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Abstract

Let Q2m be the generalized quaternion group of order 2m and DN the dihedral
group of order 2N . We classify the orbits in Qn

2m and Dn
pm (p prime) under the

Hurwitz action.

1 The Hurwitz Action

Let G be a group. For a, b ∈ G, let ab = b−1ab and ba = bab−1. The Hurwitz action on
Gn (n ≥ 2) is an action of the n-string braid group Bn on Gn. Recall that Bn is given by
the presentation

Bn = 〈σ1, . . . , σn−1 | σiσj = σjσi, |i − j| > 2; σiσi+1σi = σi+1σiσi+1, 1 ≤ i ≤ n − 2〉.

The action of σi on Gn is defined by

σi(a1, . . . , an) = (a1, . . . , ai−1, ai+1, a
ai+1

i , ai+2, . . . , an),

where (a1, . . . , an) ∈ Gn. Note that

σ−1
i (a1, . . . , an) = (a1, . . . , ai−1,

aiai+1, ai, ai+2, . . . , an).

An action by σi or σ−1
i on Gn is called a Hurwitz move. Two tuples (a1, . . . , an),

(b1, . . . , bn) ∈ Gn are called (Hurwitz) equivalent, denoted as (a1, . . . , an) ∼ (b1, . . . , bn), if
they are in the same Bn-orbit. The (Hurwitz) equivalence class of (a1, . . . , an) ∈ Gn, i.e.,
the Bn-orbit of (a1, . . . , an), is denoted by [a1, . . . , an].

If G is a nonabelian group, in general, the Bn-orbits in Gn are not known. In [1],
Ben-Itzhak and Teicher determined all Bn-orbits in Sn

m represented by (t1, . . . , tn), where
Sm is the symmetric group, each ti is a transposition and t1 · · · tn = 1. It is obvious that if
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a1, . . . , an ∈ G generate a finite subgroup, then the Bn-orbit of (a1, . . . , an) in Gn is finite.
It has been proved that if s1, . . . , sn ∈ GL(Rn) are reflections such that the Bn-orbit of
(s1, . . . , sn) is finite, then the group generated by s1, . . . , sn is finite; see [2] and [3].

It is natural to ask which types of nonabelian group G allow complete determination
of the Bn-orbits in Gn. In this paper, we show that when G is the generalized quaternion
group Q2m or the dihedral group Dpm of order 2pm, where p is a prime, the answer to the
above question is affirmative.

2 The Generalized Quaternion Group

Let m ≥ 2. The generalized quaternion group Q2m of order 2m is given by the presentation

Q2m = 〈α, β | α2m−1

= 1, α2m−2

= β2, βαβ−1 = α−1〉.

Each element of Q2m can be uniquely written as αiβj, where 0 ≤ i < 2m−1 and 0 ≤ j ≤ 1.
We have

(αiβj)αkβl

= α(−1)l(i−2kj)βj, (2.1)

αiβj

(αkβl) = α(−1)jk+2ilβl. (2.2)

Thus in Qn
2m , a Hurwitz move gives one of the following equivalences:

(· · · , αiβj, αkβl, · · · ) ∼ (· · · , αkβl, α(−1)l(i−2kj)βj, · · · ),

(· · · , αiβj, αkβl, · · · ) ∼ (· · · , α(−1)jk+2ilβl, αiβj, · · · ).

For easier reading, we rewrite the above equivalences, omitting the · · · ’s, with (j, l) =
(0, 0), (0, 1), (1, 0) and (1, 1) respectively.

(αi, αk) ∼ (αk, αi), (2.3)
{

(αi, αkβ) ∼ (αkβ, α−i),

(αi, αkβ) ∼ (αk+2iβ, αi),
(2.4)

{

(αiβ, αk) ∼ (αk, αi−2kβ),

(αiβ, αk) ∼ (α−k, αiβ),
(2.5)

{

(αiβ, αkβ) ∼ (αkβ, α−i+2kβ) = (αi+(k−i)β, αk+(k−i)β),

(αiβ, αkβ) ∼ (α−k+2iβ, αiβ) = (αi−(k−i)β, αk−(k−i)β).
(2.6)

Lemma 2.1. (i) (αi, αjβ) ∼ (α−i, αj+2iβ) for all i, j ∈ Z.

