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Abstract

There are a number of so-called factorization theorems for rook polynomials
that have appeared in the literature. For example, Goldman, Joichi and White [6]
showed that for any Ferrers board B = F (b1, b2, . . . , bn),

n
∏

i=1

(x + bi − (i − 1)) =

n
∑

k=0

rk(B)(x) ↓n−k

where rk(B) is the k-th rook number of B and (x) ↓k= x(x − 1) · · · (x − (k − 1)) is
the usual falling factorial polynomial. Similar formulas where rk(B) is replaced by
some appropriate generalization of the k-th rook number and (x) ↓k is replaced by
polynomials like (x) ↑k,j= x(x + j) · · · (x + j(k − 1)) or (x) ↓k,j= x(x − j) · · · (x −
j(k − 1)) can be found in the work of Goldman and Haglund [5], Remmel and
Wachs [9], Haglund and Remmel [7], and Briggs and Remmel [3]. We shall refer
to such formulas as product formulas. The main goal of this paper is to develop a
new rook theory setting in which we can give a uniform combinatorial proof of a
general product formula that includes, as special cases, essentially all the product
formulas referred to above. We shall also prove q-analogues and (p, q)-analogues
of our general product formula.
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Figure 1: A Ferrers board B = F (1, 2, 2, 4) ⊆ Bn, with n = 4.

1 Introduction
Let N = {0, 1, 2, . . .} denote the set of natural numbers. For any positive integer a,
we will set [a] := {1, 2, . . . , a}. We let Bn = [n] × [n] be the n by n array of squares.
We number the rows of Bn from bottom to top and the columns of Bn from left to
right with the numbers 1, . . . , n and refer to the square or cell in the i-th row and j-th
column of Bn as the (i, j)-th cell of Bn. A rook board B is any subset of Bn. If B ⊆ Bn is
the rook board consisting of the first bi cells of column i for i = 1, . . . , n, then we will
write B = F (b1, . . . , bn) and refer to B as a skyline board. In the special case where
0 ≤ b1 ≤ b2 ≤ · · · ≤ bn ≤ n, we will say that B = F (b1, b2, . . . , bn) is a Ferrers board. For
example, F (1, 2, 2, 4) is pictured in Figure 1.

Given a board B ⊆ Bn, we let Nk(B) denote the set of all placements P of k rooks
in B such that no two rooks in P lie in the same row or column. We will refer to such a
P as a nonattacking placement of k rooks in B. Similarly, we let Fk(B) denote the set of
all placements Q of k rooks in B such that no two rooks in Q lie in the same column.
We will refer to such a Q as a file placement of k rooks in B. Thus in a file placement Q,
we do allow the possibility that two rooks lie in the same row. We then define the k-th
rook number of B, rk(B), by setting rk(B) := |Nk(B)|. Similarly, we define the the k-th
file number of B, fk(B), by setting fk(B) := |Fk(B)|. If B = F (b1, . . . , bn), then we shall
sometimes write rk(b1, b2, . . . , bn) for rk(B) and fk(b1, b2, . . . , bn) for fk(B).

Given x ∈ N, define (x)↓n = (x) ↑n= 1 if n = 0 and (x)↓n = x(x − 1) · · · (x − (n − 1))
and (x) ↑n= x(x + 1) · · · (x + (n − 1)) if n > 0. More generally, for any integer m ≥ 0,
let (x) ↓0,m= (x) ↑0,m= 1 and for k ≥ 1, let (x) ↓k,m= x(x − m) · · · (x − m(k − 1)) and
(x) ↑k,m= x(x+m) · · · (x+m(k−1)). For each B ⊆ Bn and each x ∈ N, we define Rn,B(x),
the n-th rook polynomial of B, and Fn,B(x), the n-th file polynomial of B, by setting

Rn,B(x) =

n
∑

k=0

rn−k(B)(x)↓k and (1.1)

Fn,B(x) =
n

∑

k=0

fn−k(B)xk. (1.2)

Given a permutation σ = σ1σ2 . . . σn in the symmetric group Sn, we shall identify
σ with the placement Pσ = {(1, σ1), (2, σ2), . . . , (n, σn)}. Then the k-th hit number of
B, hk(B), is the number of σ ∈ Sn such that the placement Pσ intersects the board in
exactly k cells.
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Rook numbers, file numbers, and hit numbers have been extensively studied. Here
are three basic identities that hold for these numbers.

n
∑

k=0

hk(B)xk =

n
∑

k=0

rk(B)(n − k)!(x − 1)k, (1.3)

n
∏

i=1

(x + bi − (i − 1)) =

n
∑

k=0

rn−k(B)(x)↓k, and (1.4)

n
∏

i=1

(x + bi) =
n

∑

k=0

fn−k(B)xk. (1.5)

Identity (1.3) is due to Kaplansky and Riordan [8] and holds for any board B ⊆ Bn.
Identity (1.4) holds for all Ferrers boards B = F (b1, . . . , bn) and is due to Goldman,
Joichi and White [6]. Identity (1.5) is due to Garsia and Remmel [4] and holds for all
skyline boards B = F (b1, . . . , bn). Formulas (1.4) and (1.5) are examples of what we
shall call product formulas in rook theory. That is, they say that for a Ferrers board
B = F (b1, . . . , bn) , the polynomials Rn,B(x) and Fn,B(x) factor as a product of linear
factors.

We note that in the special case where B = Bn := F (0, 1, 2, . . . , n − 1), equations
(1.4) and (1.5) become

xn =

n
∑

k=0

rn−k(Bn)(x)↓k and (1.6)

(x) ↑n =

n
∑

k=0

fn−k(Bn)xk. (1.7)

This shows that rn−k(Bn) = Sn,k where Sn,k is the Stirling number of the second kind
and (−1)n−kfn−k(Bn) = sn,k where sn,k is the Stirling number of the first kind.

There are natural q-analogues of formulas (1.3), (1.4) and (1.5). Let

[n]q = 1 + q + · · · + qn−1 =
1 − qn

1 − q
.

