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Abstract

Let G be a simple graph with no isolated edges and at most one isolated vertex.
For a positive integer w, a w-weighting of G is a map f : E(G) → {1, 2, . . . , w}. An
irregularity strength of G, s(G), is the smallest w such that there is a w-weighting
of G for which

∑

e:u∈e f(e) 6=
∑

e:v∈e f(e) for all pairs of different vertices u, v ∈
V (G). A conjecture by Faudree and Lehel says that there is a constant c such that
s(G) ≤ n

d + c for each d-regular graph G, d ≥ 2. We show that s(G) < 16 n
d + 6.

Consequently, we improve the results by Frieze, Gould, Karoński and Pfender (in
some cases by a log n factor) in this area, as well as the recent result by Cuckler
and Lazebnik.

Keywords: irregularity strength, graph weighting, regular graph

1 Introduction

All graphs we consider are simple and finite. An edge {u, v} will be denoted by uv or vu
for short at times. For a given graph G and its vertex v, NG(v) dG(v), V (G), E(G) and
δ(G) (or simply N(v), d(v), V , E and δ) denote the set of neighbours and the degree of
v in G, the set of vertices, the set of edges and the minimum degree of G, respectively.
By G[D] we mean an induced subgraph of G with the vertex set D ⊆ V (G). A set
V = {V1, V2, . . . , Vk} of disjoint subsets of a set V is called a partition of V if the union of
all elements of V is V and Vi 6= ∅ for every i. We shall denote as Pk a path of length k− 1
and write Pk = v1v2 . . . vk for short if vivi+1 are its consecutive edges, i = 1, 2, . . . , k − 1.

For a graph G and a finite set S of integers, an S-weighting of G is an assignment
f : E(G) → S. If S = {1, 2, . . . , w}, then we call f a w-weighting of G. Moreover, f(e)
is called the weight of an edge e ∈ E(G), while the weight of v ∈ V (G) is defined as
f(v) =

∑

u∈N(v) f(vu). A weighting f is irregular if the obtained weights of all vertices are
different. The smallest positive integer w for which there exists an irregular w-weighting
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of G is called the irregularity strength of G and is denoted by s(G). If it does not exist,
we write s(G) = ∞. It is easy to see that s(G) < ∞ iff G contains no isolated edges and
at most one isolated vertex.

The notion of the irregularity strength was introduced by Chartrand at al. [3]. It was
motivated by the well known fact that a simple graph of order at least 2 must contain a
pair of vertices with the same degree. On the other hand, a multigraph can be irregular,
i.e. the degrees of its vertices can all be distinct. Now suppose we want to multiply the
edges of a graph G in order to create an irregular multigraph of it. Then s(G) is equal to
the smallest maximum multiplicity of an edge in such a multigraph, see [7] for a survey
by Lehel on this parameter. We will focus our attention on the regular graphs, which (not
only by the name) seem to be the most difficult to be “made irregular”. A simple counting
argument, see e.g. [3], shows that s(G) ≥

⌈

n+d−1
d

⌉

for all d-regular graphs, d ≥ 2, of order
n. A question whether maybe just “a few” more weights than this lower bound would
always suffice was posed by Jacobson (see [7]) after obtaining a number of supporting
arguments. This was formulated as a conjecture by Faudree and Lehel.

Conjecture 1 ([5]) There exists an absolute constant c such that

s(G) ≤
n

d
+ c (1)

for each d-regular graph G, d ≥ 2, of order n.

They also showed the following.

Theorem 2 ([5]) Let G be a d-regular graph, d ≥ 2, of order n. Then

s(G) ≤
⌈n

2

⌉

+ 9. (2)

About 15 years later a sizeable step forward in the survey on this problem was made by
Frieze, Gould, Karoński and Pfender.

Theorem 3 ([6]) Let G be a d-regular graph of order n with no isolated vertices or edges.
(a) If d ≤ b(n/ ln n)1/4c, then s(G) ≤ 10n/d + 1,
(b) If b(n/ ln n)1/4c + 1 ≤ d ≤ bn1/2c, then s(G) ≤ 48n/d + 1,
(c) If d ≥ bn1/2c + 1, then s(G) ≤ 240(log n)n/d + 1.