(ii) (αiβ, αjβ) ∼ (αi+k(j−i)β, αj+k(j−i)β) for all i, j, k ∈ Z.

(iii) Let τ, ν, e, f ∈ Z such that 0 ≤ ν ≤ m − 2 and e 6≡ f (mod 2). Then for every
g ∈ Z,

(ατ+2νeβ, ατ+2νfβ) ∼ (ατ+2ν(e+g)β, ατ+2ν(f+g)β).
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Proof. (i) We have

(αi, αjβ) ∼ (αjβ, α−i) (the first eq. of (2.4))

∼ (α−i, αj+2iβ) (the first eq. of (2.5)).

(ii) follows from (2.6).
(iii) In (ii) let i = τ + 2νe, j = τ + 2νf and choose k ∈ Z such that k2ν(f − e) ≡ g2ν

(mod 2m−1).

3 Bn-Orbits in Qn
2m

Let G be a group. For a = (a1, . . . , an) ∈ Gn, define π(a) = a1 · · ·an ∈ G. π(a) is an
invariant of the Hurwitz action on Gn.

For a = (αi1βj1, . . . , αinβjn) ∈ Qn
2m , where 0 ≤ ik < 2m−1 and 0 ≤ jk ≤ 1, let

Λ(a) = the multi set
{
min{ik, 2

m−1 − ik} : jk = 0
}
,

Γ(a) = {ik : jk = 1}.

For example, if a = (α3β, α4β, α3β, αβ), b = (α6, αβ, 1, α2) ∈ Q4
24 , then Λ(a) = ∅,

Λ(b) = {0, 2, 2}, Γ(a) = {1, 3, 4}, Γ(b) = {1}. Λ(a) is an invariant of the Hurwitz action
on Qn

2m . In fact, it is easy to see that Λ(a) is invariant under each of the Hurwitz moves
in (2.3) – (2.6).

To determine the Bn-orbits in Qn
2m , we first partition Qn

2m into suitable subsets. Let

A = {a ∈ Qn
2m : Γ(a) = ∅}.

For each 1 ≤ ν ≤ m − 1 and 0 ≤ τ < 2ν, let

Bν,τ =
{
a ∈ Qn

2m : min({ν2(i) : i ∈ Λ(a)} ∪ {m − 2}) = ν − 1, ∅ 6= Γ(a) ⊂ τ + 2νZ
}
,

where ν2 is the 2-adic order. For each 0 ≤ ν ≤ m − 2 and 0 ≤ τ < 2ν, let

Cν,τ =
{
a ∈ Qn

2m : min({ν2(i) : i ∈ Λ(a)} ∪ {m − 2}) ≥ ν, Γ(a) ⊂ τ + 2νZ,

∃j, j ′ ∈ Γ(a) such that ν2(j − j ′) = ν
}
.

Then

Qn
2m = A

�

∪
( �⋃

1≤ν≤m−1
0≤τ<2ν

Bν,τ

)
�

∪
( �⋃

0≤ν≤m−2
0≤τ<2ν

Cν,τ

)

.

It is routine to check that each of A, Bν,τ , Cν,τ is invariant under the Hurwitz moves
in (2.3) – (2.6). Thus, A, Bν,τ and Cν,τ are invariant under the Hurwitz equivalence.
Therefore, to determine the Bn-orbits in Qn

2m , it suffices to find a set of representatives of
the Bn-orbits in each of A, Bν,τ and Cν,τ .
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For a = (αi1βj1, . . . , αinβjn) ∈ Cν,τ , where 0 ≤ ik < 2m−1 and 0 ≤ jk ≤ 1, let

t(a) = |{k : jk = 1 and ik ≡ τ (mod 2ν+1)}|.

We claim that t(a) is an invariant under the Hurwitz equivalence. Once again, it is easy
to see that t(a) is invariant under the Hurwitz moves in (2.3) – (2.6).