The q-analogues of the factorials and falling factorials are defined by [n]q! = [n]q[n −
1]q · · · [2]q[1]q and [x]q ↓m = [x]q[x − 1]q · · · [x − (m − 1)]q. Garsia and Remmel [4] de-
fined q-analogues of the hit numbers, hk(B, q), the rook numbers, rk(B, q), and the file
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numbers, fk(B, q), for Ferrers boards B so that the following hold:
n

∑

k=0

hk(B, q)xn−k =

n
∑

k=0

rn−k(B, q)[k]q!(1 − xqk+1) · · · (1 − xqn), (1.8)

n
∏

i=1

[x + bi − (i − 1)]q =
n

∑

k=0

rn−k(B, q)[x]q ↓k, and (1.9)

n
∏

i=1

[x + bi]q =

n
∑

k=0

fn−k(B, q)[x]kq . (1.10)

Let
[n]p,q = pn−1 + pn−2q + · · · + pqn−2 + qn−1 =

pn − qn

p − q
.

The (p, q)-analogues of the factorials and falling factorials are defined by [n]p,q! =
[n]p,q[n − 1]p,q · · · [2]p,q[1]p,q and [x]p,q↓m = [x]p,q[x − 1]p,q · · · [x − (m − 1)]p,q. There are
also (p, q)-analogues of formulas (1.3)-(1.5) using such (p, q)-analogues; see the work of
Wachs and White [10], Remmel and Wachs [9], Briggs and Remmel [2], and Briggs [1].

In recent years, a number of researchers have developed new rook theory mod-
els which give rise to new classes of product formulas. For example, Haglund and
Remmel [7] developed a rook theory model where the analogue of the k-rook num-
ber is mk(B) which counts the number of k-element partial matchings in the complete
graph Kn. They defined an analogue of a Ferrers board B̃ = F̃ (a1, . . . a2n−1) where
2n − 1 ≥ a1 ≥ · · · ≥ a2n−1 ≥ 0 and where the nonzero entries in (a1, . . . , a2n−1) are
strictly decreasing. In their setting, they proved the following identity,

2n−1
∏

i=1

(x + a2n−i − 2i + 2) =

2n−1
∑

k=0

mn−k(B̃)(x) ↓k,2 . (1.11)

Remmel and Wachs [9] defined a more restricted class of rook numbers, r̃
j
k(B),

in their j-attacking rook model and proved that for Ferrers boards B = F (b1, . . . , bn),
where bi+1 − bi ≥ j − 1 if bi 6= 0,

n
∏

i=1

(x + bi − j(i − 1)) =
n

∑

k=0

r̃
j
n−k(B)(x) ↓k,j . (1.12)

Goldman and Haglund [5] developed an i-creation rook theory model and an appro-
priate notion of rook numbers r

(i)
n−k for which the following identity holds for Ferrers

boards:
n

∏

j=1

(x + bi + (j − 1)(i − 1)) =

n
∑

k=0

r
(i)
n−k(B)(x) ↑k,i−1 . (1.13)

In all of these new models, the authors proved q-analogues and/or (p, q)-analogues of
their product formulas.
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In this paper, we define a new rook theory model in which we can prove a general
product formula that can be specialized to give all the product formulas described
above. That is, it is easy to see that for any m ≥ 0, the polynomials {(x) ↓k,m: k ≥ 0}
and {(x) ↑k,m: k ≥ 0} are basis for the polynomial ring Q[x]. Thus if we have product
formulas of the form

n
∏

i=1

(x + ai) =

n
∑

k=0

bn,k(x) ↓k,m and

n
∏

i=1

(x + ci) =

n
∑

k=0

dn,k(x) ↓k,m,

then the coefficients cn,k and dn,k are uniquely determined by the sequences (a1, . . . , an)
and (c1, . . . , cn). For example, in the special cases of (1.11) and (1.12) where j = 2
and (a2n−1, . . . , a1) = (b1, . . . , b2n−1), we can conclude that mt(B̃) = r̃t(B) for all t. In
such a case, we shall say that (1.11) and (1.12) yield the same product formula even
though the combinatorial interpretations of mt(B̃) and r̃t(B) are not the same. It should
be noted that in this case, these coefficients satisfy simple recursions that do allow
us to construct bijections which show that the combinatorial interpretations of mt(B̃)
and r̃t(B) are equivalent in these cases. An example of this type of argument will be
presented in section 3.1.2. Now suppose we are given any two sequences of natural
numbers, B = {bi}n

i=1,A = {ai}n
i=1 ∈ Nn, and two functions, sgn, sgn : [n] → {−1, +1}.

Let B = F (b1, b2, . . . , bn) be a skyline board. The main goal of this paper is to define a
rook theory model with an appropriate notion of rook numbers rAk (BA, sgn, sgn) such
that the following product formula holds:

n
∏

i=1

(x + sgn(i)bi) =

n
∑

k=0

rAn−k(B
A, sgn, sgn)

k
∏

j=1

(x +
∑

s≤j

sgn(s)as). (1.14)

We will refer to equation (1.14) as the general product formula and rAk (BA, sgn, sgn) as
the k-th augmented rook number of B with respect to A, sgn, and sgn.

This general product formula is new and vastly extends the range of any of the
product formulas that have appeared in the literature. Our general product formula
specializes to all the product formulas described above so that our new rook theory
model provides a common framework in which we can give a uniform proof of all
these product formulas. We shall also prove q-analogues and (p, q)-analogues of our
general product formula and describe the connection between other q-analogues and
(p, q)-analogues of product formulas that have appeared in the literature.

The outline of this paper is as follows. In section 2, we shall review the rook the-
ory models of Garsia-Remmel [4], Remmel-Wachs [9], Briggs-Remmel [3], Haglund-
Remmel [7], and Goldman-Haglund [5]. In particular, we shall give explicit definitions
of the rook numbers, the q-rook numbers, and the product formulas in these models.
In section 3, we shall define our new rook theory model and prove (1.14). We shall
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Figure 2: The q-weight of a rook placement in B = F (1, 2, 2, 3, 3, 4, 5).

also compare our rook theory model with the rook theory models in section 2. In sec-
tion 4, we shall prove several q-analogues of our general product formula and describe
the connection between other q-analogues of product formulas that have appeared in
the literature. Finally, in section 5, we shall describe how we can prove several (p, q)-
analogues of our general product formula.

2 Previous product formulas
In this section, we shall define the appropriate analogues of rook and file numbers so
that we can state the product formulas proved by Garsia-Remmel [4], Remmel-Wachs
[9], Briggs-Remmel[3], Haglund-Remmel [7], and Goldman-Haglund [5].