Their result was recently supplemented (and improved in some cases) by Cuckler and
Lazebnik.

Theorem 4 ([4]) Let G be a d-regular graph of order n with no isolated vertices or edges.
If d ≥ 104/3n2/3 log1/3 n, then s(G) ≤ 48n/d + 6.

Unfortunately, these results do not confirm even a weaker form of Conjecture 1, namely
that

s(G) ≤ c1
n

d
+ c2 (3)
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holds for all d-regular graphs of order n, with c1 and c2 being absolute positive constants.
In other words, we do not even know if s(G) is of order n

d
suggested in this conjecture

(see Theorem 3 (c)). We will show it quite briefly in the next section, see Corollary 10.
Then we will improve the obtained constants c1, c2 by a careful construction and prove
the following main result of the paper in the last section.

Theorem 5 Let G be a d-regular graph of order n with no isolated vertices or edges.
Then

s(G) < 16
n

d
+ 6.

2 The right order of s(G)

Let g be a w-weighting of a graph G and let us define

mg = max
X⊆V (G)

{|X| : g(u) = g(v) for all u, v ∈ X}.

The main idea of the proof of Theorem 3 relied on two steps. First the authors found a
w-weighting g with small mg and small w, e.g. w = 2, using probabilistic tools. Then
they modified g to an irregular assignment by means of the following deterministic lemma.

Lemma 6 ([6]) Let G be a d-regular graph without isolated vertices or isolated edges, and
let g be a w-weighting of G. Then, there exists an irregular ((3w − 1)mg + 1)-weighting
of G.

Our approach, which will be explained in details later, is in a way similar. An equivalent
of the first step described will be Corollary 11, which we prove at the beginning of the
third section. It will be responsible for grouping the set of vertices into fairly small
subsets of elements with the same weight. Our main tool will be the following theorem
by Addario-Berry, Dalal and Reed.

Theorem 7 ([1]) Given a graph G and for all v ∈ V (G), integers a−
v , a+

v such that

a−
v ≤

⌊d(v)
2

⌋

≤ a+
v < d(v), and

a+
v ≤ min

(d(v) + a−
v

2
+ 1, 2a−

v + 3
)

, (4)

there exists a spanning subgraph H of G such that dH(v) ∈ {a−
v , a−

v + 1, a+
v , a+

v + 1} for all
v ∈ V (G).

Corollary 8 Let d > 0 be an integer. There exists a set S− of
⌈

d
4

⌉

consecutive integers
such that given any d-regular graph G and numbers a−

v ∈ S−, a+
v := a−

v +
⌈

d
4

⌉

+ 1 for
each v ∈ V (G), there exists a spanning subgraph H of G such that dH(v) ∈ {a−

v , a−
v +

1, a+
v , a+

v + 1} for all v ∈ V (G).
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Proof. The theorem is obvious for d ≤ 3, so let d ≥ 4. Assume first that d is not
divisible by 4 and take S− := {

⌈

d
4

⌉

− 2, . . . , 2
⌈

d
4

⌉

− 3}. Clearly |S−| =
⌈

d
4

⌉

and for
a−

v ∈ S−, a+
v := a−

v +
⌈

d
4

⌉

+ 1, we have a−
v ≤ 2

⌈

d
4

⌉

− 3 ≤
⌊

d
2

⌋

,
⌊

d
2

⌋

≤ 2
⌈

d
4

⌉

− 1 ≤ a+
v and

a+
v ≤ 3

⌈

d
4

⌉

− 2 < d, hence, by Theorem 7, it is enough to prove (4) for all v ∈ V (G).

