(= k2

1) is a perfect square, and 2n + t = s(s + 2), where n (≥ 1), s (≥ 1)
and t (≥ 0) are integers. Thus n = 1

2
(s(s + 2)− k2

1) must be a positive integer. Hence we
discuss the following three cases:

(i). If k1 = n, then m = n, t = n2, 2n + t = n(n + 2).
(ii). If k1 is even, then s must be even. So, let k1 = 2k and s = 2l, where k and l are

positive integers. Hence m = n = 2l(l + 1) − 2k2 ≥ 1, t = 4k2 ≥ 0.
(iii). If k1 is odd, then s must be odd. So, let k1 = 2k + 1 and s = 2(l + 1), where k

and l are positive integers. Hence m = n = 2l(l+2)+1−2k(k+1) ≥ 1, t = (2k+1)2.

the electronic journal of combinatorics 15 (2008), #R8 15



Theorem 4.5. The graph S4(m, n, p, q) is integral if and only if there exist nonnegative
integers a and b such that x4−(2m+2n+4q+pq)x2 +4mn+8mq+2npq can be factorized
as (x2 − a2)(x2 − b2), and one of the following holds: (i) 2m and pq (= c2) are perfect
squares, (ii) p = 1, q (= c2) is a perfect square, where m (≥ 0), n (≥ 0) p (≥ 1) and q
(≥ 1) are integers.

In particular, let a, b, c, m, n, p, q be as in Theorem 4.5, and let m (≥ 1), n (≥ 1),
p (≥ 1), q (≥ 1), l (≥ 1), k (≥ 1), r (≥ 1), b1, a, b, c be integers. Then we have the
following results for the graph S4(m, n, p, q).

(1) If m = n, then the graph S4(n, n, p, q) is integral if and only if 2n, pq and 2n+4q+pq
are perfect squares, where n (≥ 0), p (≥ 1) and q (≥ 1) are integers.

(2) If m = n, p = q, then the graph S4(n, n, p, p) is integral if and only if 2n and
2n + p2 + 4p are perfect squares, where n and p are positive integers.

(3) If m = n = 2, p = q, then the graph S4(m, n, p, q) is integral.

(4) If m = n = 2l2r2, q = pk2r2, a = 2lr, b = b1r, c = pkr, and let b1, p, k, l be positive
integers satisfying the Diophantine equation

b2
1 − (p2 + 4p)k2 = 4l2. (17)

Then the graph S4(m, n, p, q) is integral.

(5) If m = n = 2l2r2, p = qk2r2, a = 2lr, b = b1r, c = qkr, and let b1, q, k, l be positive
integers satisfying the Diophantine equation

b2
1 − (q2 + 4q)k2 = 4l2. (18)

Then the graph S4(m, n, p, q) is integral.

(6) If m = n = 2l2r2, p = p2
1, q = q2

1r
2, a = 2lr,b = b1r, c = p1q1r, and let b1, p1, q1, l

be positive integers satisfying the Diophantine equation

b2
1 − (p2

1 + 4)q2
1 = 4l2. (19)

Then the graph S4(m, n, p, q) is integral.

(7) If m = n = 2l2, p = q, a = 2l, c = p, and let b, p, l be positive integers satisfying
the Diophantine equation

b2 − 4l2 = p(p + 4). (20)

Then the graph S4(m, n, p, q) is integral.

(8) If m = n, let a, b, c, m, n, p and q be given as in Table 2. Then the graph
S4(m, n, p, q) is integral. (Table 2 is obtained by computer search, where 0 ≤ a ≤ 10,
a ≤ b ≤ a + 10, m = n and m, n, p and q are not as in (3), but represent solutions
of (4)-(7).)
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(9) If m 6= n, p = 1, and (i) a = 4, b = 16, c = 6, m = 2, n = 44, p = 1 and
q = 36, or (ii) a = 6, b = 19, c = 3, m = 14, n = 162, p = 1, q = 9. Then the
graph S4(m, n, p, q) is integral.(Here a, b, c, m, n, p and q are obtained by computer
search, and 0 ≤ a ≤ 15, a ≤ b ≤ a + 30, m 6= n, p = 1).

(10) If m 6= n, and a, b, c, m, n, p, q are given in Table 3. Then the graph S4(m, n, p, q) is
integral. (Table 3 is obtained by computer search, where 1 ≤ a ≤ 10, a ≤ b ≤ a+20
and m 6= n.)

