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We use G to denote a simple graph with vertex set V(G) = {vy, vo, ..
E(G). The adjacency matrix A = A(G) = [a;;] of G is an n X n symmetric matrix of 0’s
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Abstract

A graph is called integral if all its eigenvalues (of the adjacency matrix) are
integers. In this paper, the graphs S1(t) = K14, Sa(n,t), Ss(m,n,t), Si(m,n,p,q),
Ss(m,n), Sg(m,n,t), Ss(m,n), So(m,n,p,q), Sio(n), Siz(m,n), Siz(m,n,p,q),
S1s(n, p,q,t), S19(m,n,p,t), Seo(n,p,q) and Sa1(m, t) are defined. We construct the
fifteen classes of larger graphs from the known 15 smaller integral graphs S — Sg,
Ss — S10, S13, S17 — S21 (see also Figures 4 and 5, Balinska and Simié¢, Discrete
Math. 236(2001) 13-24). These classes consist of nonregular and bipartite graphs.
Their spectra and characteristic polynomials are obtained from matrix theory. We
obtain their integral property by using number theory and computer search. All
these classes are infinite. They are different from those in the literature. It is proved
that the problem of finding such integral graphs is equivalent to solving Diophantine
equations. We believe that it is useful for constructing other integral graphs. The
discovery of these integral graphs is a new contribution to the search of integral
graphs. Finally, we propose several open problems for further study.
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and 1’s with a;; = 1 if and only if v; and v; are joined by an edge. The characteristic
polynomial of G is the polynomial P(G) = P(G,x) = det(x1, — A), where and in the
sequel I, always denotes the n x n identity matrix. The spectrum of A(G) is also called
the spectrum of G' and denoted by Spec(G) ([5]).

A graph G is called integral if all eigenvalues of the characteristic polynomial P(G, x)
of GG are integers. The research on integral graphs was initiated by Harary and Schwenk
[7]. In general, the problem of characterizing integral graphs seems to be very difficult.
Thus, it makes sense to restrict our investigations to some interesting families of graphs.
So far, there are many results for some particular classes of integral graphs [1]. For all
other facts or terminology on graph spectra, see [5].

In [9] we successfully constructed integral trees of diameters 4 and 6 by identifying the
centers of two trees. In [10, 11] we investigated the structures of some classes of graphs and
deduce their characteristic polynomials by spectral graph theory. Integral graphs in these
classes were given by using number theory and computer search. In this paper, a new
method of constructing fifteen infinite classes of integral graphs is presented. In getting
the results we proceed as follows: firstly, we give the construction of the (infinite) families
of new graphs from the 15 finite classes of integral graphs identified by Balinska and
Simié [2], then calculate their characteristic polynomials (Theorem 3.2) by using matrix
theory, and then, by making use of number theory (Diophantine equations) and computer
search, we obtain fifteen infinite classes of integral graphs in these classes. These classes
are connected nonregular and bipartite graphs except for several disconnected graphs for
which one or several of their parameters are taken zero. Finally, we propose several open
problems for further study.

2 Some facts in matrix theory and number theory

In this section, we shall give a useful property of matrices and some facts in number
theory.
First of all, we give the following notations. All other notations and terminology on
matrices can be found in [6].
(1) R denotes the set of real numbers.
(2) R™ ™ denotes the set of m x n matrices whose entries are in R.
(3) AT denotes the transpose of the matrix A.
(4) Jyxn and Oy,x, denotes the m x n all 1 and all 0 matrix, respectively.

Lemma 2.1. (/6/, page 181) Let A = ﬁo ﬁl , where Ay € R™*", k =0,1. Then the
1 Ao

eigenvalues of A are those of Ag + Ay together with those of Ay — Aj.

Secondly, we shall give some facts in number theory. All other notations and termi-
nology on number theory can be found in [4, 8].
Let d be a positive integer but not a perfect square, let m # 0 be an integer. We shall
study the Diophantine equation
2% — dy® = m. (1)
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If 1, y1 is a solution of (1), for convenience, then x; + y1V/d is also called a solution
of Eq.(1). Let s + tv/d be any solution of the Pell equation

2? —dy® = 1. (2)

Clearly, (z1+y1Vd)(s+tVd) = x154+yitd+ (y1s+x1t)V/d is also a solution of Eq.(1). This
solution and x; + y1\/a are called associate. If two solutions z; + yl\/a and 9 + yz\/a of
Eq.(1) are associate, then we denote them by 1 + y1Vd ~ 5 +y2V/d. Tt is easy to verify
that the associate relation ~ is an equivalence relation. Hence, if Eq.(1) has solutions,
then all the solutions can be classified by the associate relation. Any two solutions in the
same associate class are associate each other, any two solutions not in the same class are
not associate.
The following Lemmas 2.2, 2.3, 2.4 and 2.5 can be found in [4].

Lemma 2.2. A necessary and sufficient condition for two solutions x1 4+ y1vVd and x4 +
yoV'd of Eq.(1) (m fized) to be in the same associate class K is that

129 — dy1ye = 0(mod|m|) and y1x2 — x1y9 = 0(mod|m|).

Let 1 +41v/d be any solution of Eq.(1). By Lemma 2.2, we see that —(z1 + y;v/d) ~
T —|—y1\/77 —(x1 — ylx/a) ~ T1— 1Y Vd. Let K and K’ be two associate classes of solutions
of Eq. (1) such that for any solution z+y+v/d € K, it follows 2 —y\/d € K’. Then also the
converse is true. Hence, K and K’ are called conjugate classes. If K = K', then this class
is called an ambiguous class. Let ug + vgV/d be the fundamental solution of the associate
class K, i.e. vy is positive and has the smallest value in the class K. If the class K is
ambiguous, we can assume that ug > 0.

Lemma 2.3. Let K be any associate class of solutions of Eq.(1), and let w4+ voVd be the
fundamental solution of the associate class K. Let xo+ yov/d be the fundamental solution
of the Pell equation (2). Then

Yyovm ;
— >0,
0<U0< v/ 2(zo+1) me (3)
=0T wmm e <0,

\/2(zo—1)’

0<ug < { Vom0 (4)

¢(%—1xmm if m < 0.

N[

N[

Lemma 2.4.

(1) Let d be a positive integer but not a perfect square, m # 0, and let m be an integer.
Then there are only finitely many associate classes for Eq.(1), and the fundamental
solutions of all these classes can be found from (3) and (4) by a finite procedure.
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(2) Let K be an associate class of solutions of Eq. (1), and let ug + vov/d be the fun-
damental solution of the associate class K. Then all solutions of the class K are
given by

T+ y\/g = :l:(U(] + /U(]\/g)(x(] + yo\/a)”,

where n is an integer, and xo 4+ yov/'d is the fundamental solution of Eq.(2).

(3) If ug and vy satisfy (3) and (4) but are not solutions of Eq.(1), then there is no
solution for FEq.(1).

Lemma 2.5. Let d (> 1) be a positive integer that is not a perfect square. Then there
exist solutions for the Pell equation (2), and all the positive integral solutions xy,yx of
Eq.(2) are given by

o tuypnVd=¢% k=1,2,..., (5)

where € = xo + yo\/d is the fundamental solution of Eq.(2). Put & = o — yov/d. Then we

have €€ = 1 and P -
e"+¢€ v —¢€ b =19

, = — =1,2,.... 6
9 Yk 2\/8 ()

The following Lemmas 2.6, 2.9, 2.11 and Lemmas 2.7, 2.8 can be found in [8] and [4],
respectively.

T =

Lemma 2.6. Let u,v be the fundamental solution of Eq.(2), where d(> 1) is a positive
integer but not a perfect square. Then the Pell equation

22 —dy? = -1 (7)
has solutions if and only if there exist positive integer solutions s and t for the equations
24 dt* =u, 2st=w,

such that moreover s and t are the fundamental solution of Eq.(7).

Lemma 2.7. Suppose the Pell equation (7) is solvable. Let p = xq + yo/d be the fun-
damental solution of Fq.(7), where d(> 1) is a positive integer but not a perfect square.
Then the following holds.

(1) All positive integral solutions xy, yr of Eq.(7) are given by
xk+yk\/a:pk, ]{321,3,5,.... (8)
(2) All positive integral solutions x, yx of Eq. (2) are given by relation (8), k = 2,4, .. ..

(38) Let p = 2o — yoV/d, then pp = —1, and the solutions xy, yx in (1) and (2) can be
given by

, = , k=1,2,.... 9
9 Yk 2\/5 ()
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Lemma 2.8.

(1) If there is a solution for Eq.(1), where m # 0 is integer and d(> 1) is a positive
integer but not a perfect square, then Eq.(1) has infinitely many solutions.