Note then that a+
v = a−

v +
⌈

d
4

⌉

+ 1 ≤ a−
v + a−

v + 3 and a+
v = a−

v

2
+ a−

v

2
+

⌈

d
4

⌉

+ 1 ≤
a−

v

2
+

⌈

d
4

⌉

− 3
2

+
⌈

d
4

⌉

+ 1 ≤ a−

v

2
+ d

2
+ 1, thus (4) holds.

Analogously, if d is divisible by 4, we can take S− := {d
4
, . . . , d

2
− 1}.

Let G = (V, E) be a graph and let A, B be two nonempty, nonintersecting subsets of V .
For a given weighting f of edges of G, let df(A, B) := min{|f(v)− f(w)| : v ∈ A, w ∈ B}
denote the distance between A and B with respect to f . Moreover, let df(A) := 0 if f is
constant on A or df(A) := min{|f(v) − f(w)| : v, w ∈ A, f(v) 6= f(w)} otherwise.

Corollary 9 For each d-regular graph G and a partition {A1, . . . , Ad d

8
e} of its vertices,

there exists a 2-weighting f of G such that df (Ai, Aj) ≥ 1 for i 6= j.

Proof. Let G = (V, E) be a d-regular graph with d > 0 and let {A1, . . . , Ad d

8
e} be any

partition of V . Let S− = {s1, . . . , sd d

4
e} be an appropriate set from Corollary 8, where

s1, . . . , sd d

4
e are

⌈

d
4

⌉

consecutive integers. Let a−
v := s2i−1 for each v ∈ Ai, i = 1, . . . ,

⌈

d
8

⌉

(hence s1 ≤ a−
v ≤ sd d

4
e for all v ∈ V ). By Corollary 8, there exists a spanning subgraph

H of G such that dH(v) ∈ {s2i−1, s2i−1 + 1, s2i−1 +
⌈

d
4

⌉

+ 1, s2i−1 +
⌈

d
4

⌉

+ 2} =: Si for every
v ∈ Ai, i = 1 . . . ,

⌈

d
8

⌉

. Note that since sd d

4
e + 1 < s1 +

⌈

d
4

⌉

+ 1, then Si ∩ Sj = ∅ for i 6= j.

Therefore, if we set f(e) = 2 for all the edges of the subgraph H and f(e) = 1 for all the
other edges of G, then |f(v) − f(w)| ≥ 1 whenever v ∈ Ai, w ∈ Aj and i 6= j (because G
is a regular graph).

An almost immediate consequence of the above corollary is the following one, which
confirms that (3) holds.

Corollary 10 Let G be a d-regular graph of order n with no isolated vertices or edges.
Then

s(G) < 40
n

d
+ 11. (5)

Proof. Take any partition {A1, . . . , Ad d

8
e} of V (G) such that |Ai| ≤ 2

⌈

4n
d

⌉

for all i (it

exists since
⌈

d
8

⌉

(2
⌈

4n
d

⌉

) ≥ n). Then, by Corollary 9, there is a 2-weighting f of G such
that

mf ≤ max
1≤i≤d d

8
e
|Ai| ≤ 2

⌈4n

d

⌉

,

hence, by Lemma 6, we have

s(G) ≤ 5
(

2
⌈4n

d

⌉

)

+ 1 < 40
n

d
+ 11.

This corollary already improves in many cases the results by Frieze at al., as well as
the one by Cuckler and Lazebnik, see Theorems 3 and 4.
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3 Improving the upper bound in (5)

The rest of the paper is devoted to strengthening the inequality (5) above, i.e. replacing
constants 40 and 11 by 16 and 6. Our approach consists also of two steps, which very
roughly look as follows. First we construct a weighting f of a given graph G that partition
the vertex set into “small” subsets of vertices with the same weights, but in such a way that
there is quite a big difference between the weights of vertices from distinct subsets. This
will be provided by Corollary 11 below, which is an immediate consequence of Corollary 9.
Then we construct a weighting g, which is responsible for “scattering the weights” of the
vertices from the subsequent subsets “not too far” from their initial weights, but in such
a way that as a result they all have distinct weights. This is done in Lemma 15. The sum
of this two weightings will be the desired one.