(11) If m = 0 or n = 0, and a, b, c, m, n, p, q given in Table 4, then the graph
S4(m, n, p, q) is integral.(Table 4 is obtained by computer search, where 1 ≤ a ≤ 10,
a ≤ b ≤ a + 30 and m = 0 or n = 0.)

a b c m n p q a b c m n p q
2 7 3 2 2 1 9 4 6 2 8 8 1 4
4 6 4 8 8 16 1 4 8 4 8 8 2 8
4 8 6 8 8 12 3 4 10 6 8 8 3 12
4 12 8 8 8 4 16 4 14 6 8 8 1 36
4 14 10 8 8 5 20 4 14 12 8 8 16 9
6 7 3 18 18 9 1 6 9 3 18 18 1 9
6 9 5 18 18 5 5 6 11 9 18 18 81 1
6 12 6 18 18 2 18 6 12 10 18 18 50 2
6 14 12 18 18 36 4 6 15 9 18 18 3 27
8 12 4 32 32 1 16 8 12 8 32 32 16 4
8 16 8 32 32 2 32 8 16 12 32 32 12 12
8 18 16 32 32 256 1 10 11 3 50 50 3 3
10 12 6 50 50 18 2 10 14 8 50 50 8 8
10 15 5 50 50 1 25 10 15 11 50 50 121 1
10 16 12 50 50 48 3 10 17 9 50 50 3 27
10 18 14 50 50 28 7 10 19 15 50 50 25 9
10 20 10 50 50 2 50 / / / / / / /

Table 2: Integral graphs S4(m, n, p, q).

Proof. By using (4), (4.1) and (4.2) of Theorem 3.2, this theorem and (1), (2) of Theorem
4.5 are shown similarly to Theorem 4.2.

(3) Because m = n = 2, p = q, we have by (4.3) of Theorem 3.2,
P (S4(2, 2, p, p), x) = x4p(x + p + 2)(x + p)(x + 2)p(x − 2)p(x − p)(x − p − 2),

where p is a positive integer. Hence, the graph S4(2, 2, p, p) is integral.
(4)-(7) When m = n, by Theorem 4.5, the graph S4(m, n, p, q) is integral if and only if

2n and pq (= c2) are perfect squares, and x4−(2m+2n+4q+pq)x2+4mn+8mq+2npq =
(x2 − 2n)[x2 − (2n + 4q + pq)] can be factorized as (x2 − a2)(x2 − b2), where m = n (≥ 1),
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a b c m n p q a b c m n p q
4 6 4 2 14 16 1 4 8 6 2 12 9 4
4 16 6 2 44 1 36 6 10 8 2 26 16 4
6 14 8 2 50 4 16 6 14 8 50 2 4 16
6 16 6 2 114 6 6 6 18 8 2 82 2 32
6 22 12 162 2 12 12 7 24 15 162 8 15 15
8 12 10 2 44 25 4 8 12 8 8 56 16 4
8 12 6 18 60 9 4 8 12 6 50 28 9 4
8 14 8 2 92 32 2 8 14 12 8 38 24 6
8 16 12 8 48 9 16 8 18 8 2 152 16 4
8 18 8 128 26 16 4 9 12 9 18 48 27 3
10 14 12 2 66 36 4 10 16 12 2 86 16 9
10 16 12 32 56 16 9 10 20 12 32 74 4 36
10 30 24 18 66 9 64 / / / / / / /

Table 3: Integral graphs S4(m, n, p, q).

a b c m n p q a b c m n p q
1 4 3 2 0 9 1 2 8 6 8 0 9 4
2 28 24 98 0 144 4 3 12 9 18 0 9 9
4 16 12 32 0 9 1 4 21 15 98 0 25 9
5 20 15 50 0 9 25 6 20 12 0 50 3 48
6 24 18 72 0 9 36 7 28 21 98 0 9 49
8 30 24 0 50 8 72 8 32 24 128 0 9 64
9 36 27 162 0 9 81 10 40 30 200 0 9 100

Table 4: Integral graphs S4(m, n, p, q).

p (≥ 1), q (≥ 1), a , b and c are integers. Without loss of generality, assume that a2 = 2n,
b2 = 2n + 4q + pq. Hence, the graph S4(m, n, p, q) is integral if and only if the equations







a2 = 2n,
b2 = 2n + 4q + pq,
pq = c2.

(21)

have only integral roots. We distinguish between the following four cases:
Case 1. Suppose that m = n = 2l2r2, q = pk2r2, a = 2lr, b = b1r, c = pkr, where l

(≥ 1), r (≥ 1), b1 and k(≥ 1) are integers. By Eqs.(21), we get the Diophantine equation
(17). From Theorem 4.5, we see that (4) of Theorem 4.5 is true.

Case 2. Suppose that m = n = 2l2r2, p = qk2r2, a = 2lr, b = b1r, c = qkr, where l
(≥ 1), r (≥ 1), b1 and k(≥ 1) are integers. By Eqs.(21), we get the Diophantine equation
(18). From Theorem 4.5, the result in (5) follows.