Theorem 3.1. (i) The Bn-orbits in A are represented by

(αi1, . . . , αin),

where 0 ≤ i1 ≤ · · · ≤ in < 2m−1.

(ii) Let 1 ≤ ν ≤ m − 1 and 0 ≤ τ < 2ν. The Bn-orbits in Bν,τ are represented by

(αi1, . . . , αis, ατ+2νeβ, ατβ, . . . , ατβ), (3.1)

where 0 ≤ i1 ≤ · · · ≤ is ≤ 2m−2, min{ν2(i1), . . . , ν2(is), m − 2} = ν − 1, 0 ≤ e <
2m−1−ν.

(iii) Let 0 ≤ ν ≤ m − 2 and 0 ≤ τ < 2ν. The Bn-orbits in Cν,τ are represented by

(αi1 , . . . , αis, ατ+2νeβ, ατ+2ν

β, . . . , ατ+2ν

β, ατβ, . . . , ατβ
︸ ︷︷ ︸

t

), (3.2)

where 0 ≤ i1 ≤ · · · ≤ is ≤ 2m−2, min{ν2(i1), . . . , ν2(is), m−2} ≥ ν, 0 ≤ e < 2m−1−ν,
e ≡ 1 (mod 2), t > 0.

Proof. (i) is obvious.
(ii) We first observe that different tuples in (3.1) have different combinations of invari-

ants Λ(a) and π(a). Thus, different tuples in (3.1) are nonequivalent.
Next, we show that every a ∈ Bν,τ is equivalent to one of the tuples in (3.1). We may

assume that
a = (αi′1 , . . . , αi′s−1 , ατ+2νe1β, . . . , ατ+2νetβ, αj0), (3.3)

where ν2(j0) = ν − 1. Using (2.5) repeatedly, we have

(ατ+2νe1β, . . . , ατ+2νetβ, αj0)

∼ (ατ+2νe1β, . . . , ατ+2νet−1β, αj1, ατ+2νe′tβ)

∼ · · ·

∼ (αjt, ατ+2νe′1β, . . . , ατ+2νe′tβ),

(3.4)

where ν2(j0) = · · · = ν2(jt) = ν − 1, e′1, . . . , e
′
t−1 are even and e′t is odd. Using Lemma 2.1

(iii) repeatedly, we have

(ατ+2νe′
1β, . . . , ατ+2νe′t−1β, ατ+2νe′tβ)

∼ (ατ+2νe′1β, . . . , ατ+2νf1β, ατβ) (f1 odd)

∼ · · ·

∼ (ατ+2νft−1β, ατβ, . . . , ατβ) (ft−1 odd).

(3.5)
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Combining (3.3) – (3.5), we have

a ∼ (αi′1, . . . , αi′s−1, αjt, ατ+2νft−1β, ατβ, . . . , ατβ)

∼ (αi1, . . . , αis, ατ+2νeβ, ατβ, . . . , ατβ) (by Lemma 2.1 (i)),

where 0 ≤ i1 ≤ · · · ≤ is ≤ 2m−2 and 0 ≤ e < 2m−1−ν .
(iii) Different tuples in (3.2) have different combinations of invariants Λ(a), t(a) and

π(a). Hence different tuples in (3.2) are nonequivalent.
It remains to show that every a ∈ Cν,τ is equivalent to one of the tuples in (3.2). We

may assume that

a = (αi1 , . . . , αis, ατ+2νe1β, . . . , ατ+2νeuβ, ατ+2νf1β, . . . , ατ+2νftβ), (3.6)

where 0 ≤ i1 ≤ · · · ≤ is ≤ 2m−2, u > 0, t > 0, e1, . . . , eu are odd and f1, . . . , ft are even.
We have

(ατ+2νe1β, . . . , ατ+2νeuβ, ατ+2νf1β, . . . , ατ+2νftβ)

∼ (ατ+2νf ′

0β, ατ+2νe1β, . . . , ατ+2νeuβ, ατ+2νf2β, . . . , ατ+2νftβ) (f ′
0 even),

where

(ατ+2νf ′

0β, ατ+2νe1β, . . . , ατ+2νeuβ)

∼ (ατ+2ν

β, ατ+2νf ′

1β, ατ+2νe2β, . . . , ατ+2νeuβ) (f ′
1 even, Lemma 2.1 (iii))

∼ · · ·

∼ (ατ+2ν

β, . . . , ατ+2ν

β, ατ+2νf ′

uβ) (f ′
u even).