Corollary 11 For each d-regular graph G and a partition {A1, . . . , Ad d

8
e} of its vertices,

there exists a weighting f : E(G) → {
⌈

4n
d

⌉

+1, 3
⌈

4n
d

⌉

+2} such that df(Ai, Aj) ≥ 2
⌈

4n
d

⌉

+1
for i 6= j and df(Ai) = 0 or df(Ai) ≥ 2

⌈

4n
d

⌉

+ 1 for all i.

Proof. Let G = (V, E) be a d-regular graph with d > 0 and let {A1, . . . , Ad d

8
e} be a

partition of V . By Corollary 9, there is a 2-weighting h of G such that dh(Ai, Aj) ≥ 1
for i 6= j. Then it is enough to set f(e) =

⌈

4n
d

⌉

+ 1 if h(e) = 1 and f(e) = 3
⌈

4n
d

⌉

+ 2 if
h(e) = 2. Note that (3

⌈

4n
d

⌉

+ 2)− (
⌈

4n
d

⌉

+ 1) = 2
⌈

4n
d

⌉

+ 1. Therefore |f(u)− f(v)| = 0 or
|f(u)−f(v)| ≥ 2

⌈

4n
d

⌉

+1 for u, v ∈ V , since G is a regular graph. Consequently, df(Ai) = 0
or df(Ai) ≥ 2

⌈

4n
d

⌉

+ 1 for each i by the definition of df(Ai), and df(Ai, Aj) ≥ 2
⌈

4n
d

⌉

+ 1
for i 6= j by Corollary 9.

Let P o
3 = v1v

o
2v3 denote a path P3 = v1v2v3 after removing a middle vertex v2 from

it, but without removing any edge. In other words, if P3 = (V, E) is regarded as a graph
(V = {v1, v2, v3}, E = {v1v2, v2v3}), then P o

3 is an ordered pair (V r {v2}, E). We shall
call P o

3 an open path of length 2 and vo
2 will be referred to as an open vertex in P o

3 . The
other vertices of P o

3 , as well as all the vertices of simple paths, e.g. P2, P3, will be called
closed. We shall also abuse a little bit the established notation and call P o

3 a graph (or a
subgraph). Now, a {P2, P3, P

o
3 }-factor of a graph G is a collection of vertex (and edge)

disjoint subgraphs of G which are either paths of lengths 1 or 2, or open paths of length
2 (we call them the components of the factor), and that together span G. (If two graphs
share only one vertex which is open in one or both of them, they are vertex disjoint.)
Span here means that each vertex of V (G) is a closed vertex of exactly one component of
this factor. In this sense, e.g. each star (except K1) has a {P2, P3, P

o
3 }-factor.

Let F be a forest. Denote by cF the number of components of F , by L(F ) the set of
leaves of F and let R(F ) = V (F ) r L(F ).

In order to construct the weighting g mentioned at the beginning of this section (and
described in Lemma 15) we shall need a {P2, P3, P

o
3 }-factor of a given graph G consisting

of not too many P3’s and sufficiently many P o
3 ’s, see Lemma 14. To obtain it, we first

prove the existence of a spanning forest F of G with “relatively small” value of |R(F )|,
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see Lemma 13. For this aim we shall use the domination number of G, γ(G), which is
the size of the smallest dominating set of G, i.e. the subset, say D, of V (G) such that
each vertex in V (G) r D has a neighbour in D. The following probabilistic result can be
found in Alon and Spencer [2].

Theorem 12 ([2]) Let G be a graph of order n and with δ(G) ≥ 2. Then

γ(G) ≤
n(1 + ln(δ(G) + 1))

δ(G) + 1
. (6)

Lemma 13 Every graph G has a spanning forest F consisting of trees of order at least
δ(G) + 1 such that |R(F )| ≤ 2γ(G) − cF .