Case 3. Suppose that m = n = 2l2r2, p = p2
1, a = 2lr, b = b1r, c = p1q1r and

q = q2
1r

2, where l (≥ 1), r (≥ 1), b1, p1(≥ 1) and q1(≥ 1) are integers. Eqs.(21) yields the
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Diophantine equation (19), which proves Theorem 4.5 (6).
Case 4. Suppose that m = n = 2l2, q = p, a = 2l and c = p, where l (≥ 1) and p(≥ 1)

are integers. Eqs.(21) leads to the Diophantine equation (20). This shows Theorem 4.5
(7).

The results in (8)-(11) can be shown similarly to (3) by using Theorem 3.2 (4).

Remark 4.6. For the Diophantine equations (17)-(19) and (20), all positive integral
solutions can be found from Lemmas 2.2-2.8 and Lemma 2.9, respectively. This shows
that there are infinitely many integral graphs S4(m, n, p, q).

Theorem 4.7. The graph S5(m, n) (m ≤ n) is integral if and only if one of the following
holds:

(1) m = n = 1
2
k(k + 1), where k (≥ 0) is an integer.

(2) m = 0, n = 2k(k + 1), where k (≥ 0) is an integer.

(3) m < n, let(m, n) = d, 2d is a positive integer but not a perfect square, and m, n are
given by

m = 2d(
yk − yl

2
)2, n = 2d(

yk + yl

2
)2, k > l > 0,

where yk, yl are odd or even, yk, yl ∈ {yn|y0 = 0, y1 = b1, yn+2 = 2a1yn+1−yn, (n ≥ 0)},
and a1 + b1

√
2d is the fundamental solution of the Diophantine equation

x2 − 2dy2 = 1. (22)

Examples are presented in Table 5. (Table 5 is obtained by computer search, where a
and b are those of Eqs.(23), 1 ≤ a ≤ 155, a ≤ b ≤ a + 80 and 1 ≤ m < n.)

a b m n a b m n a b m n
7 10 25 49 22 27 243 363 41 58 841 1681
76 85 2890 3610 115 126 6615 7935 / / / /

Table 5: Integral graphs S5(m, n).

Proof. (1)-(2) As in the proof of Theorem 4.3 (1), the results follow by using (5.1) and
(5.2) of Theorem 3.2.

(3) By Theorem Theorem 3.2 (5), the necessary and sufficient condition for S5(m, n)
to be an integral graph is that there are positive integers a and b such that

{

a2 + b2 = 2m + 2n + 1,
a2b2 = 4mn.

(23)
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Let (m, n) = d, 1 ≤ m < n. By (23), we find

m = dm2
1, n = dn2

1, ab = 2dm1n1, (24)

where m1 and n1 are positive integers, and (m1, n1) = 1. By (23) and (24), we obtain

(a + b)2 − 2d(m1 + n1)
2 = 1. (25)

We discuss the following two cases.
Case 1. If 2d is a perfect square, clearly, the Diophantine equation (25) has no integral

solutions. Then the graph S5(m, n) is not an integral graph.
Case 2. If 2d is a positive integer but not a perfect square. Then Eq.(25) is a Pell

equation. Let ε1 = a1 + b1

√
2d be the fundamental solution of Eq.(22). From (25), we

deduce that

a + b =
εk + εk

2
, m1 + n1 =

εk − εk

2
√

2d
, k > 0, (26)

where ε = a1 − b1

√
2d and εε = 1 (see Lemma 2.5).

By using (26) and ab = 2dm1n1 (see (24)), we get

(2b − εk + εk

2
)2 − 2d(2n1 −

εk − εk

2
√

2d
)2 = 1.

Thus, we have 2b =
εk + εk

2
+

εl + εl

2
, 2n1 =

εk − εk

2
√

2d
+

εl − εl

2
√

2d
, l > 0.

Hence, m1 = (
εk − εk

2
√

2d
−εl − εl

2
√

2d
)/2, n1 = (

εk − εk

2
√

2d
+

εl − εl

2
√

2d
)/2, k > l > 0.

Let yn =
εn − εn

2
√

2d
, n = 0, 1, 2, . . . .

Then we get the Pell sequence (see [3])

y0 = 0, y1 = b1, yn+2 = 2a1yn+1 − yn, (n ≥ 0).

Hence, all integral graphs S5(m, n) (where 1 ≤ m < n) are given by

m = 2d(
yk − yl

2
)2, n = 2d(

yk + yl

2
)2, k > l > 0.

The proof is now complete.

In a similar way the next results can be derived by using Theorem 3.2 (6).