Hence

(ατ+2νe1β, . . . , ατ+2νeuβ, ατ+2νf1β, . . . , ατ+2νftβ)

∼ (ατ+2ν

β, . . . , ατ+2ν

β, ατ+2νf ′

uβ, ατ+2νf2β, . . . , ατ+2νftβ).
(3.7)

By a similar argument,

(ατ+2ν

β, ατ+2νf ′

uβ, ατ+2νf2β, . . . , ατ+2νftβ)

∼ (ατ+2νhβ, ατβ, . . . , ατβ) (h odd).
(3.8)

By (3.7) and (3.8),

(ατ+2νe1β, . . . , ατ+2νeuβ, ατ+2νf1β, . . . , ατ+2νftβ)

∼ (ατ+2ν

β, . . . , ατ+2ν

β, ατ+2νhβ, ατβ, . . . , ατβ)

∼ (ατ+2νeβ, ατ+2ν

β, . . . , ατ+2ν

β, ατβ, . . . , ατβ) (e odd).

(3.9)

Combining (3.6) and (3.9), we see that α is equivalent to the tuple in (3.2).

Theorem 3.1 has an immediate corollary.

the electronic journal of combinatorics 15 (2008), #R80 5



Corollary 3.2. (i) a, b ∈ A are equivalent ⇔ a is a permutation of b.

(ii) a, b ∈ Bν,τ are equivalent ⇔ Λ(a) = Λ(b) and π(a) = π(b).

(iii) a, b ∈ Cν,τ are equivalent ⇔ Λ(a) = Λ(b), t(a) = t(b) and π(a) = π(b).

Theorem 3.1 and Corollary 3.2 allow us to compute the number of Bn-orbits in Qn
2m

and the cardinality of each Bn-orbit.

Corollary 3.3. The total number of equivalence classes in Qn
2m is

∣
∣Qn

2m/∼
∣
∣ =

(
n + 2m−1 − 1

n

)

+ 2m−1

(
n + 2m−2

n − 1

)

+ 2m−2
m−2∑

ν=0

(
n + 2m−2−ν

n − 2

)

.

Proof. By Theorem 3.1 (i),

|A/∼| =

(
n + 2m−1 − 1

n

)

.

In (3.1), the number (i1, . . . , is), where s ≤ n−1 is not fixed, with 0 ≤ i1 ≤ · · · ≤ is ≤ 2m−2

is
(

n+2m−2

n−1

)
, which is the number of “2m−2+2 choose n−1 with repetition”. When i1, . . . , is

are chosen, the number of choices for (τ, e) in (3.1) is 2m−1. So,

∣
∣
∣

( ⋃

1≤ν≤m−1
0≤τ<2ν

Bν,τ

)/

∼
∣
∣
∣ = 2m−1

(
n + 2m−2

n − 1

)

.

In (3.2), for each 0 ≤ ν ≤ m − 2, the number of (i1, . . . , is; t), where s ≤ n − 2 is not
fixed, with 0 ≤ i1 ≤ · · · ≤ is ≤ 2m−2, min{ν2(i1), . . . , ν2(is)} ≥ ν and 1 ≤ t ≤ n − s − 1

is
(

n+2m−2−ν

n−2

)
, which is the number of “2m−2−ν + 3 choose n − 2 with repetition”. When

ν and (i1, . . . , is; t) are chosen, the number of choices for (τ, e) in (3.2) is 2m−2. So,

∣
∣
∣

( ⋃

0≤ν≤m−2
0≤τ<2ν

Cν,τ

)/

∼
∣
∣
∣ = 2m−2

m−2∑

ν=0

(
n + 2m−2−ν

n − 2

)

.