Proof. Let D ⊆ V (G) be a dominating set of G of size γ(G) and set Nv = {v} ∪ NG(v)
for v ∈ D. Define a graph H such that V (H) = {Nv : v ∈ D} and NvNu ∈ E(H)
iff Nv ∩ Nu 6= ∅ and v 6= u (hence Nv 6= Nu since D is the smallest dominating set
of G). Let H1, . . . , Hm be the connected components of H and let T1, . . . , Tm be their
respective spanning trees. Let Gi = G[

⋃

Nv∈V (Hi)
Nv] and Di = {v : Nv ∈ V (Hi)} ⊆ D,

i = 1, . . . , m. Clearly, each Gi is connected, |Gi| ≥ δ(G) + 1, Di is a dominating set of Gi

and V (G1) ∪ . . . ∪ V (Gm) = V (G), D1 ∪ . . . ∪ Dm = D. The desired forest will consist
of spanning trees of these vertex disjoint subgraphs Gi of G which we construct in the
following manner. Take e.g. G1. Subsequently, for each u, v ∈ D1 such that NuNv ∈ E(T1)
choose a vertex w ∈ Nu ∩ Nv and add to the tree the edges uw (if possible, i.e. unless
u = w or uw is already in the tree) and vw (if possible). Then we have already constructed
a subtree of G1 with the vertex set D′

1 such that D1 ⊆ D′
1 and |D′

1| ≤ 2|D1|−1. Since D1

is a dominating set of G1, we can now join each vertex from V (G1)rD′
1 with a vertex from

D1 by an edge and thus construct a spanning tree F1 of G1 such that |R(F1)| ≤ 2|D1|−1.
After repeating this process for each Gi we obtain a spanning forest F (consisting of the
trees F1, . . . , Fm) of G with |R(F )| ≤ 2γ(G) − cF .

Lemma 14 Let G be a graph of order n and with δ(G) ≥ 2. Then there is a {P2, P3, P
o
3 }-

factor of G consisting of at most n
δ(G)+1

P3’s and with less than 4γ(G) vertices in P2’s and
P3’s.

Proof. Let F be a spanning forest of G with components F1, . . . , FcF
such that |R(F )| ≤

2γ(G) − cF and |Fi| ≥ δ(G) + 1 ≥ 3, i = 1, . . . , cF . We process the trees F1, . . . , FcF
one

after another, so let T be an arbitrary one of them. Let u be a vertex of degree one in
this tree, where NT (u) = {w}, and let us root this tree at u. Let L0, L1, . . . , Lk be the
sets of vertices on the consecutive levels of this rooted tree, i.e. Li consists of the vertices
at distance i from u. Then L0 = {u}, L1 = {w} and Lk ⊆ L(T ). We say that a vertex
u1 ∈ V (T ) is below (above) a vertex u2 ∈ V (T ) in T if u1 (u2) lies on the path joining u2

(u1) with u in T and u1 6= u2. We will “cut out” the elements of the desired factor from
this tree by the following algorithm. Process the levels of the vertices one after another
in the reversed order, starting at the level Lk−1. On a given level, process its vertices one
after another in an arbitrary order. Let T0 := T and let Ti denote the tree that remains of
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Ti−1 after processing the consecutive vertex. At the moment we start processing a vertex,
the only vertices left above it in the tree are its neighbours. Assume now that we have just
created Tj and v ∈ V (T ) is the next vertex to be processed. Denote by X = {x1, . . . , xp}
the set of neighbours of v in Tj that are above v (hence X consists exclusively of leaves of

Tj). Then cut off
⌊ |X|

2

⌋

P o
3 ’s of the form xlv

oxl+1 from Tj (by removing the vertices xl, xl+1

and the edges xlv, xl+1v from Tj) one after another and include them as the components
of the factor that we want to create. If there is still a vertex in X, say xp, cut off xpv
(and remove the edge joining v with its neighbour below) as one P2 to the factor. The
only exception to that last rule occurs if v = w (and |T | is odd), when instead of adding
xpw, we add P3 = xpwu to the factor.