2.1 The Garsia-Remmel Model
In [4], Garsia and Remmel defined q-analogues of rook numbers and file numbers.
Given a Ferrers board B = F (b1, b2, . . . , bn) and a placement P ∈ Nk(B), we say that
each rook in P cancels all of the cells in its row that lie to its right and all of the cells in
its column that lie below it. We then set uB(P) to be the number of cells in B which do
not contain a rook and which are not canceled by a rook in P and define the q-weight
of P to be Wq,B(P) = quB(P). Then Garsia and Remmel defined the k-th q-rook number of
B for a Ferrers board B = F (b1, b2, . . . , bn) by setting

rk(B, q) =
∑

P∈Nk(B)

Wq,B(P). (2.1)

For example, if B = F (1, 2, 2, 3, 3, 4, 5) and P ∈ N3(B) is the placement pictured in
Figure 2, then Wq,B(P) = q7. In Figure 2, we indicate the canceled cells by placing a •
in those cells and we place a q in all those cells counted by uB(P).

For any Ferrers board B ⊆ Bn, let Bx be the board B with x rows of length n ap-
pended below it as illustrated in Figure 3. We will call the part of the board Bx which
we attached below B, the x-part of Bx. We shall refer to the line that separates the x-
part of Bx from B as the bar. Let Nk(Bx) denote the set of all placements P of k rooks
in Bx such that no two rooks in P lie in the same row or column and Fk(Bx) denote
the set of all placements Q of k rooks in Bx such that no two rooks in Q lie in the same
column.
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x−part

bar

Figure 3: The board Bx, with B = F (1, 2, 2, 4) and x=5.

For any P ∈ Nn(Bx), each rook in P cancels all of the cells in its row that lie to its
right and all of the cells in its column that lie below it. We then define the q-weight of
P to be Wq,Bx

(P) = quBx(P) where uBx
(P) equals the number of cells in Bx which do not

contain a rook and which are not canceled by a rook in P. This given, the following
q-analogue of (1.4) was proved by Garsia and Remmel [4] by summing

S(q) =
∑

P∈Nn(Bx)

Wq,Bx
(P) (2.2)

in two different ways.

Theorem 2.1. For any x, n ∈ N with x ≥ n and any Ferrers board, B = F (b1, b2, . . . , bn),
n

∏

i=1

[x + bi − (i − 1)]q =

n
∑

k=0

rn−k(B, q)[x]q↓k. (2.3)

Given a placement P ∈ Fk(B), we let each rook in P cancel all of the cells of B in its
column which lie below it. We then define the q-weight P by setting wq,B(P) = qzB(P)

where zB(P) equals the number of cells in B which do not contain a rook and are not
canceled by a rook in P. We define q-file numbers by setting

fk(B, q) =
∑

P∈Fk(B)

wq,B(P). (2.4)

For example, if B = F (2, 2, 3, 4, 4, 5) and P ∈ F3(B) is the placement pictured in Fig-
ure 4, then we have that wq,B(P) = q13. Again, in Figure 4, we indicate the canceled
cells by placing a • in those cells and we place a q in all those cells which are counted
by zB(P). We can extend this statistic to the board Bx by saying that each rook in P

cancels all of the cells of Bx which lie below it in Bx. We then set wq,Bx
(P) = qzBx(P)
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Figure 4: The q-weight of a file placement in B = F (2, 2, 3, 4, 4, 5).

where zBx
(P) equals the number of cells in Bx which do not contain a rook and are not

canceled by a rook in P. Then one can prove a q-analogue of (1.5) by summing

F(q) =
∑

P∈Fn(Bx)

wq,Bx
(P) (2.5)

in two different ways.

Theorem 2.2. For any x ∈ N and and skyline board B = F (b1, b2, . . . , bn),
n

∏

i=1

[x + bi]q =
n

∑

k=0

fn−k(B, q)([x]q)
k. (2.6)

2.2 The Remmel-Wachs Model
Next, we will discuss the j-attacking rook model of Remmel and Wachs [9]. For a fixed
integer j ≥ 1, we say that a Ferrers board F (a1, . . . , an) is a j-attacking board if for all
1 ≤ i < n, ai 6= 0 implies ai+1 ≥ ai + j − 1. Suppose that F (a1, . . . , an) is a j-attacking
board and P is a placement of rooks in F (a1, . . . , an) which has at most one rook in each
column of F (a1, . . . , an). Then for any individual rook r ∈ P, we say that r j-attacks a
cell c ∈ F (a1, . . . , an) if c lies in a column which is strictly to the right of the column of
r and c lies in the first j rows which are weakly above the row of r and which are not
j-attacked by any rook which lies in a column that is strictly to the left of r.

For example, suppose j = 2 and P is the placement in F (1, 2, 3, 5, 7, 8, 10) pictured
in Figure 5. Here the rooks are indicated by placing an X in each cell that contains a
rook. We place a 2 in each cell 2-attacked by the rook r2 in column 2. In this case, since
there are no rooks to the left of r2, the cells c which are 2-attacked by r2 lie in the first
two rows which are weakly above the row of r2, i.e., all the cells in rows 2 and 3 that
are in columns 3, 4, 5, 6 and 7. Next consider the rook r4 which lies in column 4. Again
we place a 4 in each of the cells that are 2-attacked by r4. In this case, the first two rows
which lie weakly above r4 that are not 2-attacked by any rook to the left of r4 are rows
1 and 4. Thus r4 2-attacks all the cells in rows 1 and 4 that lie in columns 5, 6 and 7.
Finally the rook r6, which lies in column 6, 2-attacks the cells (6,7) and (7,7) and we
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Figure 5: An example of cells that are 2-attacked in the board B = F (1, 2, 3, 5, 7, 8, 10).

place a 6 in these cells. We say that a placement P is j-nonattacking if no rook in P is
j-attacked by a rook to its left and there is at most one rook in each row and column.

Note that the condition that F (a1, . . . , an) is j-attacking ensures that any placement
P of j-nonattacking rooks in F (a1, . . . , an), with at most one rook in each column, has
the property that, for any rook r ∈ P which lies in a column k < n, there are j rows
which lie weakly above r and which have no cells which are j-attacked by a rook
to the left of r, namely, the row of r plus the top j − 1 rows in column k + 1 since
ak+1 ≥ ak + j − 1.

