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Abstract

Let Qom be the generalized quaternion group of order 2™ and Dy the dihedral
group of order 2N. We classify the orbits in Q5 and Djn (p prime) under the
Hurwitz action.

1 The Hurwitz Action

Let G be a group. For a,b € G, let a® = b~'ab and %a = bab~'. The Hurwitz action on
G" (n > 2) is an action of the n-string braid group B, on G". Recall that B, is given by
the presentation

By, =(01,...,0n1|0i0; = 0j0i, |i — j| > 2; 0i0i410; = 031100441, 1 <i<n—2).
The action of o; on G" is defined by
i Ai41
ai(al, ey an) = ((1,1, ey i1, Q44 1, CLZ-Z s Ajp2, - .. ,CLn),

where (ai,...,a,) € G". Note that

O'i_l(al, e ,CLn) = (CLl, ey, ‘“aiﬂ, Ay Ajy 2y - - - ,CLn).
An action by o; or ¢; ' on G" is called a Hurwitz move. Two tuples (ay,...,a,),
(b, ...,b,) € G™ are called (Hurwitz) equivalent, denoted as (ay, ..., a,) ~ (by,...,b,), if
they are in the same B,-orbit. The (Hurwitz) equivalence class of (aq,...,a,) € G", i.e.,

the B,-orbit of (aq,...,a,), is denoted by [ay, ..., a,].

If G is a nonabelian group, in general, the B,-orbits in G" are not known. In [1],
Ben-Itzhak and Teicher determined all B,,-orbits in S represented by (t1,...,t,), where
S is the symmetric group, each t; is a transposition and ¢ - - - t,, = 1. It is obvious that if
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ai,...,a, € G generate a finite subgroup, then the B,-orbit of (ay,...,a,) in G" is finite.
It has been proved that if s1,...,s, € GL(R™) are reflections such that the B,-orbit of
(s1,...,5y) is finite, then the group generated by sy, ..., s, is finite; see [2] and [3].

It is natural to ask which types of nonabelian group G allow complete determination
of the B,-orbits in G". In this paper, we show that when G is the generalized quaternion
group Qom or the dihedral group D= of order 2p™, where p is a prime, the answer to the
above question is affirmative.

2 The Generalized Quaternion Group

Let m > 2. The generalized quaternion group (Jom of order 2™ is given by the presentation

Qen = (o, B ™ =1, a® " =42 Bapt =al).

Each element of Qom can be uniquely written as ‘37, where 0 < i < 2™t and 0 < j < 1.
We have
(ai@)*s = a(—lﬂ(z‘—%j) B, (2.1)
o5 (k) = alPhBg. (2:2)

Thus in Q%,., a Hurwitz move gives one of the following equivalences:
i3j —1)!(i—2kj) gj
(-, ol QB )~ (e, R TV =2k7) g7 ),
(‘ ) aiﬁjv O‘kﬁlv T ) ~ ( T a(_l)Jk+2ilﬂla O/ﬁjv te )

For easier reading, we rewrite the above equivalences, omitting the ---’s, with (j, 1) =
(0,0), (0,1), (1,0) and (1, 1) respectively.

(af, a®) ~ (¥, a?), (2.3)
(o', a"B) ~ ("B, a™"),
{(ai7 Ozkﬂ) ~ (O/H'mﬂ, az)7 (2'4)
(O./iﬁ, Ozk) ~ (O./k, Oéi_zkﬁ),
{(wﬂ, o¥) ~ (a~*, aif) 2
(Oziﬂ, Ozkﬂ) ~ (Oékﬂ, Oé_i+2kﬂ) — (Ozi+(k_i)ﬂ, O/f—i—(k—i)ﬂ)7 (2 6)
(Ozzﬂ, Ozkﬂ) ~ (Oz_k+2iﬂ, Ozlﬂ) — (ai_(k_i)ﬂ, Ozk_(k_i)ﬂ). ’

Lemma 2.1. (i) (of, o?B) ~ (o™, o9T%3) for alli,j € Z.

(i) (B, aIB) ~ (a/TRI=DB oI TkG=D3) for all i, j, k € Z.

(iii) Let T,v,e, f € Z such that 0 < v < m —2 and e Z f (mod 2). Then for every
g€,
(OéT+2ueﬂ, O[T+2Vf/8) ~ (a7+2V(e+g)/87 a7+2y(f+g)ﬂ).
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Proof. (i) We have

(', a?B) ~ (a?B,a7") (the first eq. of (2.4))
~ (a7 a? 1) (the first eq. of (2.5)).