Theorem 4.8. The graph S6(m, n, t) is integral if and only if there exist nonnegative
integers a and b such that x4 − (2m + 2n + t + 2)x2 + 2n(2m + 1) + 2t(m + 1) can be
factorized as (x2 − a2)(x2 − b2), and one of the following two conditions holds: (i) t is a
perfect square, (ii) n = 1, where m (≥ 0), n (≥ 1), t (≥ 0) or m (≥ 0), n = t = 0.

In particular, we have the following results for the graph S6(m, n, t).
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(1) For n = t = 0 the graph S6(m, 0, 0) = K2,m+1 ∪ K1 is integral if and only if m =
2k2 − 1, where k is a positive integer.

(2) For m = 0, t = 1 the graph S6(0, n, 1) is integral if and only if n = 2k2 − 1, where
k is a positive integer.

(3) For t = 0, let (2m + 1, 2n) = d. We have the following results.

(i) If d is a perfect square, then S6(m, n, 0) is not an integral graph.

(ii) If d is a positive integer but not a perfect square, then all integral graphs
S6(m, n, 0) (where 1 ≤ m < n) are given via

2m + 1 = d(
yk − yl

2
)2, 2n = d(

yk + yl

2
)2, k > l > 0,

where yk, yl are odd or even, yk, yl ∈ {yn|y0 = 0, y1 = b1, yn+2 = 2a1yn+1 − yn, (n ≥
0)}, and a1 + b1

√
d is the fundamental solution of the Pell equation (2).

(Examples are presented in Table 6. The first solution in Table 6 is obtained by
computer search, where a and b are those of Theorem 4.8, 0 ≤ a ≤ 100, a ≤ b ≤
a + 30 and m≥ 0, n ≥ 0.)

(4) For n = 1, let a, b, m, n, t be as in Theorem 4.8, and a = 1, b = 2, m = 0 and
n = t = 1. Then the graph S6(0, 1, 1) is integral. (This solution is obtained by
computer search, where 0 ≤ a ≤ 25, a ≤ b ≤ a + 20, m ≥ 0, t ≥ 0.)

(5) For m = n−1, t = 1 the graph S6(n−1, n, 1) is integral if and only if n = 1
2
k(k+1),

where k is a positive integer.

(6) For m = n + 1, t = 1 the graph S6(n + 1, n, 1) is integral if and only if n =
1
2
k(k + 1) − 1, where k is a positive integer.

(7) For m = n + 1, t = 9, then the graph S6(n + 1, n, 9) is integral if and only if
n = 1

2
k(k + 1) − 3, where k (≥ 2) is a positive integer.

(8) Let a, b, m, n and t be as in Theorem 4.8, and given in Table 7, then the graph
S6(m, n, t) is integral. (Table 7 is obtained by computer search, where 1 ≤ a ≤ 8,
a ≤ b ≤ a+20). (Note that m, n, t are different from those in Theorem 4.8(1)-(7).)

a b m n t a b m n t
12 14 73 96 0 2520 2522 3175537 3179904 0

Table 6: Integral graphs S6(m, n, t), where 1 ≤ m < n, t = 0.
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a b m n t a b m n t a b m n t
3 6 4 13 9 3 8 4 27 9 3 10 4 45 9
3 12 4 67 9 3 14 4 93 9 3 16 4 123 9
3 18 4 157 9 3 20 4 195 9 3 22 4 237 9
4 5 11 4 9 5 6 12 5 25 5 6 16 9 9
5 8 12 19 25 5 10 12 37 25 5 12 12 59 25
5 14 12 85 25 5 16 12 115 25 5 18 12 149 25
5 20 12 187 25 5 22 12 229 25 5 24 12 275 25
6 7 18 11 25 6 7 22 15 9 6 7 23 6 25
7 8 24 7 49 7 8 25 18 25 7 8 29 22 9
7 8 30 13 25 7 10 24 25 49 7 12 24 47 49
7 14 24 73 49 7 16 24 103 49 7 18 24 137 49
7 20 24 175 49 7 22 24 217 49 7 24 24 263 49
7 26 24 313 49 8 9 32 15 49 8 9 33 26 25
8 9 37 30 9 8 9 38 21 25 8 9 39 8 49
8 11 32 55 9 8 11 59 28 9 / / / / /

Table 7: Integral graphs S6(m, n, t).

Proof. For (3), by Theorem 3.2 (6.3), the necessary and sufficient condition for S6(m, n, 0)
to be an integral graph is that there are positive integers a and b satisfying

{

a2 + b2 = 2m + 2n + 2,
a2b2 = 2n(2m + 1).