(2) Let z1,y; be the fundamental solution of the Diophantine equation
2? — dy* = 4, (10)

where d(> 1) is a positive integer but not a perfect square. Then all positive integral
solutions xy, yx of Eq.(10) are given by

1 +y1\/3
2

T+ ypVd
A -

( "*ook=1,2,.... (11)

In the following symbol (a,b) = d denotes the greatest common divisor d of integers
a, b, while alb (a t b) means that a divides b (a does not divide b) .

Lemma 2.9. Let m be a positive integer. If 2+ m or 4|m, then there exist positive integral
solutions for the Diophantine equation

? —y? =m. (12)

Remark 2.10. We can give a method for finding the solutions of Eq.(12). Suppose that
m = mimy. Let x —y = mq, x +y = my and 2|(my + my). Then the solutions of Eq.
(12) can be found easily (see [8]).

Lemma 2.11. If x > 0,y > 0, z > 0, (z,y) = 1 and 2|y, then all positive integral
solutions of the Diophantine equation x> + y? = 2% are given by

r=r>—s Yy = 2rs, z =12+ s

where (r,s) =1, 7>s>0 and 247+ s.

3 The characteristic polynomials of some classes of
graphs
In this section, we investigate the structures of the nonregular bipartite integral graphs

in [2]. Fifteen new classes of larger graphs are constructed based on the structures of 15
ones of the 21 smaller integral graphs in Figures 4 and 5 of [2].

Theorem 3.1. ( [2] ) The graphs in Figures 1 and 2 are nonregular bipartite integral
graphs with mazximum degree four. (The graphs in Figure 1 are integral graphs with number
of vertices up to 16.)
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Sn 512 Ss S1a T
Figure 1: Nonregular bipartite integral graphs with maximum degree 4 and at most 16
vertices.

We can generalize the result of Theorem 3.1 and construct fifteen types of graphs
from 15 smaller integral graphs S — Sg, Ss — Sto, S13, S17 — S91 in Figures 1 and 2. The
following Theorem 3.2 on their characteristic polynomials is obtained from matrix theory.

Theorem 3.2. Let m, n, p, ¢ and t be nonnegative integers. Then the characteristic
polynomials of the fifteen types of graphs in Figures 3 and 4 are as follows:

(1) (see [5]) P(Ky4,2) =z (a? — 1), (t > 0).
(2) P(Sa(n,t),z) = a"ED+2(22 — )"~ 122 — 2n+ )], (n > 1, t > 0).

Sn

Figure 2: A nonregular bipartite integral graph with maximum degree 4 and 26 vertices.
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(3) P(Ss(m,n,t),x) = g™+ (22 — )2[2* —2(m +n +t+2)2> + (2m +1)(2n + )],
(m>1,n>1,t>0).

(8.1) P(Ss3(n,n,t),z) = 2?01 (22 — $)2(2? + 22 — 2n — t)(2® + 22 — 2n — 1), (n > 1,
£>0).

(3.2) P(S3(m,n,0),z) =z™ ™" [z* — 2(m +n + 2)2z? + 4mn], (m > 1, n > 1).

(4) P(Ss(m,n,p,q),z) = a™PT272(2> — 2m)P~1 (2 — pq) [z* — (2m + 2n+4q + pg)z* +
4mn 4 8mq + 2npq], (m >0, n>0,p>1, ¢ > 1).

(4.1) P(Ss(n,n,p,q),x) = a"@rD+2-2(32 — 2n)P(2? — pq) [2* — (2n + 4q + pq)], (n > 0,

p>1,q¢>1).

(4.2) P(Sy(n,n,p,p),x) = a"®TIT272(32 —2n)P (x4 p)(x—p) [2* — (2n+p*+4p)], (n > 1,
p>1).

(4.8) P(54(2,2,p,p),x) =2 (x4+p+2)(x+p)(z+2)P(x—2)"(x—p)(z—p—2), (p > 1).

(4-4) P(S1(0,n,p,q),x) = a"T2+20-4(o2 — pg)[z* — (2n + 4q + pq)a® + 2npq], (n > 0,
p>1,¢>1).

(4.5) P(S4(m,0,p,q), z) = 2™PT272(22 — 2m)P~1(2? — pq)[z* — (2m + 4q + pq)z* + 8mq],
(m>0,p>1,q2>1).

(5) P(Ss(
(5.1) P(Ss(n,n),x) = 2> 2(x+1)(x — 1)(2* + z — 2n)(2®> — z — 2n), (n > 0).
(5.2) P(S5(0,n),z) = P(S5(n,0),z) = 2"(z + 1)(z — 1)[z* — 2n + 1)], (n > 0).
(S6(

m,n),z) =" 2z +1)(x—1)[z* — (2m+2n+1)z* +4mn], (m > 0, n > 0).

(6) P(Ss(m,n,t),x) = a"=DHm2 (22 — )zt — (2m + 20+t +2)2® + 2n(2m + 1) +
2(m+1)], (m>0,n>1,¢t>0) or (m>0,n=t=0).

(61) (56 m, 0 0) ) P(K27m+1 U Kl,l’) = l‘m+2[l’2 — (2m+ 2)], (m Z 1)
(6.2) P(Ss(0,n,t),x) = a"=D+2(22 — )"zt — (2n 4+t +2)22 +2n+2t], (n > 1, ¢ > 0).
(6.3) P(Ss(m,n,0),z) =z"™™[z* — (2m + 2n + 2)z* + 2n(2m + 1)], (m >0, n > 0).

t>0
(6.5) P(Sg(n—1,n,1),2) =" (z+1)" Yz - 1)"z*+2—2n)(2®> —z —2n), (n > 1).

(6.6) P(Ss(n+1,n,1),2) =a"3(xz+1)" Yz —1)" (2 +2—2n—2)(2* —z — 2n — 2),
(n>0).

(
(
(
(6.4) P(Ss gm; 1,t),2) = 2™ gt — (2m + ¢ 4+ 4)2® + 2(2m + 1) + 2t(m + 1)], (m > 0,
6(n
6(

(6.7) P(Sg(n+1,n,9),2) = 293 (x +3)" Yz —3)" Ha? +2—2n—6) (22> — 2 — 2n — 6),
(n>1).
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(7) P(Sg(m,n),z) = (z+ 1)™™"2(x — 1)™"2[x? — 423 — (m +n —5)2> + (2m + 2n —
2)x +mn —m — n|[z* + 423 — (m +n —5)z* — (2m + 2n — 2)x + mn — m — n|,
(m>0,n>0).

(7.1) P(Sg(n,n),z) = (x+1)>"2(x—1)"2(2>+z—n) (2 —z—n)(2* + 3z —n+2)(2? —
3z —n+2), (n>0).

(7.2) P(Sg(0,n),z) = P(Ss(n,0),z) = (z+1)"(x—1)"(2*+2x —n)(2? =2z —n), (n > 0).

(8) P(Sy(m,n,p,q),x) = a™ T2z — (2m +n +2p+ g + ng + L)z + (m +n +
mn + p+4mp + 2np + q + 2mq + 2nq + 2mnq + pq + 2npq)x? — (mp + np + 2mnp +
mq + ng + 2mng + 2mpq + 2npq + dmpq)], (m>1,n>1p>1,q¢ > 1).

(8.1) P(So(n,n,n,n),z)=z"2(z* —2n)?(x+n+1)(z —n—1), (n >1).

(9) P(Sio(n),z) = 22"V (x +2)" Yo+ 1)(x —1)(x — 2)" " (2? + 20 — n)(2? — 22 —n),
(n > 0).

(10) P(Si3(m,n),x) = 2?(z+ 1) (z—1)"" (22 42 —m)" 2? +x—m(n+1)](2? -
r—m)" 2 —z—mn+1)], (m>1,n>1).

(11) P(Si7(m,n,p,q),x) = ™= (g2 —om)=Hab — 2m+2n+p+q+pg+ 1)zt +
[(m(2+4n +2p + ¢+ pq) +n + p + np + 2nqg + 2pq + 2npq + pg?la? — [2m(n + p +
np +nq +pq+npq) +2npg(q+ 1]}, (m =1, n=>1,p=1,¢>1).

(11.1) P(Siz(n,n,n,n),z) = 2"t Yz +n+1)(z —n — 1)(22 — 2n)"*L, (n > 1).

(
(11.2) P(S17(n,n,p,q),x) = a1 (22 —2n)H{x* — 2n+ (p+1) (¢ +1)]2* + (¢+ 1) [n(p+
D4plg+1)]} (n>1,p>1,¢>1).
(

(11.3) P(Si7(n,n,1,q),x) = 2™ (22 = 2n)¥(2* —q—1)(2> = 2n—q—1), (n > 1, ¢ > 1).