(ii) follows from (2.6).
(iii) In (ii) let ¢ = 7 4+ 2%e, 7 = 7+ 2" f and choose k € Z such that k2"(f —e) = g2
(mod 2m71). O

3 B,-Orbits in Q5

Let G be a group. For a = (ay,...,a,) € G", define 7(a) = a1---a, € G. w(a) is an
invariant of the Hurwitz action on G".
For a = (o391, ... a™(39) € Q%,., where 0 < ij, < 2™ ! and 0 < jj, < 1, let

A(a) = the multi set {min{i,2™ " — i} : j, = 0},

For example, if a = (?3,a'8,0°6,a0), b = (a° af,1,a%) € Q3, then Ala) = @,
A(b) ={0,2,2}, I'(a) = {1,3,4}, I'(b) = {1}. A(a) is an invariant of the Hurwitz action
on Q.. In fact, it is easy to see that A(a) is invariant under each of the Hurwitz moves
in (2.3) - (2.6).

To determine the B, -orbits in )%, we first partition 5. into suitable subsets. Let

A={a €@y :I'(a)=0}.
Foreach 1 <v<m—1and 0 <7 < 2% let
B,,={a€ Qs min({r(i):i € AMa)}U{m—2})=v—1, @ #I(a) C 7+ 2"Z},
where 15 is the 2-adic order. For each 0 <v <m —2 and 0 < 7 < 2, let

Cor ={a € Q5 : min({ra(i) : i € A(a)} U{m —2}) > v, ['(a) C 7+ 2"Z,
35,7’ € T'(a) such that v(j — j') = 1/}.

Then
Qp = AU ( U BV,T) 0 ( U CW).
1<v<m-—1 0<v<m-—-2
0<r<2¥ 0<r<2¥

It is routine to check that each of A, B, ., C,, is invariant under the Hurwitz moves
in (2.3) = (2.6). Thus, A, B, and C,, are invariant under the Hurwitz equivalence.
Therefore, to determine the B,,-orbits in (5., it suffices to find a set of representatives of
the B,-orbits in each of A, B, ; and C, ;.
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For a = (a™f%,... a™@3") € C,, where 0 < i), < 2™ " and 0 < ji < 1, let
t(a)=|{k:jr=1and iy =7 (mod 2""')}|.

We claim that t(a) is an invariant under the Hurwitz equivalence. Once again, it is easy
to see that t(a) is invariant under the Hurwitz moves in (2.3) — (2.6).

Theorem 3.1. (i) The B,-orbits in A are represented by
(™, ... a™),
where 0 < 47 < -+ <, < 2m~ L,
(i) Let 1 <v<m—1and 0 <7 < 2. The By,-orbits in B, . are represented by
(..., a", ™3, a"B,...,a" ), (3.1)

where 0 < i; < -+ < iy < 272 min{g(iy),...,(is),m—2} =v—1,0<e<
2m—1—zx‘

(ili) Let 0 <v<m—2and 0 <7 <2”. The B,-orbits in C,, are represented by

(... 0", o™ 3, a3, . a™ B, a"B, ..., a" ), (3.2)
t

where 0 < iy < -+ <4y <2772 min{wy(iy), ..., (is),m—2} > v, 0 < e < 2m 177,
e=1 (mod 2), t > 0.

Proof. (i) is obvious.

(il) We first observe that different tuples in (3.1) have different combinations of invari-
ants A(a) and 7(a). Thus, different tuples in (3.1) are nonequivalent.

Next, we show that every a € B, ; is equivalent to one of the tuples in (3.1). We may
assume that

a=(a",. . . o, omap ot oo, (3.3)
where 15(j9) = v — 1. Using (2.5) repeatedly, we have
(@™t 3, . o™t olo)
~ O[T+2Del e OKT+2Vet,1 ,Oéjl, O{T—‘,—Q”@Q
(a7 e ; 9 -
~ (ajta aT+2V6/1/67 CII) a'r+2"e;/6)’
where v5(jo) =+ =w(ji) =v—1, ¢, ...,¢e,_; are even and ¢} is odd. Using Lemma 2.1
(iii) repeatedly, we have
(ar—i—Z"e’lﬁ’ o ar+2”e;71ﬁ’ a7+2”e£ﬁ)
~ (T H27e) o T+2Y f1 T dd
(a ﬁa y O ﬁ,Oé ﬁ) (flo ) (35>
~ (T IE 06 AT _1 odd).
( T 1/67 ﬁa 9 ﬁ) (ft 1 dd)
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Combining (3.3) — (3.5), we have

a ~ (&, ... af1, ot o™ g a3 at )

~ (Oéil, o O{is, O{T+2Ve/8, O{Tﬁ, o aTﬁ) (by Lemma 2.1 (1)),

where 0 <4y <--- <4, <2™ 2 and 0 <e < 2m 17

(iii) Different tuples in (3.2) have different combinations of invariants A(a), t(a) and
m(a). Hence different tuples in (3.2) are nonequivalent.