Therefore,

∣
∣Qn

2m/∼
∣
∣ = |A/∼| +

∣
∣
∣

( ⋃

1≤ν≤m−1
0≤τ<2ν

Bν,τ

)/

∼
∣
∣
∣ +

∣
∣
∣

( ⋃

0≤ν≤m−2
0≤τ<2ν

Cν,τ

)/

∼
∣
∣
∣

=

(
n + 2m−1 − 1

n

)

+ 2m−1

(
n + 2m−2

n − 1

)

+ 2m−2

m−2∑

ν=0

(
n + 2m−2−ν

n − 2

)

.
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Corollary 3.4. (i) Let n0, . . . , n2m−1−1 ∈ N such that n0 + · · ·+ n2m−1−1 = n. Then

∣
∣[α0, . . . , α0

︸ ︷︷ ︸

n0

, . . . , α2m−1−1, . . . , α2m−1−1

︸ ︷︷ ︸

n
2m−1

−1

]
∣
∣ =

(
n

n0, . . . , n2m−1−1

)

.

(ii) Let 1 ≤ ν ≤ m − 1, 0 ≤ τ < 2ν, and 0 ≤ e < 2m−1−ν . Let n0, . . . , n2m−2 ∈ N

such that n0 + · · · + n2m−2 ≤ n − 1 and min({ν2(i) : ni > 0} ∪ {m − 2}) = ν − 1.
Then

∣
∣[α0, . . . , α0

︸ ︷︷ ︸

n0

, . . . , α2m−2

, . . . , α2m−2

︸ ︷︷ ︸

n
2m−2

, ατ+2νeβ, ατβ, . . . , ατβ]
∣
∣

=

(
n

n0, . . . , n2m−2 , n − n0 − · · · − n2m−2

)

2(m−1−ν)(n−n0−···−n
2m−2−1)+n0+···+n

2m−2
−1 .

(iii) Let 0 ≤ ν ≤ m − 2, 0 ≤ τ < 2ν, and 0 ≤ e < 2m−1−ν , e ≡ 1 (mod 2). Let
n0, . . . , n2m−2 ∈ N and t > 0 such that n0 + · · ·+ n2m−2 + t ≤ n− 1 and min({ν2(i) :
ni > 0} ∪ {m − 2}) ≥ ν. Then

∣
∣[α0, . . . , α0

︸ ︷︷ ︸

n0

, . . . , α2m−2

, . . . , α2m−2

︸ ︷︷ ︸

n
2m−2

, ατ+2νeβ, ατ+2ν

β, . . . , ατ+2ν

β, ατβ, . . . , ατβ
︸ ︷︷ ︸

t

]
∣
∣

=

(
n

n0, . . . , n2m−2 , t, n − n0 − · · · − n2m−2 − t

)

2(m−2−ν)(n−n0−···−n
2m−2−1)+n0+···+n

2m−2
−1 .

Proof. The formulas follow from Corollary 3.2 and simple counting arguments.

4 Bn-orbits in Tuples of Dihedral Groups

The dihedral group DN of order 2N is given by the presentation

DN = 〈αβ | αN = 1 = β2, βαβ−1 = α−1〉.

Each element of DN can be uniquely written as αiβj with 0 ≤ i < N and 0 ≤ j ≤ 1.
Clearly, equations (2.1) and (2.2), hence (2.3) – (2.6), also hold for DN . In these equations,
the only difference between DN and Q2m that affects the Hurwitz action is that o(α) = N
in DN but o(α) = 2m−1 in Q2m . When N = 2m−1, there is no difference. Therefore, under
the bijection D2m−1 → Q2m , αiβj 7→ αiβj, 0 ≤ i < 2m−1, 0 ≤ j ≤ 1, the action of Bn on
Dn

2m−1 is identical to that on Qn
2m . Hence, all results in section 3 hold with Q2m replaced

by D2m−1 .
When N = pm, where p is an odd prime, the Bn-orbits in Dn

pm can be determined
using a method similar to that of section 3.

For a = (αi1βj1, . . . , αinβjn) ∈ Dn
pm, where 0 ≤ ik < pm and 0 ≤ jk ≤ 1, let

λ(a) = the multi set
{
min{ik, p

m − ik} : jk = 0
}
,

γ(a) = {ik : jk = 1}.
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λ(a) is an invariant of the Hurwitz action on Dn
pm. Let

A = {a ∈ Dn
pm : γ(a) = ∅}.