(11.4) P(Syz(m,n,m,n),z) = g™ +tmn=1(g2 —2m)"~1(2? —m —n)[z* — (2m +2n+mn +
Dz? 4+ 2m(n+1)%, (m>1,n>1).

(11.5) P(S17(2,n,2,n),x) = 25" (x +2)" Yz — 2)" Y22 —n —2)(2? + 2 — 2n — 2)(2? —
xr—2n-—2), (n>1).

(12) P(Sis(n,p,q,t),x) = 2?0 (z + 1)PHa=2(z — 1)PHa2(32 — )20 [26 — 425 — (2n +
p+q+t—06)xt+ (6n+2p+2q+ 4t —4)x3 — (6n+p—np +q—nqg— pq+ 6t — pt —
gt — 1)z + (2n — np — nq + 4t — 2pt — 2qt)x — t + pt + qt — pqt][z° + 42° — (2n +
p+q+t—6)zt— (6n+2p+2¢+4t—4)x® — (6n+p—np+q—nqg—pq+ 6t —
pt —qt — 1)z* — (2n — np — ng + 4t — 2pt — 2qt)x — t + pt + qt — pqt], (n > 1, p > 0,
q>0,t>0).

(12.1) P(S1s(n,p,p, 1), x) = 2" (z + 1) (2 — 1)272(2? — 1)@ V(z 4 1)* — p][(x —
1)2— p] ot =223 — (p+t+2n—1D2*+2(n+t)x+t(p—1)|[z* +22° — (p+t+2n —
Da? —2n+t)r+tp—1), (n=1,p=0,t=0).
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(12.2) P(Sis(n,t,t,t),z) = 220D (2 4+1)272(x - 1)272(22 = )2 D[(z +1)2 —t][(x —1)% -
[zt — 22% — (2t + 2n — 1)2® + 2(n + )z + t(t — V)][z* + 22% — (2t + 2n — 1)z —
2n +t)x +t(t — 1)), (n> 1, ¢ > 0).

(12.3) P(S1s(n,1,1,1),2) = 2*(z +2)(z + 1)*" Yz — 1)z — 2)(2® + x — 2n — 2)(2? —
r—2n—-2), (n>1).

(12.4) P(Sis(2k2 k2, k2, k?), x) = a** =D (4 k4-1) (2+k) 2% D (a4 k—1)(x+1)2" 2 (2 —
D2z — k+1)(x — k)2 D (z — k — )2 + 2k + D)z — k(k — 1)][22 — (2k +
Da — k(k —1D)][z2 + 2k — Do — k(k + 1)][2% — 2k — Da — k(k +1)], (k> 1).

(18) P(Sio(m,n,p,t), ) = 2D (g 4 )= (g — 1) D[zt — (m +t+p+ 1)z? +
m+t+pt" a2 — )" — (m A n+mn+p+ap+t+ D)zt +[m+n+mn+
mn? = 2np+2mnp+mn*p+np* +t(1+n+p-+np)lz* —n(p—1)*(mn+t)}, (m > 1,
n>1,p>1,t>0).

(18.1) P(Sig(m,n,1,t),x) = amni=Din+2(g2 _pynm=114 _ (1 4t 4+ 2)2? 4 m+2t]" " [z* —
(m+2n+mn+t+2)22+ (n+1)(m+2mn+2t), (m>1,n>1,t>0).

(18.2) P(Si9(2,n,1,1),2) = 2"2(z+ 1) Nz - 1) Ho+2)" Nz —2)" 1 (2? + 2 —2n —
2)(z? —x —2n—2), (n >1).

(14) P( o(n,p,q),z) = (x4 1)Pr=DF(g — 1)P=D+9 (32 — g — )P~ (2?2 + x —n)P~! (22 —
q—n)(iv2+fﬂ—pq—n), n>1,p>1,q>1).

(15) P(So1(m,t),x) = x?™E0+2(32 g )"~ (22 4z —t)" N (2? —z—m—t) (2 +r—m—1),
(m>1,t>0).

Proof. We only prove (2) and (10). The characteristic polynomials of the other 13 types
can be obtained similarly.

(2). By properly ordering the vertices of the graph Ss(n,t), the adjacency matrix
A = A(S2(n,t)) of Sa(n,t) can be written as the (nt +n + 2) x (nt +n + 2) matrix such
that

An A oo A B O

Ay Ay ... Ay By Opxo
A=ASynt))= | 1 o ,

Anl An2 e Ann Bn 0t><2

BT BT ... BT Opn Juxe

O2xt O2xt -ov Oaxe Joxn Oaxo

WhereAij:Otxtfori:_1,2,...,nandj:1,2,...,n, and”
o J L=k ixn _
Bk—[aij]—{ 0 otherwise ’ B, € R, fork=1,2,...,n.
Then we have

THE ELECTRONIC JOURNAL OF COMBINATORICS 15 (2008), #RS& 9



Figure 3: Nonregular bipartite graphs.

xly Oisct oo Opxy —By O¢x2
Oxt xly v Opxe —B, Otx2
P[Sa(n,t),a] = |eTupnso — A(Sa(n, )= | © f
Oxt Ot .. xl -B, Otx2
—B{ —Bg .. —Bg zl, —Jdnx2
Oaxt  Oaxe oo Oaxe —dJoxn iy

By careful calculation, we can prove that the characteristic polynomial of Sy(n,t) is
P(Sy(n,t),z) = 2"V (22 — )" 1z? — (2n 4 1)),
(10). By properly ordering the vertices of the graph Si3(m,n), the adjacency matrix
A = A(S13(m,n)) of Si3(m,n) can be written as the (2mn + 2n + 2) x (2mn + 2n + 2)
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Figure 4: Nonregular bipartite graphs.

A
Ao |’

matrix such that

A= ASiatmn) = |

where ~

OTILXm

Ome

Omxnz
BY
i Jixnz
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OTILXm

Ome

Omxnz
By
Jixnz

Ome

Ome

Ome

lgT

n

J&XWL

Ao
A

mel
mel

mel

Onxl
0

11



[ Im Om><m e 0m><m Omxn 0m><1 |
Om><m Im e 0m><m Omxn 0m><1
Al - )
Ome Ome s [m Omxn 0m><1
Onxm 0n><m cee 0n><m Onxn Onxl
L lem 01><m s lem len 0 i

and

oy )1 it =k mxn _

In view of Lemma 2.1, we distinguish between the following two cases.

Case 1. Let by = |zLpini1 — (Ao + A1)|. Then we have

(SL’ — 1)Im Om><m e Om><m —Bl _Jm><1
0m><m (SL’ — 1)Im P Om><m —Bg Jm><1
bo — : . . . : :
Omxm Omxm oo (=11, =B, —Jnx1
—BT -BT ... =BT zl, Onq
_J1><m _Jlxm e _Jlxm 01><n T

By careful calculation, we can find
bp = x(z — 1)"™ V(22 —z —m)" a2 —z —m(n +1)).

Case 2. Let by = |zlpint1 — (Ao — A1)|. Then we have

(SL’ —+ 1>Im Om><m e Om><m —Bl —dJdmx1
Omxm (l’ —|— 1)Im Ce Ome —BQ Jm><1
b, = : : " : : :
Omxm Omxm oo (x+ DI, =By, —Jmx
_BT —BT ... =BT zl, Ona
—J1><m _J1><m NP _J1><m 01><n i

By careful calculation, we can find
by = z(z + )" V(22 + 2 —m)" 22 + 2 — m(n+1)).
Hence, the characteristic polynomial of Si3(m,n) is

P(S13(m, n), ) = 2?(z + 1)"" D (z — )"V (a2 4 2 —m)" o + o
—m(n+ D](2* — 2z —m)" ' [z? —z —m(n+1)].

The proof is now complete. O

We note that these classes of graphs in Figures 3 and 4 are constructed from the
smaller graphs in Figures 1 and 2 (or Figures 4 and 5 of [2]). We believe that it is useful
to construct new classes of integral graphs by using this method.
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4 Nonregular integral bipartite graphs

In this section, by using number theory and computer search, we shall obtain some new
classes of integral graphs from Theorem 3.2. All these classes are infinite and consist of
connected graphs except for several disconnected graphs for which one or more of their
parameters are taken zero.

Theorem 4.1. (see [5, 7]) The tree Ky is integral if and only if t is a perfect square.