It remains to show that every a € C, . is equivalent to one of the tuples in (3.2). We
may assume that

a=(a", ..., o o™ . omTTeg o TN o™, (3.6)
where 0 < i < -+- <, <22 u>0,t>0,e,...,e, are odd and f1,..., f; are even.
We have

(@7T¥ag  amtFep ot o TR
~ (OéT+2Vféﬁ, OéT+2V61 67 o a7+21’6u6’ a7+2”f26’ o OéT+2Vftﬂ) (fé even),
where
(a2 hog a3 aTt o)
~ (™3, aTHHE, o aT e 3)  (f] even, Lemma 2.1 (iii))
~ (B o™ B ) (f! even).
Hence
(T, ..., aHe g, 0T, L 0T ) (37)
(TR, L TG o o R L amt? ) |
By a similar argument,
(aT+2D67 aT+2Vf7lJ‘67 aT+2Vf267 AR O{T+2Vft6) (3 8)
~ (™3 a6, ..., amf) (h odd). '
By (3.7) and (3.8),
(@7 T¥ag . amtFep omT N TR
~ (@B aTT B, QT B a7, at ) (3.9)
~ (aT”Veﬁ T+2Vﬁ, LB a3, ., a"B) (e odd).
Combining (3.6) and (3.9), we see that « is equivalent to the tuple in (3.2). O

Theorem 3.1 has an immediate corollary.
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Corollary 3.2. (i) a,b € A are equivalent < a is a permutation of b.
(ii) a,b € B, are equivalent < A(a) = A(b) and 7(a) = w(b).
(ili) a,b € C, . are equivalent < A(a) = A(b), t(a) = t(b) and m(a) = 7(b).

Theorem 3.1 and Corollary 3.2 allow us to compute the number of B,-orbits in Q5.
and the cardinality of each B,-orbit.

Corollary 3.3. The total number of equivalence classes in Q%m is

n —+ om—1 _1q n + om—2 m—2 n+ om—2—v
nm ~| = 2m—1 2m—2 ]
‘Q2 / ‘ < n ) * < n—1 ) * Z n—2

v=0

Proof. By Theorem 3.1 (i),

|A/N|:<n+2m_1—1)‘

n

In (3.1), the number (i1, ..., 1), where s < n—1 is not fixed, with 0 <4, < --- <4, < 2m2
is (”22_";72), which is the number of “2™~2+2 choose n—1 with repetition”. When i1, . . . , i,
are chosen, the number of choices for (7,¢) in (3.1) is 2!, So,

‘( U BV,T>/N‘ _ gm-1 <n7-;3w;—2)

1<v<m-—1

0<r<2v
In (3.2), for each 0 < v < m — 2, the number of (i1, ..., t), where s < n — 2 is not
fixed, with 0 <y < -+ <, < 2™ 2 min{wy(y),...,0(is)} >vand 1 <t <n-—s—1

is ("+2nwf;7u), which is the number of “2™=27¥ + 3 choose n — 2 with repetition”. When

v and (iy,...,is;t) are chosen, the number of choices for (7,¢€) in (3.2) is 272, So,
 ome2 n+2m—2—u
(U e)/~-r=S(0,)7)

0<v<m-—2

0<T<2v
Therefore,

@/~ =1t |( U B [~ |( U cr) /o]
1027’?2: 0<VT?2:

n+42mt—1 L[4 2m? 5 n+2m2”
= 2m_ 2m °
(75T () ey
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Corollary 3.4. (i) Let ng,...,ngm-1_1 € N such that ng + - - - + ngm-1_1 =n. Then

0 0 2m71_1 2m71_1 o n
}oz,...,oz,...,g e J‘— )
v~ Nno,

ceey n2m71_1
ng Nogm—1_4

(i) Let 1 <v <m—-1,0<7<2, and 0 < e < 2™ 7. Let ng,...,ngm—2 € N
such that ng + -+ + ngm-—2 < n — 1 and min({wy(i) : n; > 0} U{m —2}) = v — 1.