Given a j-attacking board B = F (a1, . . . , an), we let N j
k (B) be the set of all place-

ments P of k j-nonattacking rooks in B. For example, if j = 2 and B = F (0, 2, 3, 4), then
|N 2

1 (B)| = 9 since there are 9 cells in B. Also |N 2
2 (B)| = 12 and these 12 placements are

pictured in Figure 6. Finally |N 2
3 (B)| = 0 since any placement P which has one rook in

each nonempty column of B and at most one rook in each row has the property that
the rooks in columns 2 and 3 would 2-attack 4 cells in column 4 and hence there would
be no place to put a rook in column 4 that is not 2-attacked by a rook to its left. We then
define the k-th j-rook number of B, r

j
k(B), by setting r

j
k(B) = |N j

k (B)|.

x

x

x

x

x

x

x

x

x

x

x

x

x x

x
x

x

x

x
x

x
x

x

x

Figure 6: The 12 placements in N 2
2 (F (0, 2, 3, 4)).

Let B = F (a1, . . . , an) be a j-attacking board. Then for any placement P ∈ N j
k (B),

we define
W̃

j
p,q,B(P) = qaB(P)pbB(P)qeB(P)p−(c1+···+ck)j (2.7)

where
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1. aB(P) equals the number of cells of B which lie above a rook in P and which are
not j-attacked by any rook in P,

2. bB(P) equals the number of cells of B which lie below a rook in P and which are
not j-attacked by any rook in P,

3. eB(P) equals the number of cells of B which lie in a column with no rook in P and
which are not j-attacked by any rook in P, and

4. c1 < · · · < ck are the columns which contain rooks in P.

For example, in Figure 7, we have pictured a placement P ∈ N 3
3 (B) where B is the

3-attacking board F (2, 5, 8, 10, 12) such that P has rooks in columns 1, 3 and 4 and
aB(P) = 3, bB(P) = 5, eB(P) = 5. Thus W̃ 3

p,q,B(P) = q3p5q5p−(1+3+4)3 = q8p−19. Moreover,
we have placed a p in each cell of B which contributes to the bB(P), a q in each cell that
contributes to either aB(P) or eB(P), and a • in each cell that is j-attacked by some rook
in P.

x

x

xp p

p
p
p

q

q q
q
q q

q
q

Figure 7: An example of W̃p,q,B(P)

We then define the (p, q)-rook number of B by

r̃
j
k,B(p, q) =

∑

P∈N j

k
(B)

W̃
j
p,q,B(P). (2.8)

Remmel and Wachs [9] proved the following (p, q)-extension of Theorem 2.1.

Theorem 2.3. Let B = F (a1, . . . , an) be a j-attacking board. Then
n

∏

i=1

[x + ai − j(i − 1)]p,q =

n
∑

k=0

r̃
j
k,B(p, q)pkx+(k+1

2 )j[x]p,q ↓n−k,j (2.9)

where [x]p,q ↓0,j= 1 and for k > 0, [x]p,q ↓k,j= [x]p,q[x − j]p,q · · · [x − (k − 1)j]p,q.

When we talk of the q-analogue of the Remmel-Wachs model, we mean to take the
q-statistic on placement of j-nonattacking rooks which results by setting p = 1 in the
(p, q)-statistic W̃

j
p,q,B(P).
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2.3 The Briggs-Remmel Model
In this section, we describe a variation of the Remmel-Wachs model that is appropriate
for rook placements that correspond to partial permutations of the wreath product of
the cyclic group of order m, Cm, with the symmetric group Sn, denoted by Cm o Sn.

If ω = e
2πi
m , then we say that Cm o Sn is the group of mnn! signed permutations

where there are m signs, 1 = ω0, ω, ω2, . . ., ωm−1. We will usually write the signed
permutations in either one-line notation or in disjoint cycle form. For example, if σ ∈
C3 o S8 is the map with 1 → ω5, 2 → 8, 3 → ω23, 4 → ω21, 5 → 4, 6 → ω27, 7 → ω2, and
8 → ω6, then in one-line notation,

σ = ω5 8 ω23 ω21 4 ω27 ω2 ω6,

whereas in disjoint cycle form,

σ = (ω21 ω5 4)(ω2 8 ω6 ω27)(ω23).

That is, in disjoint cycle form, to determine where i is being mapped, we ignore the
sign on i and only consider the sign on the element to which it is mapped.

Let Bn×mn be the n × mn array of squares where the n columns are labeled from
left to right by 1, 2, · · · , n, and the mn rows are labeled from bottom to top by 1, ω1,
· · · , ωm−11, 2, ω2, · · · , ωm−12, · · · , n, ωn, · · · , ωm−1n. For instance, the board Bn×3n is
illustrated in Figure 8. We let (i, ωrj) identify the square in the column labeled with
i and the row labeled with ωrj. Each such square will be called a cell and the rows
labeled by j, ωj, · · · , ωm−1j will be called level j.

A board will be a subset of cells in Bn×mn. In particular, a skyline board in Bn×mn

is a board whose column heights from left to right are h1, . . ., hn, and is denoted by

the electronic journal of combinatorics 15 (2008), #R85 11



3

3

2

2

1

1
321

Figure 9: B ⊆ B3×6.

Bm(h1, . . . , hn). That is, for each 1 ≤ i ≤ n, if hi 6= 0 and hi = aim+bi with 0 ≤ ai ≤ n−1
and 1 ≤ bi ≤ m, then the i-th column contains all of the cells in the set

{

(i, ωsj) | 0 ≤ s < m, 1 ≤ j ≤ ai

}

∪
{

(i, ωs(ai + 1)) | 0 ≤ s < bi

}

.

Further, if 0 ≤ h1 ≤ · · · ≤ hn ≤ mn and hi+1 ≥ (ai + 1)m whenever hi = aim + bi where
1 ≤ bi < m, then Bm(h1, . . . , hn) is called an m-Ferrers board in Bn×mn. We will denote
the m-Ferrers board with column heights h1, . . ., hn by Fm(h1, . . . , hn).