Theorem 4.2. The graph Ss(n,t) is integral if and only if one of the following holds: (i)
t and 2n+t are perfect squares, or (1) n =1 and t + 2 is a perfect square, where t (> 0)
and n (> 1) are integers.

In particular, we have the following results for the graph Ss(n,t).

(1) If the graph So(n, t) is integral, and n (> 2), t (> 0) are integers, then for any positive
integer k the graph Ss(nk?, tk?) is integral.

(2) If the graph Sa(1,t —2) = Ky, is integral, and t is positive integer, then for any
positive integer k the graph Sa(1,tk* — 2) = K 2 is integral.

(3) Ift=0a*>>0,n= @ >1,b>a, anda, b, n (> 1), t (> 0) are integers, then for
any positive integer k the graph Sy(nk? tk?) is integral.

Proof. By (2) of Theorem 3.2, we know

P(Sy(n,t),x) = 2"D+2(22 —)r=1 22 — (2n + )], (n > 1, ¢ > 0).
Hence, a sufficient and necessary condition for the graph Sj(n,t) to be integral is the
following: (i) when n > 2, ¢t and 2n + t are perfect squares, or (ii) when n =1, ¢t + 2 is a
perfect square, where ¢t (> 0) and n (> 1) are integers.

By (2) of Theorem 3.2, we also get

P(Sy(nk?,tk?), z) = z"¥* O =D+2 (g2 _ 4212 — (2n + )k?], (n > 1,t >0, k > 1).

(1) Because the graph Si(n,t) is integral, and n (> 2), ¢t (> 0), k (> 1) are integers,
we get that ¢t and 2n + t are perfect squares. Then the graph So(nk?, tk?) is integral.

(2) Because the graph Sy(1,t —2) = K, is integral, and ¢, k are positive integers.
Then ¢t must be a perfect square. Hence the graph Sy(1,tk* — 2) = K 42 is integral.

(3) Becauset:a220,n:#21,b>a, and a, b, n (> 1),t (>0), k (> 1) are
integers, by (2) of Theorem 3.2, it follows

b2 —q?

2,2
P(Sg(bzg‘ﬂ,oﬂ)w) — "3 (“2_1)+2(x2 _ a2)bT—1(1,2 — b?).

So, the graph Sy(n,t) = 52(1’25“2,612) is integral. By Theorem 4.2 or Theorem 3.2 (2),

also the graph Sa(nk?, th?) = So(¥5% - k%, a®k?) is integral. O

Theorem 4.3. The graph S3(m,n,t) (n>m > 1, t > 0) is integral if and only if one of
the following holds:

(1) Form =n, t is a perfect square, and 2n +t = k(k+ 2), where k is a positive integer.
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(2) Form < n, let (2m +t,2n+t) = d, d is a positive integer but not a perfect square,
and m, n, t are given via
Ye — Y

2m +t = d(Z—=2)?, 2n +t = d(

2 2

,k>1>0, andt =t

where yx, yi are odd or even, Y, yi € {YnlYo = 0,y1 = b1, Ynt2 = @1Yn+1—Yn, (n > 0)},
t1 is a nonnegative integer, and a; + biVd is the fundamental solution of FEq.(10).

(Examples are presented in Table 1. Table 1 is obtained by computer search, where a
and b be those of Eqs.(13) in Theorem 4.3, 1 < a <15, a <b<a+10,1 <m <mn,
0 <t <2500.)

a | b | m n a|lb | m| n t a|lb|m| n t
519 13 | 37 51919 33 9 519125 25
14 | 20 | 100 | 196 14 120198 | 194 | 4 14 120192 | 188 | 16
14120 82 | 178 | 36 || 14 |20 | 68 | 164 | 64 | 14 | 20 | 50 | 146 | 100
14120 | 28 | 124 | 144 | 14120 2 | 98 |196 | / | / | / / /

O | =+

Table 1: Integral graphs Ss3(m,n,t) = Ss(n,m,t).

Proof. By (3) of Theorem 3.2, we know that the graph S3(m,n,t) (n >m > 1,¢t > 0) is
integral if and only if t(= t) is a perfect square, and there exist nonnegative integers a and
b such that z* —2(m+n+t+2)z*+ (2m+1t)(2n+t) can be factorized as (z? —a?)(z? —?).

Next we discuss the following two cases:

Case 1. When 1 <m =n,t >0, by (3) of Theorem 3.2, we get

P(Ss5(n,n,t),z) = 24D (22 — 1)2(2? + 22 — 2n — t) (2% + 22 — 2n — 1.
Hence, the graph S3(n,n,t) is integral if and only if ¢ is a perfect square, and 2n + t =
k(k+2), where n (> 1), k (> 1) and t (> 0) are integers.

Case 2. When 1 <m < n, t >0, by (3) of Theorem 3.2, the necessary and sufficient
condition for S3(m,n,t) to be an integral graph is that there are nonnegative integers a
and b such that the following Diophantine equations (13) have solutions.

t =12,
a? 4+ b% =2m+2n+ 2t + 4, (13)
a’h* = (2m +t)(2n + 1),

Let (2m+t,2n+t) =d, 1 <m <mn, a <b. By (13), we find
2m +t =dm?, 2n+t=dn?, ab=dmn,, (14)

where m, and n; are nonnegative integers, m; < ny, and (my,ny) = 1. By (13) and (14),

we obtain
(a+b)* —d(my +ny)* = 4. (15)

We discuss the following two cases.
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Case 2.1 If d is a perfect square, clearly, the Diophantine equation (15) has no integral
solutions, then the graph S3(m,n,t) is not an integral graph.

Case 2.2 If d is a positive integer but not a perfect square, then the equation (15)
is a Pell equation. Let ¢; = %“/3, where a; + b;V/d is the fundamental solution of the
equation (10). From (15), we deduce that

a+b=ce+E" m+ fd & k>0 (16)
=& 1, 1T Ny = ) )
Vid

where g7 = %& and €127 = 1 (see Lemma 2.8).

By using (16) and ab = dmin, (see (14)), we get

k —k
(2b— (5 +5%))2 — d(2ny — 2 \/Zzgl )2 =4

Thus, we have 2 =+ el +5 2n glf_ak Ell_gll [>0

us, we hav = , = , )

eh gk ol gl eh gk gl gl
Hence, my = — - , Ny = — 1 , E>1>0
' oV o0vd T 2Vd Vd

el —e1"
Vd

Then we get the Pell sequence

Let Yn = n=20,1,2....

Yo =0, y1=">01, Ynt2o = Q¥Yns1 — Yn, (n>0).

Hence, all integral graphs S3(m,n,t) (where 1 < m < n) are given via

om ot = d(PEIY on = (Y2 150, and £ = 82,

where ¢ is a nonnegative integer.
The proof is now complete. O

Corollary 4.4. For m = n the graph Ss3(n,n,t) is integral if and only if one of the
following holds: (i) m =n,t =n?, (ii)m=n=2(+1)—2k* > 1, t =4k?> > 0, or (iii)
m=n=201+2)+1-2k(k+1)>1,t=2k+1)% where m =n (>1),t (>0), 1
(>0), k (>0) are integers.

Proof. Because m = n, by Theorem 4.3 (1), we know that the graph S3(n, n,t) is integral
if and only if ¢(= k?) is a perfect square, and 2n +t = s(s + 2), where n (> 1), s (> 1)
and t (> 0) are integers. Thus n = 1(s(s+2) — kf) must be a positive integer. Hence we
discuss the following three cases:

(i). If ky =n, then m =n, t =n? 2n+t =n(n+ 2).

(ii). If kq is even, then s must be even. So, let k; = 2k and s = 21, where k and [ are
positive integers. Hence m =n = 2[(1 +1) — 2k* > 1, t = 4k* > 0.

(iii). If k; is odd, then s must be odd. So, let ky =2k + 1 and s = 2({ + 1), where k
and [ are positive integers. Hence m =n = 2[(1+2)+1—-2k(k+1) > 1,t = (2k+1)%2 O

THE ELECTRONIC JOURNAL OF COMBINATORICS 15 (2008), #RS& 15



Theorem 4.5. The graph Sy(m,n,p,q) is integral if and only if there exist nonnegative
integers a and b such that x* — (2m+2n+4q+ pq)z? +4mn+8mq—+2npq can be factorized

as (x

2

—a?)(z? — %), and one of the following holds: (i) 2m and pq (= c*) are perfect

squares, (i) p =1, q (= ¢?) is a perfect square, where m (> 0), n (> 0) p (> 1) and q
(> 1) are integers.
In particular, let a, b, ¢, m, n, p, q be as in Theorem 4.5, and let m (> 1), n (> 1),

p (>

D,q(>1),1(=1),k(=1),r (>1), by, a, b, ¢ be integers. Then we have the

following results for the graph Sy(m,n,p,q).