(27)

Let (2m + 1, 2n) = d. By (27) we have

2m + 1 = dm2
1, 2n = dn2

1, ab = dm1n1, (28)

where m1 and n1 are positive integers, and (m1, n1) = 1. By using (27) and (28), we get

(a + b)2 − d(m1 + n1)
2 = 1. (29)

Clearly, if d is a perfect square, then the Diophantine equation (29) has no integral
solutions.

Let d be a positive integer but not a perfect square. Then Eq.(29) is a Pell equation.
Let ε = a1 + b1

√
d be the fundamental solution of Eq.(2). By (29), we deduce as before

that

a + b =
εk + εk

2
, m1 + n1 =

εk − εk

2
√

d
, k > 0, (30)

where ε = a1 − b1

√
d and εε = 1.

In view of (30) and ab = 2dm1n1 (see (28)), we get

(2b − εk + εk

2
)2 − d(2n1 −

εk − εk

2
√

d
)2 = 1.
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Thus, we have

2b =
εk + εk

2
+

εl + εl

2
, 2n1 =

εk − εk

2
√

d
+

εl − εl

2
√

d
, l > 0.

Hence,

m1 = (
εk − εk

2
√

d
− εl − εl

2
√

d
)/2, n1 = (

εk − εk

2
√

d
+

εl − εl

2
√

d
)/2, k > l > 0.

Letting

yn =
εn − εn

2
√

d
, n = 0, 1, 2, · · · ,

we obtain the Pell sequence (see [3])

y0 = 0, y1 = b1, yn+2 = 2a1yn+1 − yn, (n ≥ 0).

Hence, all integral graphs S6(m, n, 0) (where 1 ≤ m < n) are given via

2m + 1 = d(
yk − yl

2
)2, 2n = d(

yk + yl

2
)2, k > l > 0,

where m and n are positive integers.
The results in (1)-(2) and (4)-(8) can be proved similarly to Theorem 4.2 by using (6),

(6.1)-(6.7) of Theorem 3.2.

For S6(m, n, t), when t = 0, 1 ≤ m < n, we have obtained all integral graphs
S6(m, n, 0). However, when t = 0, 1 ≤ n < m, we have not found any such integral
graph. So we raise the following question.

Question 4.9. Are there integral graphs S6(m, n, 0) with 1 ≤ n < m? Can we give a
sufficient and necessary condition for S6(m, n, 0) (1 ≤ n < m) to be an integral graph?

With similar arguments as before the following results are obtained by using Theorem
3.2 (7).

Theorem 4.10. The graph S8(m, n) (m ≥ 0, n ≥ 0) is integral if and only if there exist
nonnegative integers a, b, c and d such that x4 − 4x3 − (m + n− 5)x2 + (2m + 2n− 2)x +
mn−m−n and x4 +4x3− (m+n−5)x2 − (2m+2n−2)x+mn−m−n can be factorized
as (x+ a)(x− b)(x+ c)(x− d) and (x− a)(x+ b)(x− c)(x+ d), respectively, where m and
n are nonnegative integers.

In particular, we have the following results for the graph S8(m, n).

(1) For m = 0 the graph S8(0, n) = S8(n, 0) is integral if and only if n = k(k+2), where
k is a nonnegative integer.

(2) For m = n the graph S8(n, n) is integral if and only if n = k(k + 1), where k is a
nonnegative integer.
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a b c d m n a b c d m n
6 8 9 11 50 98 11 13 13 15 147 192
21 23 26 28 486 726 40 42 57 59 1682 3362
44 46 51 53 2028 2700 47 49 50 52 2312 2592
75 77 84 86 5780 7220 / / / / / /

Table 8: Integral graphs S8(m, n) = S8(n, m).

(3) For m < n, let a, b, c, d, m, n, t be as in Theorem 4.10, and given in Table 8, then
the graph S8(m, n) = S8(n, m) is integral.(Table 8 is obtained by computer search,
where 0 ≤ a ≤ 100, 0 ≤ b ≤ a+30, a ≤ c ≤ a+30, b ≤ d ≤ b+30 and 0 ≤ m < n.)

The next statements are derived from Theorem 3.2 (8) -(11).

Theorem 4.11. The graph S9(m, n, p, q) (m, n, p, q ≥ 1) is integral if and only if there
exist positive integers a, b and c such that x6 − (2m + n + 2p + q + nq + 1)x4 + (m + n +
mn + p + 4mp + 2np + q + 2mq + 2nq + 2mnq + pq + 2npq)x2 − (mp + np + 2mnp + mq +
nq + 2mnq + 2mpq + 2npq + 4mpq) can be factorized as (x2 − a2)(x2 − b2)(x2 − c2).

In particular, we have the following results for the graph S9(m, n, p, q).