Clearly, each P2 and P3 of the created {P2, P3, P
o
3 }-factor of T must contain at least

one vertex from R(T ). Since there is at most one P3 in this factor, these P2’s and P3

may contain at most 2|R(T )| + 1 vertices. By repeating this process for all Fi we create
a {P2, P3, P

o
3 }-factor of G with at most

∑

1≤i≤cF

(2|R(Fi)| + 1) = 2|R(F )| + cF ≤ 2(2γ(G) − cF ) + cF < 4γ(G)

vertices in P2’s and P3’s, and consisting of at most cF P3’s. Since |Fi| ≥ δ(G) + 1 for
i = 1, . . . , cF , then cF ≤ n

δ(G)+1
.

Lemma 15 Let G be a d-regular graph of order n, d ≥ 25, and let L = {−
⌈

4n
d

⌉

, . . . ,
⌈

4n
d

⌉

}.
Then there is such an L-weighting g of G that the obtained vertex weights are all in L
(g(V ) ⊆ L) and neither of the vertex weights appears more than

⌈

d
8

⌉

times (mg ≤
⌈

d
8

⌉

).

Proof. Let G be a d-regular graph of order n, d ≥ 25, and let L+ = {1, . . . ,
⌈

4n
d

⌉

}, hence
|L+| =

⌈

4n
d

⌉

. Note that
⌈

d
8

⌉

≥ 4. Let us find a {P2, P3, P
o
3 }-factor of G which satisfies the

thesis of Lemma 14. Let A, B, C be the sets of P2’s, P3’s, P o
3 ’s, respectively, from this

factor. Denote a := |A|, b := |B| and c := |C|, hence 2a + 3b + 2c = n. By Lemma 14,
b ≤ n

d+1
and 2a + 3b ≤ 4γ(G). Therefore, by (6),

c ≥
n

2
− 2γ(G) ≥

n

2
− 2

n(1 + ln(d + 1))

d + 1
. (7)

Note that

f(d) :=
1

2
− 2

1 + ln(d + 1)

d + 1
−

4

d
≥ 0, (8)

since f is an increasing function for d > 0 and f(25) > 0 (f(25) ≈ 0, 012). By (7), (8)
and the fact that c is an integer, we have

c ≥
⌈4n

d

⌉

. (9)

Set g(e) = 0 for each edge e of G outside the factor. Now we will weight the edges of
the graphs of the factor one after another. Each time we weight an edge, we establish the
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final weight of at least one (closed) vertex. To ensure that, for each P o
3 from C, its two

edges must be weighted by a pair of weights (j,−j) ∈ L × L, so that the weight of the
open vertex remained unchanged.

First we deal with the graphs from B. If b is odd (in particular, if b = 1), weight
the edges of the first P3 by 1 and −1, hence establish the weights of its three (closed)
vertices as 1, 0 and −1. Then, one after another, alternately assign the pair of weights
(
⌈

n
2d

⌉

+ i, 2
⌈

n
2d

⌉

+ i) and (−
⌈

n
2d

⌉

− i,−2
⌈

n
2d

⌉

− i), i = 0, 1, 2, . . ., to the pairs of edges of
the consecutive P3’s from B. This way the vertices of the given P3 will obtain weights
⌈

n
2d

⌉

+ i, 2
⌈

n
2d

⌉

+ i, 3
⌈

n
2d

⌉

+ 2i or −
⌈

n
2d

⌉

− i,−2
⌈

n
d

⌉

− i,−3
⌈

n
2d

⌉

− 2i. Note that for b ≥ 2
we have

n

2d
>

1

2

n

d + 1
≥

1

2
b ≥ 1, (10)

consequently
⌈

n
2d

⌉

≥ 2. Moreover, since

2
⌈ n

2d

⌉

≥
n

d
>

n

d + 1
≥ b,

then i ≤
⌈

n
2d

⌉

− 1. Therefore, the established so far weights of vertices are all different.
Denote the set of these weights by U . Note also that if u ∈ U then −u ∈ U . Finally,
by (10), for b ≥ 2,