(1)

(2)

(3)
(4)

(5)

(6)

(7)

(8)

If m = n, then the graph Sy(n,n, p,q) is integral if and only if 2n, pq and 2n+4q+pq
are perfect squares, where n (> 0), p (> 1) and q (> 1) are integers.

If m = n, p = q, then the graph Sy(n,n,p,p) is integral if and only if 2n and
2n + p* + 4p are perfect squares, where n and p are positive integers.

If m =n =2, p=gq, then the graph Sy(m,n,p,q) is integral.

Ifm =n =20%r%, q = pk®r?, a = 2lr, b = byr, c = pkr, and let by, p, k, | be positive
integers satisfying the Diophantine equation

b2 — (p? + 4p)k?* = 4I2. (17)
Then the graph Sy(m,n,p,q) is integral.

Ifm=n=20%r% p=qk®?, a=2lr, b=byr, c = qgkr, and let by, q, k, | be positive
integers satisfying the Diophantine equation

V2 — (¢ +4q)k* = 412 (18)

Then the graph Sy(m,n,p,q) is integral.
Ifm=n=20%?% p=p? q=q¢r* a=2rb="br, c=paqr, and let by, p1, q1,
be positive integers satisfying the Diophantine equation

bt — (0 +4)qf = 417 (19)
Then the graph Sy(m,n,p,q) is integral.

Ifm=n=22 p=gq,a=2l,c=p, and let b, p, | be positive integers satisfying
the Diophantine equation
b2 —41* = p(p +4). (20)

Then the graph Sy(m,n,p,q) is integral.
If m = n, let a, b, ¢, m, n, p and q be given as in Table 2. Then the graph

Si(m,n,p,q) is integral. (Table 2 is obtained by computer search, where 0 < a < 10,
a<b<a+10, m =n and m, n, p and q are not as in (3), but represent solutions

of (4)-(7).)
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(9) If m #n,p=1, and (i) a =4, b =16, c =6, m =2, n =44, p = 1 and
q=236, 0r (ii)a=6,b=19, c=3, m=14,n=162, p=1, g = 9. Then the
graph Sy(m,n,p, q) is integral.(Here a, b, ¢, m, n, p and q are obtained by computer
search, and 0 < a <15, a<b<a+30,m#n,p=1).

(10) If m # n, and a, b, ¢, m, n, p, q are given in Table 3. Then the graph Sy(m,n,p, q) is
integral. (Table 3 is obtained by computer search, where 1 < a <10, a <b < a+20
and m # n.)

(11) If m = 0 orn = 0, and a, b, ¢, m, n, p, q giwen in Table 4, then the graph
Siy(m,n,p,q) is integral.(Table 4 is obtained by computer search, where 1 < a < 10,
a<b<a+30andm=0o0rn=0.)

a|b|lc| m|n| p qgllalb|lc|m|n| p q
2171322 1 9114|612 |8]8 1 4
4 16|48 | 8|16 |1|4|8]4|]8 8| 2|8
4 |8 |6 |8 | 8|12 |3 4|10]6 |8 8| 3 |12
4 112 8 | 8 | 8| 4 |16 4 |14 6 | 8 | 8 1 136
4 114110, 8 | 8| 5 |20 4 1412 8 | 8|16 |9
6 | 7|3 |18]18] 9 1693 18|18 1 9
6 |95 |18]18] 5 56 [11]9 | 1818] 81 | 1
6 (12 6 |18 |18 2 18| 6 |12 10|18 |18 | 50 | 2
6 | 14|12 |18 (18| 36 | 4 || 6 |15 9 |18 |18 | 3 |27
8 (12 4 3232 1 (16| 8 |12 | 8 [32(32| 16 | 4
8 |16 8 3232 2 32| 8 |16 1232 |32 12 |12
8 |18116(32(32(25 | 1 || 10|11] 3 |50 50| 3 | 3
101121 6 |50 |50 18 | 2 10|14 | 8 |H0|H0| 8 | 8
10115 5|50 |50 1 |25(10|15]11 |50 50121 | 1
10116 |12 |50 |50 48 | 3 (10|17 9 |50 |5H0| 3 |27
10 |18 |14 |50 |50 | 28 | 7 (10|19 15|50 50| 25 | 9
1020|1050 |50 2 (50 / |/ V/ |/ |/ / /

Table 2: Integral graphs Sy(m,n,p,q).

Proof. By using (4), (4.1) and (4.2) of Theorem 3.2, this theorem and (1), (2) of Theorem
4.5 are shown similarly to Theorem 4.2.

(3) Because m =n = 2, p = ¢, we have by (4.3) of Theorem 3.2,

P(S4(2,2,p,p),7) = 2%(z + p+2)(z + p)(z + 2°(z — 2P(x — )& —p — 2),
where p is a positive integer. Hence, the graph S4(2,2, p, p) is integral.

(4)-(7) When m = n, by Theorem 4.5, the graph Sy(m, n, p, q) is integral if and only if
2n and pq (= ¢?) are perfect squares, and z* — (2m+2n+4q+pq)x? +4mn+8mq+2npq =
(22 — 2n)[2? — (2n + 4¢ + pq)] can be factorized as (22 — a?)(z? — b*), where m =n (> 1),
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alblc| | m | n |plqglalblc|m|n|p]|q
416 |4 2 | 1416|1486 2 |12]9]|14
411616 | 2 |44 |1 36| 6 |10] 8| 2 | 26 |16 | 4
6 |14 8| 2 |50 |4 |16| 6 |14 8 |50 | 2 |4 |16
6 |16 | 6 2 | 11416 | 6 6 | 18| 8 2 82 | 2 | 32
6 2212162 2 |12 |12 7 |24 |15]162| 8 |15|15
8 112110 2 44 125 | 4 8 |12 | 8 8 56 |16 | 4
8 126 | 18 | 60 | 9 | 4 || 8|12 6 |50 |28 |94
8|14 (8| 2 |92 (32| 2 |8 |14|12] 8 | 38 [24]| 6
8 |16 (12| 8 | 48 | 9 |16 8 |18 | 8 | 2 |[152|16| 4
8 |18 8 | 128 26 |16 | 4 || 9 | 12| 9 | 18 | 48 | 27| 3
1014112 2 |66 36| 4 | 101612 2 | 8 |16 9
1016 |12] 32 | 56 (16| 9 || 1020 12| 32 | 74 | 4 | 36
1013024 18|66 |9 (64 /| /1) |/ /]
Table 3: Integral graphs Sy(m,n,p,q).
alblc|m|n| p|lqg|lal|lb|c|m|n|p| q
1141312 (09 |1}]2|8|6|8]0|9] 4
2128124198 |0 |144] 4| 3 [12]9 |18 101]9]| 9
4116112132 0| 9 | 1 || 4]2115]98 |0 |25] 9
512015150 | 0| 9 [25] 6 [20]12| O |50| 3 | 48
6 (24|18 72 | 0| 9 |36 7 [28]21|98 |0 ]9 |49
813024 0 |50| 8 |72 8 3224|1281 0|9 | 64
913627162 0| 9 |81 | 104030200 | 0 | 9 |100

Table 4: Integral graphs Sy(m,n,p,q).

p(>1),q(>1),a,band care integers. Without loss of generality, assume that a* = 2n,
b* = 2n + 4q + pq. Hence, the graph Sy(m,n,p,q) is integral if and only if the equations

a® = 2n,
b* = 2n + 4q + pq, (21)
prq = C2.

have only integral roots. We distinguish between the following four cases:

Case 1. Suppose that m = n = 21%r%, ¢ = pk*r?, a = 2lr, b = byr, ¢ = pkr, where [
(>1),r (> 1), by and k(> 1) are integers. By Eqgs.(21), we get the Diophantine equation
(17). From Theorem 4.5, we see that (4) of Theorem 4.5 is true.

Case 2. Suppose that m = n = 21%r%, p = ¢k*r?, a = 2Ir, b = byr, ¢ = qkr, where [
(>1),r (>1), by and k(> 1) are integers. By Eqgs.(21), we get the Diophantine equation
(18). From Theorem 4.5, the result in (5) follows.

Case 3. Suppose that m = n = 2[%%, p = p?, a = 2lr, b = byr, ¢ = pyqir and
q = qr? wherel (> 1), 7 (> 1), by, p1(>1) and ¢;(> 1) are integers. Eqs.(21) yields the

THE ELECTRONIC JOURNAL OF COMBINATORICS 15 (2008), #RS& 18



Diophantine equation (19), which proves Theorem 4.5 (6).