Moreover, for 0 ≤ ν ≤ m and 0 ≤ τ < pν, let

Bν,τ =
{
a ∈ Dn

pm : min({νp(i) : i ∈ λ(a)} ∪ {m}) = ν, ∅ 6= γ(a) ⊂ τ + pνZ
}
;

for 0 ≤ ν ≤ m − 1 and 0 ≤ τ < pν, let

Cν,τ =
{
a ∈ Dn

pm : min({νp(i) : i ∈ λ(a)} ∪ {m}) ≥ ν + 1, ∅ 6= γ(a) ⊂ τ + pνZ,

∃j, j ′ ∈ γ(a) such that νp(j − j ′) = ν
}
.

Then A, Bν,τ and Cν,τ are all invariant under the Hurwitz equivalence and

Dpm = A
�

∪
( �⋃

0≤ν≤m
0≤τ<pν

Bν,τ

)
�

∪
( �⋃

0≤ν≤m−1
0≤τ<pν

Cν,τ

)

.

For a ∈ Cν,τ , collect the components of a of the form αiβ and let the result be
(αi1β, . . . , αitβ), where 0 ≤ ik < pm. Let ek ∈ Zp, 1 ≤ k ≤ t, be defined by ik ≡ τ + pνek

(mod pν+1). Put

σ(a) =

t∑

k=1

(−1)k−1ek.

For example, let p = 5, m = 4, n = 5, and let

a = (α9+52·4β, α53·3, α9+52·2β, α9+52·8β, α9+52

β) ∈ C2,9.

Then σ(a) = 4 − 2 + 8 − 1 = 4 ∈ Z5. From (2.3) – (2.6), it is easy to see that σ(a) is an
invariant under the Hurwitz equivalence. Further partition Cν,τ as

C
0
ν,τ = {a ∈ Cν,τ : σ(a) = 0}

and
C

1
ν,τ = {a ∈ Cν,τ : σ(a) 6= 0}.

Lemma 4.1. Let τ, ν, e, f ∈ Z such that 0 ≤ ν ≤ m − 1 and e 6≡ f (mod p). Then for
every g ∈ Z,

(ατ+pνeβ, ατ+pνfβ) ∼ (ατ+pν(e+g)β, ατ+pν(f+g)β).

The proof of Lemma 4.1 is the same as that of Lemma 2.1 (iii).

Theorem 4.2. (i) The Bn-orbits in A are represented by

(αi1, . . . , αin),

where 0 ≤ i1 ≤ · · · ≤ in < pm.
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(ii) Let 0 ≤ ν ≤ m and 0 ≤ τ < pν. The Bn-orbits in Bν,τ are represented by

(αi1, . . . , αis, ατ+pνeβ, ατβ, . . . , ατβ),

where 0 ≤ i1 ≤ · · · ≤ is < 1
2
pm, min{νp(i1), . . . , νp(is), m} = ν, 0 ≤ e < pm−ν.

(iii) Let 0 ≤ ν ≤ m − 1 and 0 ≤ τ < pν .

(iii-1) The Bn-orbits in C0
ν,τ are represented by

(αi1, . . . , αis, ατ+pνeβ, ατ+pν

β, ατβ, . . . , ατβ
︸ ︷︷ ︸

n−2−s

), (4.1)

where 0 ≤ i1 ≤ · · · ≤ is < 1
2
pm, n − 2 − s > 0, min{νp(i1), . . . , νp(is), m} ≥ ν + 1,

0 ≤ e < pm−ν, e ≡ 1 (mod p).

(iii-2) The Bn-orbits in C1
ν,τ are represented by

(αi1 , . . . , αis, ατ+pνeβ, ατβ, . . . , ατβ
︸ ︷︷ ︸

n−1−s

), (4.2)

where 0 ≤ i1 ≤ · · · ≤ is < 1
2
pm, n − 1 − s > 0, min{νp(i1), . . . , νp(is), m} ≥ ν + 1,

0 ≤ e < pm−ν, e 6≡ 0 (mod p).