3
⌈ n

2d

⌉

+ 2(
⌈ n

2d

⌉

− 1) ≤ 5(
n

2d
+ 1) − 2 =

5

2

n

d
+ 3 < 4

n

d
≤

⌈4n

d

⌉

,

hence in all cases we get U ⊆ L.
Now we weight the edges of some part of the graphs from C. Subsequently, for the

elements of C, set weights (i,−i) to the pairs of their edges (establishing the weights of
their closed vertices as i and −i) either for all i ∈ U ∩L+ if

⌈

d
8

⌉

is even or for i ∈ L+
r U

if
⌈

d
8

⌉

is odd (by (9), there is enough elements in C). This way, each vertex weight from
the set L r {0} can still be used an even number of times (up to the total of

⌈

d
8

⌉

).
Now we weight subsequently all P2’s from A. First, alternately set 1 and −1 as the

weights of the edges from A (each time establishing the weights of two vertices as 1 or −1)
until there is at most

⌈

d
8

⌉

vertices with established weight −1 (and at most
⌈

d
8

⌉

vertices
with weight 1). Then, alternately set 2 and −2 as the edge weights of the elements from
A until there is at most

⌈

d
8

⌉

vertices weighted with −2. Continue so (with 3, 4, . . .) until
all the edges in A have been weighted.

At this point a weight i is established for the same number of vertices as −i, for
i ∈ L+, with one possible exception - for odd a, when for one j ∈ L+ two more vertices
carry the weight j than −j. Therefore, we may easily finish the weighting of the elements
from C. Subsequently, for the remaining graphs in C, set weights (i,−i), i ∈ L+, to the
pairs of their edges as long as possible, i.e. as long as the number of vertices with the
established weight i is less than

⌈

d
8

⌉

for some i ∈ L+ and as long as there are still some
elements of C left unweighted. At the end either all the edges are already weighted and
the weighting obtained complies with our requirements or there are still some elements of
C left unweighted. In the second case however, by our construction, we must have already
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weighted at least 2
⌈

4n
d

⌉⌈

d
8

⌉

− 2 ≥ n − 2 vertices (this “−2” may occur only if a is odd).
Therefore, at most one P o

3 from C remained unweighted. Then we may weight its edges
with 0, establishing the weight of the two remaining vertices as 0. This way, at most 3
vertices (together with at most one from the first part of the proof concerning B) have
weight 0. Since

⌈

d
8

⌉

≥ 3, the construction is complete.

Proof of Theorem 5. Let G be a d-regular graph, d ≥ 2, of order n (hence d < n).
Assume first that d ≤ 25. Then by Theorem 2,

s(G) ≤
⌈n

2

⌉

+ 9 ≤
n

2
+

1

2
+ 9 =

nd + 19d

2d
=

=
32n + 12d

2d
+

n(d − 25) + 7(d − n)

2d
< 16

n

d
+ 6.

Let now d > 25. Then, by Lemma 15, there is such a weighting g of G with numbers
from the set L = {−

⌈

4n
d

⌉

, . . . ,
⌈

4n
d

⌉

} that the obtained vertex weights are all in L and
neither of the vertex weights appears more than

⌈

d
8

⌉

times. Let A1, . . . , Ad d

8
e be a partition

of V (G) such that g(u) 6= g(v) if u, v ∈ Ai and u 6= v, i = 1, . . . ,
⌈

d
8

⌉

. Now, by Corollary 11,
there is a weighting f : E(G) → {

⌈

4n
d

⌉

+ 1, 3
⌈

4n
d

⌉

+ 2} such that df(Ai, Aj) ≥ 2
⌈

4n
d

⌉

+ 1
for i 6= j and df(Ai) = 0 or df(Ai) ≥ 2

⌈

4n
d

⌉

+ 1 for all i. It is easy to see that a weighting
f + g is irregular for G. Therefore, since (f + g) : E(G) → {1, . . . , 4

⌈

4n
d

⌉

+ 2}, we have

s(G) ≤ 4
⌈4n

d

⌉

+ 2 < 16
n

d
+ 6.
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