Given a board B ⊆ Bn×mn, we let Rm
k,n(B) denote the set of all k element subsets P

of B such that no two elements lie in the same level or column for nonnegative integers
k. Such a subset P will be called a placement of nonattacking m-rooks in B. The cells in
P are considered to contain m-rooks so that we call rm

k,n(B) = |Rm
k,n(B)| the k-th m-rook

number of B. We note that for any board B ⊆ Bn×mn, rm
0,n(B) = 1, rm

1,n(B) = |B|, and if
k > n, then rm

k,n(B) = 0. For example, consider the board of shaded cells in Figure 9.
One can easily check that r2

0,3(B) = 1, r2
1,3(B) = 9, r2

2,3(B) = 18, and r2
3,3(B) = 6.

Suppose that B = Fm(b1, . . . , bn) ⊆ Bn×mn is an m-Ferrers board and let P ∈ Rm
k,n(B).

A rook in the cell (i, ωrj) ∈ P is said to m-rook-cancel those cells in the set
{

(a, ωsj) : i < a ≤ n, 0 ≤ s < m
}

.

Then, Briggs and Remmel [3] proved the following product formula.

Theorem 2.4. Let B = Fm(b1, . . . , bn) ⊆ Bn×mn be an m-Ferrers board. Then
n

∏

i=1

(mx + bi − m(i − 1)) =
n

∑

k=0

rm
k,n(B)(mx)↓n−k,m, (2.10)

where (x)↓k,m = x(x − m) · · · (x − (k − 1)m).

We note that for a given m, the Briggs-Remmel model is very similar to the m-
attacking rook model of Remmel-Wachs. Each rook still cancels m cells in each column
to its right so that the product formulas in these two models are essentially equivalent.
However, it turns out that the Briggs-Remmel model has certain advantages, especially
for formulas involving hit numbers. That is, given a permutation σ ∈ Cm o Sn, we can
identify σ with a placement Pσ of n m-rooks in Bn×mn by letting Pσ = {(i, ωrj) : σ(i) =

the electronic journal of combinatorics 15 (2008), #R85 12



p

x

x

q

q

q

q

q

q

q

p

p

Figure 10: P ∈ R3
2,4(B).

ωrj} for 1 ≤ i ≤ n. We can then define a natural analogue of hit numbers in the Briggs-
Remmel model by setting Hm

k,n(B) = {Pσ : σ ∈ Cm o Sn and |Pσ ∩ B| = k} and letting
hm

k,n = |Hm
k,n(B)| denote the k-th m-hit number of B relative to Bn×mn. We shall not

pursue analogues of hit numbers in this paper so we refer the interested reader to [1]
and [3] for details.

We can also define a (p, q)-analogue of the m-rook numbers and prove a (p, q)-
analogue of Theorem 2.4. That is, we define the k-th (p, q)-m-rook number of B, de-
noted rm

k,n(B, p, q), as

rm
k,n(B, p, q) =

∑

P∈Rm
k,n

(B)

qαB(P)+εB(P)pβB(P)−m(c1+···+ck),

where the rooks of P lie in columns c1 < . . . < ck and where

1. αB(P) is the number of cells of B which lie above a rook in P but are not m-rook-
canceled by any other rook in P,

2. βB(P) is the number of cells of B which lie below a rook in P but are not m-rook-
canceled by any other rook in P, and

3. εB(P) is the number of cells of B which lie in a column with no rook in P and are
not m-rook-canceled by any rook in P.

For example, if B = F3(2, 4, 6, 9) ⊆ B3×12 and P ∈ R3
2,4(B) is the placement given

in Figure 10, then αB(P) = 2, βB(P) = 3, εB(P) = 5, c1 = 2, and c2 = 3. So, the
(p, q)-contribution of P to R3

2,4(B, p, q) is q7p−12.
With [x]p,q↓k,m denoting [x]p,q[x − m]p,q · · · [x − m(k − 1)]p,q, Briggs and Remmel [3]

proved the following (p, q)-analogue of the factorization theorem.

Theorem 2.5. Let B = Fm(b1, . . . , bn) ⊆ Bn×mn be an m-Ferrers board. Then
n

∏

i=1

[mx + bi − m(i − 1)]p,q =
n

∑

k=0

rm
k,n(B, p, q)pm(xk+(k+1

2 ))[mx]p,q↓n−k,m. (2.11)
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2.4 The Haglund-Remmel Perfect Matching Model
The next model we will discuss is the perfect matching model of Haglund and Remmel
[7]. In this model, we consider the board B2n pictured in Figure 11 where the columns
are labeled from 2 to 2n and the rows are labeled from 1 to 2n − 1.

.
.

.

...

2n−1

3

1

2

2n432

Figure 11: A perfect matching board B2n.

Let pm denote the set of perfect matchings in the complete graph, K2m, where we
call m = {{ik, jk} : k = 1, . . . n} a perfect matching if 1 ≤ ik < jk ≤ 2n for every
1 ≤ k ≤ n and {iu, ju}

⋂

{iv, jv} = ∅ for every u 6= v. An example of a perfect matching
of K8 with m = {{1, 5}, {2, 3}, {4, 7}, {6, 8}} can be seen in Figure 12. We define a rook
placement in a board B ⊆ B2n to be a subset of some perfect matching m ∈ pm which
lies completely in B. Let Mk(B) := {S ⊆ B : (∃m ∈ pm)(m∩B ⊇ S and |S| = k)}. Then
we define the k-th rook number of B to be mk(B) := |Mk(B)|.

3 4

2

1

3

5 6 7 8

4

5

6

7

X
X

X

X

2

Figure 12: A example of a perfect matching of K8.

The board B = B(b1, b2, . . . , b2n−1) ⊆ B2n is defined as B = {(i, i + j)|1 ≤ j ≤ bj},
that is, B has row lengths, b1, b2, . . . , b2n−1 reading from top to bottom. If 2n − 1 ≥ b1 ≥
b2 ≥ · · · ≥ b2n−1 ≥ 0 and if bi > 0 implies that bi > bi+1 for all i = 1, 2, . . . , 2n − 2,
then B = B(b1, b2, . . . , b2n−1) is called a shifted Ferrers board. An example of the shifted
Ferrers board B = B(6, 5, 3, 1, 0, 0, 0) ⊂ B8 can be seen in Figure 13.