(1) If m = n = p = q, then the graph S9(n, n, n, n) is integral if and only if n = 2k2,
where k is a positive integer.

(2) If m, n, p, q are not as in (1), and a, b, c, m, n, p, q are as in Theorem 4.11, and
given in Table 9 , then the graph S9(m, n, p, q) = S9(p, q, m, n) is integral.(Table 9
is obtained by computer search, where 1 ≤ a ≤ 7, a ≤ b ≤ a + 5, b ≤ c ≤ b + 5, and
m, n, p, q are not as in (1).)

a b c m n p q a b c m n p q
3 4 5 8 1 8 8 6 10 12 51 3 21 33

Table 9: Integral graph S9(m, n, p, q) = S9(p, q, m, n).

Theorem 4.12. The graph S10(n) is integral if and only if n = k(k + 2), where k (≥ 0)
is an integer.

Theorem 4.13.

(1) For m ≥ 1, n ≥ 1 the graph S13(m, n) is integral if and only if (i) m = k(k + 1)
and m(n + 1) = l(l + 1), where k and l are positive integers, or (ii) n = 1, and
m = 1

2
k(k + 1), where k is a positive integer.

(2) For m = n = k(k + 1), k is a positive integer, then the graph S13(n, n) is integral.
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Theorem 4.14. The graph S17(m, n, p, q) is integral if and only if there exist positive
integers a, b and c such that x6− (2m+2n+p+ q +pq +1)x4 +[m(2+4n+2p+ q +pq)+
n + p + np + 2nq + 2pq + 2npq + pq2]x2 − [2m(n + p + np + nq + pq + npq) + 2npq(q + 1)]
can be factorized as (x2 − a2)(x2 − b2)(x2 − c2), and one of the following two conditions
holds: (i) 2m is a perfect square, (ii) q = 1, where m, n, p, q are positive integers.

In particular, we have the following results for the graph S17(m, n, p, q).

(1) If m = n, then the graph S17(n, n, p, q) is integral if and only if n = 2k2, and there
exist nonnegative integers a and b such that x4− [2n+(p+1)(q+1)]x2+(q+1)[n(p+
1)+p(q+1)] can be factorized as (x2 −a2)(x2− b2), where n, p, q and k are positive
integers.

(2) If m = n = p = q, then the graph S17(n, n, n, n) is integral if and only if n = 2k2,
where k is a positive integer.

(3) If m = n, p = 1, then the graph S17(n, n, 1, q) is integral if and only if n = 2r2s2h2,
q = (r2 − s2)2h2 − 1, where (r, s) = 1, r > s, 2 - r + s, and n, q, r, s, h are positive
integers.

(4) If m = n = 2k2l2, p = 2l2 and q = k2(2l2 + 1) − 1, then the graph S17(n, n, p, q) is
integral.

(5) For m = n, let a, b, m, n, p and q be as in (1), and not as in (2)-(4), and given by
Table 10. Then the graph S17(n, n, p, q) is integral.(Table 10 is obtained by computer
search, where 1 ≤ a ≤ 40, a ≤ b ≤ a+20, and m, n, p and q are not as in (2)-(4).)

(6) If m 6= n, p = m, q = n, then the graph S17(m, n, m, n) is integral if and only if there
exist nonnegative integers a and b such that x4− (2m+2n+mn+1)x2 +2m(n+1)2

can be factorized as (x2−a2)(x2−b2), and one of the following two conditions holds:
(i) 2m and n + m are perfect squares, (ii) n = 1, m + 1 is a perfect square, where
m and n are positive integers.

(7) If m = p = 2, q = n, then the graph S17(2, n, 2, n) is integral if and only if n = l2−2
and 2n+2 = k(k+1), where n, l and k are positive integers. (Examples are presented
in Table 11. Table 11 is obtained by computer search, where 1 ≤ k ≤ 10000.)

(8) For m 6= n, let a, b, c, m, n, p, q be as in Theorem 4.14, and given in Table 12.
Then the graph S17(m, n, p, q) is integral.(Table 12 is obtained by computer search,
where 1 ≤ a ≤ 13, a ≤ b ≤ a + 5, b ≤ c ≤ b + 10, and m 6= n.)

a b m n p q a b m n p q
8 18 50 50 11 23 14 34 288 288 193 3
16 36 200 200 11 95 / / / / / /

Table 10: Integral graph S17(n, n, p, q).
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n l k n l k n l k
2 2 2 14 4 5 119 11 15

527 23 32 4094 64 90 17954 134 189
139127 373 527 609959 781 1104 4726274 2174 3074

20720702 4552 6437 / / / / / /

Table 11: Integral graphs S17(2, n, 2, n).

a b c m n p q a b c m n p q
4 5 6 2 14 2 14 5 5 6 2 16 1 24
7 9 10 18 48 1 48 9 10 11 18 52 1 80
11 11 12 8 64 1 120 11 14 15 50 100 1 120
11 15 16 2 119 2 119 13 14 15 18 108 1 168
13 15 16 32 124 1 168 / / / / / / /

Table 12: Integral graphs S17(m, n, p, q).