Then
0 0 2m=2 2m=2 142V T T
Hg,...,ozj...,g Lo an ﬁ,aﬂ,...,aﬁ]‘
no n2m72
n (m—1—v)(n—ng—-— -1 :
= 2m v)(n—no—-- Nom—2 )+no+ "+n2m72,1'
ng,...,Nom—-2,1M —Ng — +** — Ngm-2

(iii) Let 0 < v <m—-2,0<7<2, and 0 < e < 2™ ¢ =1 (mod2). Let
Ng, - .., Nom—2 € N and t > 0 such that ng+ -+ -+ nom—-2 +t <n —1 and min({ry(1) :
n; >0}U{m—2})>wv. Then

0 0 2m=2 2m=2 142V T42¥ T+2Y T T
‘a,...,a,...,g 00 B, "B« ﬁ,aﬁ,...,aﬁ}
no t

n2m72
_ " o(m—2—v)(n=n0—+—nym—2—1)+n0++nym-2_|
NG, ..., Nom-2,L, M —Ng— +++— Ngm-2 —
Proof. The formulas follow from Corollary 3.2 and simple counting arguments. O

4 B,-orbits in Tuples of Dihedral Groups

The dihedral group Dy of order 2N is given by the presentation
Dy ={af|a” =1=3 Baf™ =a™t).

Each element of Dy can be uniquely written as ‘3’ with 0 < i < N and 0 < j < 1.
Clearly, equations (2.1) and (2.2), hence (2.3) — (2.6), also hold for D . In these equations,
the only difference between Dy and Qam that affects the Hurwitz action is that o(a) = N
in Dy but o(a) = 2™ ! in Qom. When N = 2™~ there is no difference. Therefore, under
the bijection Dom—1 — Qam, o' — o7, 0 < i < 2m~1 0 < j <1, the action of B, on
D7, is identical to that on ()%... Hence, all results in section 3 hold with Q2= replaced
by ng—l.

When N = p™, where p is an odd prime, the B,-orbits in D, can be determined

using a method similar to that of section 3.
For a = (a"37,...,a" (") € D}, where 0 <), < p™ and 0 < ji <1, let

A(a) = the multi set {min{iy,p™ —ix} : jr = 0},
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A(a) is an invariant of the Hurwitz action on DJj.. Let
A ={ac Dj.:v(a) =2}
Moreover, for 0 < v <m and 0 < 7 < p¥, let
B,,={ac D} :min({r,(i) : i € Ma)} U{m}) =v, @ #v(a) C T+ p"ZL};
for0<v<m-—1and 0 <7 <p, let
¢,r={a €D} min({y(i):ieXa)}U{m})>v+1, @#~(a)CT+p'Z,
37,7 € v(a) such that v,(j — j') = 1/}.
Then A, B, . and €, ; are all invariant under the Hurwitz equivalence and

Dy =20 ( U B,.) U ( U ¢,).

0<v<m 0<v<m-—1
0<r<p¥ 0<r<p”

For a € €, ., collect the components of a of the form o' and let the result be
(af3,...,a"3), where 0 < iy < p™. Let ey € Z,, 1 < k <t, be defined by i, = 7 + p”ey
(mod p**1). Put

k=1
For example, let p =15, m =4, n =5, and let

2, 3. 2, 2. 2
a = (a9+5 46’ Oé5 3’ a9+5 257 a9+5 86’a9+5 ﬂ) c 0:279'

Then o(a) =4—-2+8—1=4 € Zs. From (2.3) — (2.6), it is easy to see that o(a) is an
invariant under the Hurwitz equivalence. Further partition €, ; as

¢ ={ac¢,, :0(a)=0}

and

¢, ={ac¢,, o(a)#0}.

Lemma 4.1. Let T,v,e, f € Z such that 0 < v <m —1 and e Z f (mod p). Then for
every g € 7,
(aT+p”6/5, ar+p”fﬁ) ~ (a7+p“(e+g)ﬁ’ aT+p”(f+9)/5).

The proof of Lemma 4.1 is the same as that of Lemma 2.1 (iii).

Theorem 4.2. (i) The B, -orbits in A are represented by
(™, ..., a™),
where 0 <17 < --- <, < p™.
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(ii) Let 0 <v <m and 0 <1 < p”. The B,-orbits in B, . are represented by
(@™,... o, a™P°3, a"B, ..., a’f),
where 0 < i; < -+ <y, < %pm, min{v,(i1), ..., v(is),m} =v, 0 <e < p™".