Haglund and Remmel also defined the notion of a nearly Ferrers board. That is, they
defined a board B to be a nearly Ferrers board if for every cell (i, j) ∈ B, the cells
{(s, j) : s < i} ∪ {(t, i) : t < i} ⊆ B. By this description, every shifted Ferrers board is
a nearly Ferrers board. Also, one can construct a nearly Ferrers board in the following
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Figure 13: An example of the shifted Ferrers board B = F (6, 5, 3, 1, 0, 0, 0) ⊂ B8.

manner. First fix an a ∈ N, and then make a triangular arrangement of cells by letting
B′ = {(s, t)|s < t ≤ a}. One may then add any columns to the right of B ′, and that
board will be nearly Ferrers, as in Figure 14. Haglund and Remmel [7] proved the
following theorem.

2 3 4

2

1

3

5 6 7 8

4

5

6

7

Figure 14: An example of the nearly Ferrers board B ⊂ B8.

Theorem 2.6. Let B ⊆ B2n be a nearly Ferrers board and let bi denote the number of cells of
B that lie in row i for each 1 ≤ i ≤ 2n − 1. Then

2n−1
∏

i=1

(x + b2n−i − 2i + 2) =
2n−1
∑

k=0

mn−k(B)(x) ↓2n−1−k,2 . (2.12)

Haglund and Remmel also proved a q-analogue of Theorem 2.6. That is, suppose
that we are given a nearly Ferrers board B = F (b1, b2, . . . , b2n−1). For any rook r in
square (i, j), we say that r rook cancels the squares {(r, i) : r < i} ∪ {(i, s) : i + 1 ≤ s <

j} ∪ {(t, j) : t < i}. For example, the squares other than (4, 7) that are rook canceled
by a rook in (4, 7) in B8 are pictured in Figure 15 with a • in them. Then for any rook
placement P ∈ Mk(B), we let vB(P) denote the number of squares in B − P that do not
contain a rook in P and are not rook canceled by any rook in P. If k > 0, we define the
k-th q-rook number of B to be

mk(B, q) =
∑

P∈Mk(B)

qvB(P), (2.13)
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Figure 15: The cells rook canceled by (4,7) in B8.

and, if k = 0, we set m0(B, q) = q|B|.
Then Haglund and Remmel [7] proved the following q-analogue of Theorem 2.6.

Theorem 2.7. Let B ⊆ B2n be a nearly Ferrers board and let bi denote the number of cells of
B that lie in row i for each 1 ≤ i ≤ 2n − 1. Then

2n−1
∏

i=1

[x + b2n−i − 2i + 2]q =

2n−1
∑

k=0

mn−k(B, q)[x]q ↓2n−1−k,2 (2.14)

2.5 The Goldman-Haglund Generalized Rook Model
2.5.1 The i-Creation Model

A model which produces a product formula that has rising factorials on the right-hand
side is the i-creation model due to Goldman and Haglund [5]. In this model, rooks are
placed from left to right and new cells are created after an i-creation rook is placed in
the board, rather than cells being canceled. For i ∈ N, we call B(i) = F (b1, b2, . . . , bn) an
i-creation board if B = F (b1, b2, . . . , bn) is a Ferrers board, and, when an i-creation rook
is placed in B(i), it replaces all the cells in its row to its right with i cells, the lowest of
which get canceled - a process called i-creation. The next i-creation rook, reading from
left to right, may then be placed in any available cell, both those that were part of the
original board and those that have been i-created. An example of a 3-creation board
and a placement of three 3-creation rooks can be seen in Figure 16.

Let N (i)
k (B) denote the set of placements of k rooks in an i-creation board B(i) so that

there is at most one rook in each column and no rook lies in a cell which is canceled by
a rook to its left. Let r

(i)
k (B) = |N (i)

k (B)|. We call r
(i)
k (B) the k-th i-creation rook number

of B. In the special case where B = F (b1, b2, . . . , bn), we shall write r
(i)
k (b1, b2, . . . , bn) for

r
(i)
k (B). By classifying rook placements according to whether or not they have a rook in

the last column, it is then easy to see that i-creation rook numbers satisfy the following
recursion:

r
(i)
n+1−k(b1, b2, . . . , bn+1) = r

(i)
n+1−k(b1, b2, . . . , bn) + (bn+1 + k(i − 1))r

(i)
n−k(b1, b2, . . . , bn).
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Figure 16: A placement of 3 i-creation rooks in B(i) where B = F (1, 2, 2, 4, 4) and i = 3.

Note that for any Ferrers board B, r
(0)
k (B) = rk(B) and r

(1)
k (B) = fk(B).

The board B
(i)
x is defined to be the board B(i) with an x-part appended below, and

rooks placed in the x-part of B
(i)
x will i-create and cancel cells exactly as would an i-

creation rook placed in B(i). Using this construction, Haglund and Goldman [5] proved
the following product formula.
Theorem 2.8. Let B(i) = F (b1, b2, . . . , bn) be an i-creation board for some i ∈ N. For all
x ∈ N,

n
∏

j=1

(x + bj + (j − 1)(i − 1)) =
n

∑

k=0

r
(i)
n−k(B)x ↑k,i−1, (2.15)

where x ↑n,m= x(x + m) · · · (x + (n − 1)m) and x ↑0,m= 1.

2.5.2 The α-Parameter

A more general rook placement setting was also defined by Goldman and Haglund
in [5]. Here, given a Ferrers board B = F (b1, b2, . . . , bn), we consider placements P ∈
Fk(B). Given a placement P ∈ Fk(B), we define the weight of P, wα,B(P), to be the
product of the weights of all of the rows of the placement, where if a row r contains u

rooks, then it has weight

wα,B(r) =

{

1 if 0 ≤ u ≤ 1, and
α(2α − 1)(3α − 2) · · · ((u − 1)α − (u − 2)) if u ≥ 2.