Case 4. Suppose that m = n = 2[?, ¢ = p, a = 2l and ¢ = p, where [ (> 1) and p(> 1)
are integers. Eqs.(21) leads to the Diophantine equation (20). This shows Theorem 4.5
(7).

The results in (8)-(11) can be shown similarly to (3) by using Theorem 3.2 (4). O

Remark 4.6. For the Diophantine equations (17)-(19) and (20), all positive integral
solutions can be found from Lemmas 2.2-2.8 and Lemma 2.9, respectively. This shows
that there are infinitely many integral graphs Sy(m,n, p, q).

Theorem 4.7. The graph Ss(m,n) (m < n) is integral if and only if one of the following
holds:

(1) m=mn=3k(k+1), where k (> 0) is an integer.
(2) m=0,n=2k(k+1), where k (> 0) is an integer.

(8) m < n, let(m,n) = d, 2d is a positive integer but not a perfect square, and m, n are
given by

m=2d(B2 = 2d(y’“;yl)2, k> 10,

where yi, y; are odd or even, Y, Y1 € {Ynlvo = 0,1 = b1, Ynso = 201Yni1—Yn, (n > 0)},
and ay + b1V 2d is the fundamental solution of the Diophantine equation

2 —2dy? = 1. (22)

Ezxamples are presented in Table 5. (Table 5 is obtained by computer search, where a
and b are those of Fqs.(23), 1 <a <155, a<b<a+80and1 <m<n.)

a | b m n a b m n al bl m n
7110 25 49 22 | 27 | 243 | 363 || 41 | 58 | 841 | 1681
76 | 85 | 2890 | 3610 || 115 | 126 | 6615 | 7935 || / | / / /

Table 5: Integral graphs Ss(m,n).

Proof. (1)-(2) As in the proof of Theorem 4.3 (1), the results follow by using (5.1) and
(5.2) of Theorem 3.2.

(3) By Theorem Theorem 3.2 (5), the necessary and sufficient condition for S5(m,n)
to be an integral graph is that there are positive integers a and b such that

(23)

a’?+ b =2m+2n+1,
a?b?> = 4mn.
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Let (m,n) =d, 1 <m < n. By (23), we find
m=dm?3, n=dn3 ab=2dmin,, (24)
where m; and n; are positive integers, and (my,n;) = 1. By (23) and (24), we obtain
(a+b)* —2d(my +ny)* = 1. (25)

We discuss the following two cases.

Case 1. If 2d is a perfect square, clearly, the Diophantine equation (25) has no integral
solutions. Then the graph Ss5(m,n) is not an integral graph.

Case 2. If 2d is a positive integer but not a perfect square. Then Eq.(25) is a Pell
equation. Let €, = a; + b;v/2d be the fundamental solution of Eq.(22). From (25), we
deduce that

ek ek ek — gk
a+b= , mi+n; = , k>0, 26
2 T 9y (26)
where € = a; — b1vV2d and €€ = 1 (see Lemma 2.5).
By using (26) and ab = 2dmin; (see (24)), we get
ek + gk gh — gk
2b — 2 —2d(2n, — =1
( P 2d(ens = 52
ek gk 4 F gh—gk ¢
Thus, we have 20 = , 2ny = + , [ >0.
2 2 ' 9vRd | 2v2d
ok gl gkl
Hence, my = — 2, ng= + 2, k>1>0.
=G vt T S v
Let S n=0,1,2,....

yTL: 2@7

Then we get the Pell sequence (see [3])
Yo=0, y1=">1, Yns2=201Yns1 = Yn, (n=0).
Hence, all integral graphs Ss5(m,n) (where 1 < m < n) are given by

Y + Ul
2

Yk — Y1

m = 2d( 5

2, no=2d( 2, k>1>0.

The proof is now complete. O
In a similar way the next results can be derived by using Theorem 3.2 (6).

Theorem 4.8. The graph Sg(m,n,t) is integral if and only if there exist nonnegative
integers a and b such that x* — (2m + 2n + ¢t + 2)2? + 2n(2m + 1) + 2t(m + 1) can be
factorized as (2? — a®)(x* — V), and one of the following two conditions holds: (i) t is a
perfect square, (ii) n =1, where m (>0),n (>1),t(>0) orm (>0),n=1t=0.

In particular, we have the following results for the graph S¢(m,n,t).

THE ELECTRONIC JOURNAL OF COMBINATORICS 15 (2008), #RS& 20



(1) Forn =t = 0 the graph Sg(m,0,0) = Ky 41 U K is integral if and only if m =
2k? — 1, where k is a positive integer.

(2) Form =0, t = 1 the graph Sg(0,n,1) is integral if and only if n = 2k* — 1, where
k is a positive integer.

(3) Fort=0, let (2m+ 1,2n) = d. We have the following results.
(i) If d is a perfect square, then Sg(m,n,0) is not an integral graph.

(i) If d is a positive integer but not a perfect square, then all integral graphs
Se(m,n,0) (where 1 < m < n) are given via

om -+ 1= (PP, 2n:d(yk;yl)2, k> 150,

where Yy, yi are odd or even, yr, yi € {Yynlyo = 0,41 = b1, Yn+2 = 201Ynt1 — Yn, (0 =
0)}, and ay + by d is the fundamental solution of the Pell equation (2).

(Examples are presented in Table 6. The first solution in Table 6 is obtained by

computer search, where a and b are those of Theorem 4.8, 0 < a < 100, a < b <
a+ 30 and m>0,n >0.)

(4) Forn =1, let a, b, m, n, t be as in Theorem 4.8, and a =1, b =2, m = 0 and
n =t = 1. Then the graph S¢(0,1,1) is integral. (This solution is obtained by
computer search, where 0 < a <25, a<b<a+20,m>0,t>0.)

(5) Form =n—1,t=1 the graph Sg(n—1,n, 1) is integral if and only if n = $k(k+1),
where k 1s a positive integer.

(6) For m = n+ 1, t = 1 the graph Sg(n + 1,n,1) is integral if and only if n =
sk(k+1) — 1, where k is a positive integer.

(7) For m = n+ 1, t = 9, then the graph S¢(n + 1,n,9) is integral if and only if
n = 1k(k+ 1) — 3, where k (> 2) is a positive integer.

(8) Let a, b, m, n and t be as in Theorem 4.8, and given in Table 7, then the graph
Se(m,n,t) is integral. (Table 7 is obtained by computer search, where 1 < a < 8,
a<b<a+20). (Note that m, n, t are different from those in Theorem 4.8(1)-(7).)

al|l b |lm|n|t a b m n t
12114 73] 96 | 0 || 2520 | 2522 | 3175537 | 3179904

Table 6: Integral graphs Sg(m,n,t), where 1 < m < n, t =0.
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al b|m| n tlal b | m| n tflal b|m]| n t
316 |4 1319 384|279 |3[10]4]45 ]9
31124 [ 67 |9 ||3[14] 4|93 |9 |3|16] 4 [123] 9
3118 4 (15719 ||[3[20| 4 |195| 9 |3 (22| 4 [237] 9
415 11| 4 9 |56 |12 5 |255|6 [16] 9 9
518 |12 19 [25|5[10 12| 37 |25 ||5 12| 12| 59 |25
5114112 8 [25 || 5|16 |12 115 |25 | 5|18 |12 | 149 | 25
512012 | 187 (25 (|5 |122 (12229 |25 | 5|24 |12 |275 |25
6|7 |18 11 |25|6| 7 [22| 15| 9 |67 23] 6 |25
T1 8 (24| 7 |49 || 7| 8 |25 18 |25 7|8 [29] 22 | 9
71 8 (30| 13 |25 || 71024 25 |49 || 7 |12 |24 | 47 |49
7114124 73 (49| 7|16 (24103 |49 || 7|18 |24 | 137 |49
712024175149 | 712212421749 || 7 |24 |24 | 263 |49
7126(24 31314989 [32] 15 [498| 9 [33] 26 |25
819 |37130 |9 ||8]9 (38|21 2589 (39| 8 |49
8111|3255 |9 (8115928 |91/ / |/ / /

Table 7: Integral graphs Sg(m,n,t).

Proof. For (3), by Theorem 3.2 (6.3), the necessary and sufficient condition for Sg(m, n,0)
to be an integral graph is that there are positive integers a and b satisfying

a’?+ b =2m+2n+ 2, (27)
a’*  =2n(2m+1).
Let (2m + 1,2n) = d. By (27) we have
2m + 1 =dmj, 2n=dn}, ab=dmin, (28)

where m; and ny are positive integers, and (mq,n;) = 1. By using (27) and (28), we get
(a+0)* —d(my +n)* =1 (29)

Clearly, if d is a perfect square, then the Diophantine equation (29) has no integral
solutions.