Proof. (i) Similar to the proof of Theorem 4.2, this theorem and the statements in (1),
(2), (4)-(8) are proven by Theorem 3.2 (11), (11.1)-(11.5).

(ii) Next we shall prove (3). By (11.3) of Theorem 3.2, the graph S17(n, n, 1, q) is
integral if and only if 2n, q+1 and 2n+q+1 are perfect squares. Assume that n = 2k2h2,
q + 1 = l2h2 and 2n + q + 1 = t2h2, where k, l, t, h are positive integers, and (l, 2k) = 1.
Then we get

l2 + (2k)2 = t2.

Lemma 2.11 yields l = r2 − s2, 2k = 2rs, t = r2 + s2, n = 2r2s2h2, q = (r2 − s2)2h2 − 1,
where (r, s) = 1, r > s > 0, 2 - r + s, and n, q, r, s, h are positive integers.

By (7) of Theorem 4.14, we see that the graph S17(2, n, 2, n) is integral if and only if
n = l2 − 2 and 2l2 − 2 = k(k + 1), where n, l and k are positive integers. Hence, we raise
the following question.

Question 4.15. What are all positive integral solutions of the Diophantine equation 2l2−
2 = k(k + 1)?

We finally list the results obtained from Theorem 3.2 (12)-(15).

Theorem 4.16. The graph S18(n, p, q, t) is integral if and only if there exist nonnegative
integers a, b, c, d, e and f such that x6−4x5−(2n+p+q+t−6)x4+(6n+2p+2q+4t−4)x3−
(6n+p−np+q−nq−pq+6t−pt−qt−1)x2+(2n−np−nq+4t−2pt−2qt)x−t(p−1)(q−1)
can be factorized as (x + a)(x + b)(x + c)(x − d)(x − e)(x − f), and one of the following
two conditions holds: (i) t is a perfect square, (ii) n = 1, where n ≥ 1, p, q and t are
nonnegative integers.

In particular, we have the following results for the graph S18(n, p, q, t).
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(1) For p = q the graph S18(n, p, p, t) is integral if and only if there exist nonnegative
integers a, b, c and d such that x4−2x3− (p+ t+2n−1)x2 +2(n+ t)x+ t(p−1) can
be factorized as (x+a)(x− b)(x+ c)(x−d), and one of the following two conditions
holds: (i) p and t are perfect squares, (ii) n = 1, and p is a perfect square, where n
is a positive integer, and p, t are nonnegative integers.

(2) For p = q = t = 1 the graph S18(n, 1, 1, 1) is integral if and only if n = 1
2
k(k+1)−1,

where k (≥ 2) is a positive integer.

(3) For p = q = t = 0 the graph S18(n, 0, 0, 0) = S5(n, n) is integral if and only if
n = 1

2
k(k + 1), where k is a positive integer.

(4) For n = 2t, p = q = t = k2 the graph S18(2k
2, k2, k2, k2) is integral if and only if k

is a positive integer satisfying the Pell equation

l2 − 8k2 = 1. (31)

Proof. Similar to the proof of Theorem 4.2, we easily check the correctness of this theorem
and the results in (1), (2) and (3) by using Theorem 3.2 (12).

Next we prove (4). By Theorem 3.2 (12.4), we see that the graph S18(2k
2, k2, k2, k2)

is integral if and only if there are positive integers k, r and s such that
{

k(k − 1) = r(r + 2k + 1),
k(k + 1) = s(s + 2k − 1).

(32)

This relation yields

(2k + r + s)(s − r − 1) = 0 and s2 + (2k − 1)s − k(k + 1) = 0.

Then s = r + 1, and s = −(2k−1)±
√

8k2+1
2

.
Hence, s is a positive integer if and only if 8k2 +1 is a perfect square. Let 8k2 +1 = l2,

then k is a positive integer satisfying the Pell equation (31). All positive integral solutions
of (31) are given by

l + k
√

8 = un + vn

√
8 = (3 +

√
8)n,

where n = 1, 2, · · · .
Thus, the proof is complete.