We then set
r
(α)
k (B) =

∑

P∈Fk(B)

wα,B(P),

and we call r
(α)
k (B) the k-th α-rook number of B. Goldman and Haglund [5] proved the

following theorem.
Theorem 2.9. If B = F (b1, b2, . . . , bn) is a Ferrers board and α is an integer, then

n
∏

j−1

(x + bi + (j − 1)(α − 1)) =

n
∑

k=0

r
(α)
n−k(B)x ↑k,α−1 . (2.16)
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We note that if α is a nonnegative integer, then r
(α)
k (B) is the α-creation rook number

described above and if α is a negative integer, then for a suitable board, r
(α)
k (B) is a α-

attacking rook number as defined by Remmel and Wachs [9].
Finally Goldman and Haglund also proved a q-analogue of Theorem 2.9. Suppose

that B = F (b1, b2, . . . , bn) is a Ferrers board and consider P ∈ Fk(B). Let c be any cell
of B and define ν(c) to be the number of rooks which lie in the same row as c and are
strictly to the left of c. We define the q-weight of c, denoted by wq,α,B(c), to be

wq,α,B(c) =







1 if there is a rook directly above c

[(α − 1)ν(c) + 1]q if there is a rook in c, and
q(α−1)ν(c)+1 otherwise,

and the weight of file placement P, wq,α,B(P), to be

wq,α,B(P) =
∏

c∈B

wq,α,B(c). (2.17)

Then we define the k-th q-α-rook number, r
(α)
k (B, q) by

r
(α)
k (B, q) =

∑

P∈Fk(B)

wB(P). (2.18)

This given, Goldman and Haglund [5] proved the following theorem.

Theorem 2.10. If B = F (b1, b2, . . . , bn) is a Ferrers board, then
n

∏

i=1

[x + bi − (j − 1)(α − 1)]q =
n

∑

k=0

r
(α)
n−k(B, q)[x]q ↑k,α−1, (2.19)

where [x]q ↑n,m= [x]q[x + m − 1]q · · · [x + (n − 1)(m − 1)]q.

3 Augmented Rook Boards
The main goal of this section is to prove the generalized product formula (1.14). To
do this, we must first present an appropriate rook model. Fix two sequences from
Nn, B = {bi}n

i=1 and A = {ai}n
i=1, and two functions sgn, sgn : [n] → {1,−1}. Let

Ai = a1 + a2 + · · · + ai be the i-th partial sum of the ai’s and let B = F (b1, b2, . . . , bn).
We will consider the augmented rook board, BA, which is constructed by starting with
the board B and then adding Ai cells on top of the i-th column for i = 1, . . . , n. Thus
BA can be thought of as the board F (b1 + A1, b2 + A2, . . . , bn + An). For example, if
B = (1, 2, 2, 3) and A = (1, 2, 1, 2), then Figure 17 pictures the board B and the board
BA. We will refer to the part of the board which corresponds to the bi’s as the base part
of BA and the part which corresponds to the ai’s as the augmented part of BA. Moreover,
for each column i, we will refer to the cells in rows b1 + 1, . . . , b1 + a1 as the a1-st part
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Figure 17: An Augmented Rook Board, BA, with n = 4.

of i-th column, the cells in rows b1 + a1 + 1, . . . , b1 + a1 + a2 as the a2-nd part of i-th
column, etc. In Figure 17, we have indicated the as-th part of each column by putting
an s in those cells.

Next we must define the appropriate notion of nonattacking rook placements in BA.
We first consider placements P of rooks in BA where there is at most one rook in each
column. Now the leftmost rook of P will cancel all the cells in the columns to its right
which correspond to the as-th part of that column of highest index. Thus, if the leftmost
rook is in column i, then it will cancel the aj-th part of column j for j = i + 1, . . . , n. In
general, each rook will cancel all the cells in the columns to its right which correspond
to the as-th part of that column where s is the highest index such that the cells of as-th
part of the column have not been canceled by any rook to its left. We then let N A

k (BA)
denote the set of placements of k rooks in the board BA such that (i) there is at most
one rook per column and (ii) no rook lies in a cell which has been canceled by a rook
to its left. For example, if B = (1, 2, 2, 3) and A = (1, 2, 1, 2), then we have illustrated
in Figure 18 a placement P ∈ NA

2 (B) where we have placed a • in all cells canceled by
rook in column 1 and a ∗ in all cells canceled by the rook in column 2. We shall refer to
a placement P ∈ NA

k (B) as a placement of k nonattacking rook in BA.
We define

rk(sgn, sgn,BA) =
∑

P∈NA
k

(B)

wsgn,sgn,BA(P) (3.1)

where
wsgn,sgn,BA(P) =

∏

r∈P

wsgn,sgn,BA,P(r) (3.2)

and, for any rook r, if r is the rook in the i-th column, then

1. wsgn,sgn,BA
x ,P(r) = sgn(i) if r is in base part of BA and

2. wsgn,sgn,BA
x ,P(r) = −sgn(s) if r is in the as-th part of the augmented part of BA.
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Figure 18: A Placement of Two Rooks in an Augmented Rook Board, BA.

Then the goal of this section is to prove the following theorem.
Theorem 3.1. Suppose B = (b1, . . . , bn) and A = (a1, . . . , an) are two sequences of nonneg-
ative integers and sgn : {1, . . . , n} → {1,−1} and sgn : {1, . . . , n} → {1,−1} are two sign
functions. Then,

n
∏

i=1

(x + sgn(i)(bi)) =
n

∑

k=0

rAn−k(B
A, sgn, sgn)

k
∏

j=1

(x +
∑

s≤j

sgn(s)(as)). (3.3)

Proof. In order to prove Theorem 3.1, we need to define the analogue BA
x for augmented

rooks boards of the board Bx. Given two sequences of nonnegative integers B and A
and a nonnegative integer x, the board BA

x will have three parts. First we start with the
board BA which will refer to as the upper part of BA

x . Here the part of the upper part
of BA

x that corresponds to the board B = F (b1, b2, . . . , bn) will be called the base part of
BA

x and the part which corresponds to the ai’s will be called the upper augmented part
of BA

x . Directly below BA, we will attach x-rows of length n which will be referred to
as the x-part of BA

x . Finally, directly below the x-part, we will place the flip of a Ferrers
board F (A1, . . . , An) which will be called the lower augmented part of BA

x . We will say
that the x-part is separated from the upper part of BA

x by the high bar and from the
lower augmented part of BA

x by the low bar. For example, Figure 19 pictures the board
BA

x where B = (1, 2, 2, 3), A = (1, 2, 1, 2), and x = 4 on the left. Much like we did for the
upper augmented part of BA

x , we will refer to the first a1 cells of the lower augmented
part of a column i, reading from top to bottom, as the a1-st part of the i-th column of
the lower augmented part, the next a2 cells, reading from top to bottom, as the a2-nd
part of the i-th column of the lower augmented part, etc. Again, we indicate the as-th
part of each column by placing an s in those cells.