Let d be a positive integer but not a perfect square. Then Eq.(29) is a Pell equation.
Let € = a; + b;/d be the fundamental solution of Eq.(2). By (29), we deduce as before
that

ek + g ek — g
2 , T +ny =

where = a; — b;V/d and £z = 1.
In view of (30) and ab = 2dm;n; (see (28)), we get

a+b= k>0, (30)

gk 4 & gh — gk

(20 — 5 )2 —d(2n; —
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Thus, we have

b4k g4 E gh—gk ¢
2b = + , 2ng = + , 1 >0.
2 YT oovad | 2vd
Hence,
gh—gk g & gh—gk g
2, = + 2, k>1>0
Letting

we obtain the Pell sequence (see [3])

Yo=0, y1 =">b1, Ynt2 = 201Ynt1 — Yn, (n > 0)-

Hence, all integral graphs Sg(m,n,0) (where 1 < m < n) are given via

2m+1=d(Z 22, on = d(yk;ryl)Q, k> 10,
where m and n are positive integers.
The results in (1)-(2) and (4)-(8) can be proved similarly to Theorem 4.2 by using (6),
(6.1)-(6.7) of Theorem 3.2. O

For Sg(m,n,t), when t = 0, 1 < m < n, we have obtained all integral graphs
Se(m,n,0). However, when t = 0, 1 < n < m, we have not found any such integral
graph. So we raise the following question.

Question 4.9. Are there integral graphs Sg(m,n,0) with 1 < n < m? Can we give a
sufficient and necessary condition for Sg¢(m,n,0) (1 <n <m) to be an integral graph?

With similar arguments as before the following results are obtained by using Theorem
3.2 (7).

Theorem 4.10. The graph Sg(m,n) (m >0, n > 0) is integral if and only if there exist
nonnegative integers a, b, ¢ and d such that * — 423 — (m+n —5)x? + (2m +2n — 2)x +
mn—m—n and x*+423 — (m+n—>5)22 — (2m+2n—2)x +mn—m—n can be factorized
as (x+a)(x—b)(x+c)(x —d) and (x —a)(z+b)(z —c)(z +d), respectively, where m and
n are nonnegative integers.

In particular, we have the following results for the graph Ss(m,n).

(1) Form = 0 the graph Ss(0,n) = Ss(n,0) is integral if and only if n = k(k+2), where
k is a nonnegative integer.

(2) For m = n the graph Ss(n,n) is integral if and only if n = k(k + 1), where k is a
nonnegative integer.
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al|b|c|d m n a | bl c|d m n
6 | 819 |11 50 98 || 11|13 |13 |15 | 147 | 192
21123126 |28 | 486 | 726 | 40 | 42 | 57 | 59 | 1682 | 3362
44 | 46 | 51 | 53 | 2028 | 2700 || 47 | 49 | 50 | 52 | 2312 | 2592
75| 77| 84|86 | 5780 | 7220 /| /| /) |/ / /

Table 8: Integral graphs Sg(m,n) = Sg(n,m).

(8) Form <mn, leta, b, ¢, d, m, n, t be as in Theorem 4.10, and given in Table 8, then
the graph Ss(m,n) = Sg(n,m) is integral. (Table 8 is obtained by computer search,
where 0 < a <100,0<b<a+30,a<c<a+30,b<d<b+30and0<m<n.)

The next statements are derived from Theorem 3.2 (8) -(11).

Theorem 4.11. The graph So(m,n,p,q) (m,n,p,q > 1) is integral if and only if there
exist positive integers a, b and ¢ such that x° — (2m +n+2p+q+nqg+ 1)z* + (m+n +
mn + p+4mp + 2np + q + 2mq + 2nq + 2mng + pq + 2npq)x* — (mp + np + 2mnp +mq +
nq + 2mnq + 2mpq + 2npq + 4mpq) can be factorized as (x* — a?)(x? — b?)(2? — 2).

In particular, we have the following results for the graph So(m,n,p,q).

(1) If m = n = p = q, then the graph So(n,n,n,n) is integral if and only if n = 2k?,
where k is a positive integer.

(2) If m, n, p, q are not as in (1), and a, b, ¢, m, n, p, q are as in Theorem 4.11, and
given in Table 9 , then the graph So(m,n,p,q) = So(p,q, m,n) is integral.(Table 9
is obtained by computer search, where 1 <a <7, a<b<a+5,b<c<b+5, and
m, n, p, q are not as in (1).)

alblcim|in|plqgla|b|c|m|n|p]|q
3141518 |1|8(8|6[1012|51|3|21]|33

Table 9: Integral graph So(m,n,p,q) = So(p, q, m,n).

Theorem 4.12. The graph Sio(n) is integral if and only if n = k(k + 2), where k (> 0)
18 an integer.

Theorem 4.13.
(1) Form > 1, n > 1 the graph Si3(m,n) is integral if and only if (i) m = k(k + 1)
and m(n + 1) = (I + 1), where k and | are positive integers, or (ii) n = 1, and

m = %k:(k: + 1), where k is a positive integer.

(2) Form =n=k(k+1), k is a positive integer, then the graph Si3(n,n) is integral.
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Theorem 4.14. The graph Si7(m,n,p,q) is integral if and only if there exist positive
integers a, b and ¢ such that % — (2m+2n+p+q+pg+1)z* +[m(2+4n+2p+q+pqg) +
n+p+np+ 2nqg + 2pq + 2npq + pg?la? — 2m(n + p+ np + ng + pq + npq) + 2npq(q + 1))

can be factorized as (x

—a?)(2? = V?)(2® — %), and one of the following two conditions
holds: (i) 2m is a perfect square, (ii) ¢ = 1, where m, n, p, q are positive integers.
In particular, we have the following results for the graph Siz(m,n,p,q).

1) If m = n, then the graph Si7(n,n is integral if and only if n = 2k?, and there
(1) 1If : grap 1,5 q 9 y :
exist nonnegative integers a and b such that z* —[2n+(p+1)(q¢+1)]2*+ (¢+1)[n(p+
1) +p(g+1)] can be factorized as (z* —a*)(x? —b?), where n, p, ¢ and k are positive

mntegers.

(2) If m = n = p = q, then the graph Si7(n,n,n,n) is integral if and only if n = 2k2,

where k is a positive integer.

3) If m =n, p=1, then the graph Si7(n,n, 1,q) is integral if and only if n = 2r?s>h?
(3) ,p=1, grap n,1,q g y ;

g=(r’-
mntegers.

(4) If m = n = 2k*1%, p = 2% and q = k*(21*> + 1) — 1, then the graph Si7(n,n,p,q) is

integral.

(5) Form =n, leta, b, m, n, p and q be as in (1), and not as in (2)-(4), and given by
Table 10. Then the graph Si7(n,n,p,q) is integral.(Table 10 is obtained by computer

s2)2h? — 1, where (r,s) =1, r > s, 24r+s, andn, q, r, s, h are positive

search, where 1 < a <40, a <b < a+20, andm, n, p and q are not as in (2)-(4).)

(6) If m # n, p=m, q=n, then the graph Si7z(m,n,m,n) is integral if and only if there
exist nonnegative integers a and b such that z* — (2m+2n+mn+1)x? +2m(n+1)>?

can be factorized as (x* —

a®)(x® —b?), and one of the following two conditions holds:

(i) 2m and n + m are perfect squares, (ii) n =1, m + 1 is a perfect square, where

m and n are positive integers.

(7) If m = p =2, ¢ =n, then the graph Sy7(2,n,2,n) is integral if and only ifn = 1> —2

and 2n+2 = k(k+1), wheren, l and k are positive integers. (Examples are presented
in Table 11. Table 11 is obtained by computer search, where 1 < k < 10000.)

(8) For m # n, let a, b, ¢, m, n, p, q be as in Theorem 4.14, and given in Table 12.
Then the graph Siz(m,n,p,q) is integral. (Table 12 is obtained by computer search,
where 1 <a<13,a<b<a+5,b<c<b+10, and m #n.)

al b | m n p | q a | b | m n p |q
8 |18 | 50 | 50 |11 |23 || 14 |34 | 288 | 288 | 193 | 3
16 | 36 | 200 | 200 | 11|95 / | / / / / 1/
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n l k n l k n ) k

2 2 2 14 4 5 119 11 15
527 23 32 4094 64 90 17954 134 | 189
139127 | 373 | 527 | 609959 | 781 | 1104 || 4726274 | 2174 | 3074

20720702 | 4552 | 6437 / / / / / /

Table 11: Integral graphs S17(2,n,2,n).

alblc|im|n |p| q a |l blc|im| n |p| q
4 15162 |14 ]2]| 14 51516216 1] 24
71911018 48 1|48 || 9 |10 |11 |18 | 52 |1 | 80
111112 8 | 64 | 1120 || 11|14 15|50 |100 |1 |120
115116 2 [119]2 (119 || 13|14 | 15|18 | 108 | 1 | 168
B{15 (1632124101681 /| / (/| / |/ |/]|/

Table 12: Integral graphs Si7(m,n,p,q).