Theorem 4.17. The graph S19(m, n, p, t) is integral if and only if (x2 − t)n(m−1) [x4 −
(m + t + p + 1)x2 + m + t + pt]n−1{x6 − (m + n + mn + p + np + t + 1)x4 + [m + n + mn +
mn2 − 2np + 2mnp + mn2p + np2 + t(1 + n + p + np)]x2 − n(p − 1)2(mn + t)} = 0 has
only integral roots, where m (≥ 1), n (≥ 1), p (≥ 1), t (≥ 0) are integers.

In particular, we have the following results for the graph S19(m, n, p, t).

(1) If p = 1, then the graph S19(m, n, 1, t) is integral if and only if (x2 − t)n(m−1)[x4 −
(m+ t+2)x2 +m+2t]n−1[x4− (m+2n+mn+ t+2)x2 +(n+1)(m+2mn+2t)] = 0
has only integral roots, where m(≥ 1), n (≥ 1) and t (≥ 0) are integers.
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(2) If m = 2, p = t = 1, then the graph S19(2, n, 1, 1) is integral if and only if n =
1
2
k(k + 1) − 1, where k (≥ 2) is a positive integer.

Theorem 4.18. The graph S20(n, p, q) is integral if and only if (i) n = k(k + 1) and
pq = (l + k + 1)(l − k), or (ii) p = 1, n = r and q = s(s + 1)− r ≥ 1, where n, p, q, l, k,
r and s are positive integers, and l > k.

Corollary 4.19. If the graph S20(k(k+1), p, q) is integral, then the graph S20(k(k+1), q, p)
is integral too.

Theorem 4.20. The graph S21(m, t) is integral if and only if (i) t = k(k + 1) and
m = (l + k + 1)(l − k), or (ii) m = 1 and t = r(r + 1) − 1, where m (≥ 1), t (≥ 0) , l
(≥ 1) , k (≥ 0) and r (≥ 1) are integers, and l > k.

5 Further discussion

In the present paper, we have mainly investigated the 15 nonregular bipartite integral
graphs S1, S2, S3, S4, S5, S6, S8, S9, S10, S13, S17, S18, S19, S20 and Figure 5 (i.e. S21)
of [2]. Fifteen classes of larger integral graphs were constructed based on the structures
of these integral graphs. These classes are connected nonregular and bipartite graphs
except for several disconnected graphs for which one or several of the parameters are
zero. However, we have not found appropriate methods to construct new integral graphs
from the graphs S7, S11, S12, S14, S15, S16 of [2] or Theorem 3.1. Thus, we raise the
following question.

Question 5.1. Can we construct new integral graphs from the graphs S7, S11, S12, S14,
S15, S16 of [2] or Theorem 3.1?

Although we obtained fifteen new classes of integral graphs from the graphs S1 − S6,
S8 − S10, S13, S17 − S21 in Theorem 3.1 or [2], we think that other methods can be found
to construct new integral graphs. For example, let K t

n be obtained by joining t new end

vertices to each vertex of Kn, then the graph K
n(n+1)
n(n+1) is integral (see [10]). We note that

the graph Kt
n can be constructed from S1 = K1,4. Hence, we raise the following question.

Question 5.2. How to construct new integral graphs from the graphs S1, S2, S3, S4, S5,
S6, S8, S9, S10, S13, S17, S18, S19, S20, S21 in Theorem 3.1 or [2]?

For the graphs S1(t) = K1,t, S2(n, t), S3(m, n, t), S5(m, n), S10(n), S13(m, n), S20(n,
p, q), S21(m, t), in fact, we have given a necessary and sufficient integrality condition.
However, it is very difficult to find all integral graphs of the type S4(m, n, p, q), S6(m, n, t),
S8(m, n), S9(m, n, p, q), S17(m, n, p, q), S18(n, p, q, t), S19(m, n, p, t). Hence, we come to

Question 5.3. Can we give a better necessary and sufficient condition for the above 7
classes of graphs to be integral?
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Note that in connection with Question 5.3, in the present paper, we found some results
for the above 7 classes of graphs by computer search and number theory. It was proved
that the problem of finding such integral graphs is equivalent to the problem of solving
some Diophantine equations. Finally we ask

Question 5.4. What are all positive integral solutions for these Diophantine equations,
for example for the Diophantine equations (13)-(20), (23), and so on?
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[2] K. T. Balińska and S. K. Simić, The nonregular, bipartite, integral graphs with
maximum degree 4. Part I: Basic properties, Discrete Math. 236 (1-3) (2001) 13-24.

[3] Z.F. Cao, Integral trees of diameter R (3 ≤ R ≤ 6) (in Chinese), Heilongjiang Daxue
Ziran Kexue Xuebao (2) (1988) 1-3, 95.

[4] Z.F. Cao, Introductory Diophantine Equations (in Chinese), Haerbin Polytechnical
University Press (1989).
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