(i) Let 0 <v<m—1and 0 <7 <p".

(ili-1) The By-orbits in &) are represented by

(™, ..., ", Q™3 o3 Q" s, . a’f), (4.1)
—— —
n—2—s
where 0 < iy < -+ <y < 2p™, n—2— s> 0, min{v,(ir),..., (i), m} > v+1,

0<e<p™”, e=1 (mod p).
(iii-2) The B, -orbits in €}

v, T
(@, ... o, o™ B, a3, ..., a7 f), (4.2)
n—1—s

where 0 < iy < -+ <y < ip™ n—1—5>0, min{y,(ir),..., (i), m} > v+1,
0<e<p™’, e#0 (mod p).

are represented by

Proof. The proofs of (i) and (ii) are identical to those of the corresponding cases in
Theorem 3.1.

(iii) Different tuples in (4.1) are nonequivalent since they have different combinations
of invariants A\(a) and 7m(a). The same is true for the tuples in (4.2). Therefore, it remains
to show that every tuple a € €, is equivalent to one of the tuples in (4.1) or (4.2).

By (2.3) — (2.5), we may write

a=(a" als, otPag o TP 3)
L) Y 7ttt )

where 0 <4y < ... <, < %pm and there exist k, [ such that e; Z ¢, (mod p). It suffices
to show that either

(@B, o™ R) ~ (aTTR QTP B, AT, L, aT ) (4.3)
for some 0 < e < p™~¥ with e =1 (mod p) or
(a7 Pap, o amPeR) ~ (aTTPB a6, L, AT ) (4.4)

for some 0 < e < p™~" with e Z 0 (mod p). We prove this claim by induction on ¢.
If t =2, by Lemma 4.1, we have

(ar+p”e157 Of‘*‘P”e?ﬂ) ~ (a7+py(el—e2)/87 ozTﬂ);

hence (4.4) holds.
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Now assume ¢ > 2. Assume that ex # ex11 = --- = ¢; (mod p). By Lemma 4.1,

(aT'f'pV@kﬁ’ a'r-i-p”ekﬂ/@’ o OZT+pV6t/6)

~ (OzT+pV6;€ﬂ, OzT—"—puekﬂ, o O{T+pu6t/8)

~ (ar+p”e§€ﬁ’ e a'r-i-p"eg,zﬁ’ aTtreR s, ar-i—p”Et/@)

~ (oG, a1 B a7 ).
So,

(ar+p1f6157 . OéT—l—p”etﬁ) ~ (a7+p”f16’ ces O{T-ﬁ-p"ftflﬁ, arﬁ)'

If fi,...,fi—1 are not all the same modulo p, the induction hypothesis applies to
(@™ ... a™tPN-13) So, assume f; = --- = f,_; # 0 (mod p). Let € Z such

that  # —f;_1 (mod p). Then
(O{T+Puft72ﬁ7 O{T‘FPUft—lﬂ, ofﬁ)
~ (aT‘i‘Pufth/B’ aT‘i‘Pu(ftfl‘i‘l)/@’ a”pyﬁ)
~ (a‘r-l-p”(ftfz-i-x)/@’ aT+p"(ft71+:c+1)/6’ aT-i—p”/@)
-~ (a'r-l-p”(ftfz-i-x)/@’ aT+p”(ft71+x)/6’ OzT/@).

If t = 3, choose v = —f;_1 + 1, then (4.4) holds. If ¢ > 3, choose x € Z such that
x# —f;_1, 0 (mod p). Then the induction hypothesis applies to

(aT'f‘PVfl/B’ e aT-i‘PVft—B/@’ OéT‘f‘PV(fth'f‘x)/@’ a'r+p”(ft71+x)ﬁ)‘ ]

Corollary 4.3. (i) a,b € A are equivalent < a is a permutation of b.
(i) a,b € B, . are equivalent < \(a) = A(b) and w(a) = 7(b).
(i1i) a,b € €, are equivalent < Aa) = A(b), o(a) = o(b) and 7(a) = 7 (b).

We remark that the B,,-orbits of Dy ., where p is an odd prime, can also be determined
due to the fact that Doym = Zy X Dpm. However, for an arbitrary positive integer N,
determination of the B,-orbits of D% seems to be a difficult problem.

Acknowledgment: The author thanks the referee for pointing out an error in Corol-
lary 3.3 in a previous version of the paper.
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