Proof. (i) Similar to the proof of Theorem 4.2, this theorem and the statements in (1),
(2), (4)-(8) are proven by Theorem 3.2 (11), (11.1)-(11.5).

(ii) Next we shall prove (3). By (11.3) of Theorem 3.2, the graph Si7(n,n, 1, q) is
integral if and only if 2n, ¢+ 1 and 2n+ ¢+ 1 are perfect squares. Assume that n = 2k?h2,
q+1=10h?and 2n + q+ 1 = t>h?, where k, [, t, h are positive integers, and (I,2k) = 1.
Then we get

I? + (2k)* = 2.

Lemma 2.11 yields | = r? — 2, 2k = 2rs, t = r> + 52, n = 2r?s*h?, ¢ = (r* — s?)?h? — 1,
where (r,s) =1, r >s>0,2{r+s, and n, ¢, r, s, h are positive integers. O

By (7) of Theorem 4.14, we see that the graph S17(2,n,2,n) is integral if and only if
n=1?-2and 21> —2 = k(k + 1), where n, [ and k are positive integers. Hence, we raise
the following question.

Question 4.15. What are all positive integral solutions of the Diophantine equation 21 —
2=Fk(k+1)?

We finally list the results obtained from Theorem 3.2 (12)-(15).

Theorem 4.16. The graph Sis(n,p, q,t) is integral if and only if there exist nonnegative
integersa, b, ¢, d, e and f such that x®—4x°5—(2n+p+q+t—6)zt+(6n+2p+2q+4t—4)z3 —
(6n+p—np+q—nq—pq+6t—pt—qt—1)x*+ (2n—np—nq+4t —2pt —2qt)z—t(p—1)(qg—1)
can be factorized as (x + a)(x + b)(x + ¢)(x — d)(x — e)(z — f), and one of the following
two conditions holds: (i) t is a perfect square, (ii) n = 1, where n > 1, p, q and t are
nonnegative integers.

In particular, we have the following results for the graph Sig(n,p, q,t).
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(1) For p = q the graph Sis(n,p,p,t) is integral if and only if there exist nonnegative
integers a, b, ¢ and d such that x* — 223 — (p+t+2n—1)2? +2(n+t)z+t(p—1) can
be factorized as (x+a)(z —b)(z+c¢)(x —d), and one of the following two conditions
holds: (i) p and t are perfect squares, (ii) n =1, and p is a perfect square, where n
1S a positive integer, and p, t are nonnegative integers.

(2) Forp=q=t=1 the graph Sis(n,1,1,1) is integral if and only if n = k(k+1)—1,
where k (> 2) is a positive integer.

(8) For p = q =t = 0 the graph Si5(n,0,0,0) = Ss(n,n) is integral if and only if
n= % (k 1) where k is a positive integer.

(4) Forn =2t, p=q =t =k? the graph Sis(2k* k? k* k?) is integral if and only if k
s a positive integer satisfying the Pell equation

> —8k*=1. (31)

Proof. Similar to the proof of Theorem 4.2, we easily check the correctness of this theorem
and the results in (1), (2) and (3) by using Theorem 3.2 (12).

Next we prove (4). By Theorem 3.2 (12.4), we see that the graph Sis(2k? k2, k2, k?)
is integral if and only if there are positive integers k, r and s such that

{ k(k—1)=r(r+2k+1),

k(k+1)=s(s+2k—1). (32)

This relation yields
(k+r+s)(s—r—1)=0 and s>+ (2k—1)s—k(k+1)=0.

Then s =7+ 1, ands_m

Hence, s is a positive integer 1f and only if 84241 is a perfect square. Let 8k%+1 = [2,
then k is a positive integer satisfying the Pell equation (31). All positive integral solutlons

of (31) are given by
I+ kV8 = u, +v,V8 = (3+V8)",

where n =1,2,---.
Thus, the proof is complete. O

Theorem 4.17. The graph Sig(m,n,p,t) is integral if and only if (x> — )"~V [z* —
(m+t+p+D2+m+t+pt]" Ha —(m+n+mn+p+np+t+ 1zt +[m+n+mn+
mn? — 2np + 2mnp + mn®*p + np* + t(1 + n + p + np)]a® —n(p — 1)*(mn +t)} = 0 has
only integral roots, where m (> 1), n (> 1), p (> 1), t (> 0) are integers.

In particular, we have the following results for the graph Sig(m,n,p,t).

(1) If p = 1, then the graph Sig(m,n,1,t) is integral if and only if (z% — )"~ D[z* —
(m+t+2)22 +m+2t]" "zt — (m+2n+mn+t+2)22 + (n+1)(m+2mn+2t)] =0
has only integral roots, where m(> 1), n (> 1) and t (> 0) are integers.
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(2) If m = 2, p =1t =1, then the graph Si9(2,n,1,1) is integral if and only if n =
1k(k+1) — 1, where k (> 2) is a positive integer.

Theorem 4.18. The graph Sao(n,p,q) is integral if and only if (i) n = k(k + 1) and
pg=(U+k+1)(—=k),or (ii)p=1,n=randq=s(s+1)—r >1, wheren, p, q, [, k,
r and s are positive integers, and | > k.

Corollary 4.19. If the graph Sao(k(k+1), p, q) is integral, then the graph Soo(k(k+1),q,p)
15 integral too.

Theorem 4.20. The graph So1(m,t) is integral if and only if (i) t = k(k + 1) and
m=((+k+1)(—=k), or (ii)m=1andt =r(r+1)—1, wherem (>1),t (>0),1
(>1),k(>0) andr (> 1) are integers, and | > k.

5 Further discussion

In the present paper, we have mainly investigated the 15 nonregular bipartite integral
graphs Sl, Sg, Sg, 54, 55, S@, Sg, Sg, Slo, 513, 517, Slg, 519, 520 and Figure 5 (1e 521)
of [2]. Fifteen classes of larger integral graphs were constructed based on the structures
of these integral graphs. These classes are connected nonregular and bipartite graphs
except for several disconnected graphs for which one or several of the parameters are
zero. However, we have not found appropriate methods to construct new integral graphs
from the graphs S7, Si1, Si2, Sia, Si5, Si6 of [2] or Theorem 3.1. Thus, we raise the
following question.

Question 5.1. Can we construct new integral graphs from the graphs S7, Si1, Si2, Sia,
515, 516 Of /2/ or Theorem 3.17

Although we obtained fifteen new classes of integral graphs from the graphs S; — Sg,
Ss — S10, S13, S17 — S21 in Theorem 3.1 or [2], we think that other methods can be found
to construct new integral graphs. For example, let K be obtained by joining ¢ new end
vertices to each vertex of K,,, then the graph K:((Zill)) is integral (see [10]). We note that
the graph K can be constructed from S; = K; 4. Hence, we raise the following question.

Question 5.2. How to construct new integral graphs from the graphs Si, Sa, Sz, Si, Ss,
Sﬁ, Sg, Sg, SlO; 513, 517, Slg, 519, 520, Sgl ZTL Theorem 31 or /2]?

For the graphs Si(t) = Ki4, Sa(n,t), Ss(m,n,t), Ss(m,n), Sip(n), Siz(m,n), Sxp(n,
P, q), Sa1(m,t), in fact, we have given a necessary and sufficient integrality condition.
However, it is very difficult to find all integral graphs of the type Sy(m,n, p, q), Se(m,n,t),
Ss(m,n), So(m,n,p,q), Siz(m, n,p,q), Sis(n,p,q,t), Sig(m,n, p, t). Hence, we come to

Question 5.3. Can we give a better necessary and sufficient condition for the above 7
classes of graphs to be integral?
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Note that in connection with Question 5.3, in the present paper, we found some results

for the above 7 classes of graphs by computer search and number theory. It was proved
that the problem of finding such integral graphs is equivalent to the problem of solving
some Diophantine equations. Finally we ask

Question 5.4. What are all positive integral solutions for these Diophantine equations,
for example for the Diophantine equations (13)-(20), (23), and so on?
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