Proof. The proofs of (i) and (ii) are identical to those of the corresponding cases in
Theorem 3.1.

(iii) Different tuples in (4.1) are nonequivalent since they have different combinations
of invariants λ(a) and π(a). The same is true for the tuples in (4.2). Therefore, it remains
to show that every tuple a ∈ Cν,τ is equivalent to one of the tuples in (4.1) or (4.2).

By (2.3) – (2.5), we may write

a = (αi1, . . . , αis, ατ+pνe1β, . . . , ατ+pνetβ),

where 0 ≤ i1 ≤ · · · ≤ is < 1
2
pm and there exist k, l such that ek 6≡ el (mod p). It suffices

to show that either

(ατ+pνe1β, . . . , ατ+pνetβ) ∼ (ατ+pνeβ, ατ+pν

β, ατβ, . . . , ατβ) (4.3)

for some 0 ≤ e < pm−ν with e ≡ 1 (mod p) or

(ατ+pνe1β, . . . , ατ+pνetβ) ∼ (ατ+pνeβ, ατβ, . . . , ατβ) (4.4)

for some 0 ≤ e < pm−ν with e 6≡ 0 (mod p). We prove this claim by induction on t.
If t = 2, by Lemma 4.1, we have

(ατ+pνe1β, ατ+pνe2β) ∼ (ατ+pν(e1−e2)β, ατβ);

hence (4.4) holds.
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Now assume t > 2. Assume that ek 6≡ ek+1 ≡ · · · ≡ et (mod p). By Lemma 4.1,

(ατ+pνekβ, ατ+pνek+1β, . . . , ατ+pνetβ)

∼ (ατ+pνe′
kβ, ατ+pνekβ, . . . , ατ+pνetβ)

∼ · · ·

∼ (ατ+pνe′
kβ, · · · , ατ+pνe′t−2β, ατ+pνekβ, ατ+pνetβ)

∼ (ατ+pνe′
kβ, · · · , ατ+pνe′t−1β, ατβ).

So,
(ατ+pνe1β, · · · , ατ+pνetβ) ∼ (ατ+pνf1β, · · · , ατ+pνft−1β, ατβ).

If f1, . . . , ft−1 are not all the same modulo p, the induction hypothesis applies to
(ατ+pνf1β, · · · , ατ+pνft−1β). So, assume f1 ≡ · · · ≡ ft−1 6≡ 0 (mod p). Let x ∈ Z such
that x 6≡ −ft−1 (mod p). Then

(ατ+pνft−2β, ατ+pνft−1β, ατβ)

∼ (ατ+pνft−2β, ατ+pν(ft−1+1)β, ατ+pν

β)

∼ (ατ+pν(ft−2+x)β, ατ+pν(ft−1+x+1)β, ατ+pν

β)

∼ (ατ+pν(ft−2+x)β, ατ+pν(ft−1+x)β, ατβ).

If t = 3, choose x = −ft−1 + 1, then (4.4) holds. If t > 3, choose x ∈ Z such that
x 6≡ −ft−1, 0 (mod p). Then the induction hypothesis applies to

(ατ+pνf1β, · · · , ατ+pνft−3β, ατ+pν(ft−2+x)β, ατ+pν(ft−1+x)β).

Corollary 4.3. (i) a, b ∈ A are equivalent ⇔ a is a permutation of b.

(ii) a, b ∈ Bν,τ are equivalent ⇔ λ(a) = λ(b) and π(a) = π(b).

(iii) a, b ∈ Cν,τ are equivalent ⇔ λ(a) = λ(b), σ(a) = σ(b) and π(a) = π(b).

We remark that the Bn-orbits of Dn
2pm, where p is an odd prime, can also be determined

due to the fact that D2pm
∼= Z2 × Dpm . However, for an arbitrary positive integer N ,

determination of the Bn-orbits of Dn
N seems to be a difficult problem.

Acknowledgment: The author thanks the referee for pointing out an error in Corol-
lary 3.3 in a previous version of the paper.
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