Next we need to define the set of placements of n nonattacking rooks on BA
x . First

we will consider placements of n rooks on BA
x where there is exactly one rook in each

column. The cancellation rules for each rook are the following:

the electronic journal of combinatorics 15 (2008), #R85 20



1

1

2

2

1

2

2

3

1

2

2

3

4

4

1 1 1 1

2 2 2

2 2 2

3 3

4

4

high bar

low bar

X

x

x

x

*

*

*

*

*

*

1

1

2

2

1

2

2

3

1

2

2

3

4

4

1 1 1 1

2 2 2

2 2 2

3 3

4

4

Figure 19: An Example of an Augmented General Rook Board, BA
x , with B = (1, 2, 2, 3),

A = (1, 2, 1, 2), and x = 4, and a placement of rooks in BA
x .

1. A rook placed above the high bar in the j-th column of BA
x will cancel all of the

cells in columns j +1, j +2, . . . , n , in both the upper and lower augmented parts,
which belong to the ai-th part of highest subscript in that column which are not
canceled by a rook to the left of column j.

2. Rooks placed below the high bar do not cancel anything.

We then let NA
n (BA

x ) denote the set of all placements of n rooks in BA
x for which there

is exactly one rook in each column and no rook lies in a cell which is canceled by a
rook to its left. An example of a rook placement P ∈ NA

n (BA
x ) is pictured in Figure 19

on the right. Here we have indicated the cells canceled by the rook in the first column
of upper augmented part by placing a • in those cells and the cells canceled by the
rook in the second column of the upper augmented part by placing an ∗ in those cells.
The rooks placed in the third and fourth columns do not cancel any cells since they are
placed below the high bar.

First we prove two key lemmas about placements in P ∈ NA
n (BA

x ).
Lemma 3.2. For any placement P ∈ NA

n (BA
x ), if there are bj+Am uncanceled cells in the upper

augmented part of BA
x in column j, then there are Am uncanceled cells in the lower augmented

part of BA
x .

Proof. This lemma follows directly from our definition of cancellation for placements
P ∈ NA

n (BA
x ) since it is easy to see by induction on j that for any 1 ≤ s ≤ j, the as-th
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part of the upper augmented part of BA
x is canceled by a rook r to the left of column j

if and only if the as-th part of the lower augmented part of BA
x is canceled by r.

Lemma 3.3. For any placement P ∈ NA
n (BA

x ) which has k rooks above the high bar, the cells
which are not canceled in the lower augmented part of BA

x in the i-th column from the left that
does not contain a rook above the high bar are precisely the cells corresponding to the as-th
part of that column for s = 1, . . . , i. Thus the column heights of the uncanceled cells in the
lower augmented part of BA

x in those columns which do not contain rooks above the high bar
are A1, . . . , An−k, reading from left to right.

Proof. We proceed by induction on the number of rooks k placed above the high bar
in P. Clearly, if k = 0, then all the rooks of P are placed below the high bar. Since
our definitions ensure that rooks placed below the high bar do not cancel any cells, the
lemma follows in this case from our definition of the lower augmented part of BA

x .
Now assume that the lemma holds for some k ≥ 0 and suppose that P has k + 1

rooks above the high bar such that the rightmost of these rooks, r, is placed in column
j for some k + 1 ≤ j ≤ n. When constructing P, suppose that we first place the first
k rooks above the high bar, from left to right. Then, by induction, in the j − k − 1
columns available below the low bar to the left of column j, there will be, from left to
right, A1, A2, . . . , Aj−k−1 available cells to place a rook in each of those columns. Also
from our induction hypothesis, column j will have Aj−k available cells, and columns
j + 1, j + 2, . . . , n will have Aj−k+1, Aj−k+2, . . . , An−k available cells respectively. Now,
when we place r in column j above the high bar, then the number of available cells
to the left of r below the low bar will remain unchanged. That is, there are no longer
any available cells below the low bar in column j since there is now a rook in that
column. It is easy to see from our definitions that below the low bar to the right of
r, the number of available cells in column j + a for each a = 1, 2, . . . , n − j will be
Aj−k+a − aj−k+a = Aj−k+a−1. Thus, the number of available cells below the low bar in
the columns to the right of r are respectively,

A(j−k+1)−1, A(j−k+2)−1, . . . , A(n−k)−1 = Aj−k, Aj−k+1, . . . , An−(k+1),

which completes the induction.

Let
S(sgn, sgn,BA

x ) =
∑

P∈NA
n (BA

x )

wsgn,sgn,BA
x
(P) (3.4)

where
wsgn,sgn,BA

x
(P) =

n
∏

i=1

wsgn,sgn,BA
x ,P(ri) (3.5)

and, if ri is the rook in the i-th column of P, then

1. wsgn,sgn,,BA
x ,P(ri) = sgn(s) if ri is in the as-th part of the lower augmented part of

BA
x ,
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2. wsgn,sgn,,BA
x ,P(ri) = 1 if ri is in the x-part of BA

x ,

3. wsgn,sgn,,BA
x ,P(ri) = sgn(i) if ri is in the base part of BA

x , and

4. wsgn,sgn,,BA
x ,P(ri) = −sgn(s) if ri is in the as-th part of the upper augmented part of

BA
x .

It will be instructive to consider two special cases of (3.3). First consider the case
where sgn(i) = +1 and sgn(i) = −1 for every 1 ≤ i ≤ n. In this case, we will set

rAk (BA, sgn, sgn) = rAk (BA).

Then (3.3) reduces to
n

∏

i=1

(x + bi) =
n

∑

k=0

rAn−k(B
A)(x − A1)(x − A2) · · · (x − Ak). (3.6)

Moreover, it is easy to see that in this case,

1. wsgn,sgn,BA
x ,P(ri) = −1 if ri is in the as-th part of the lower augmented part of BA

x ,

2. wsgn,sgn,BA
x ,P(ri) = 1 if ri is in the x-part of BA

x ,

3. wsgn,sgn,BA
x ,P(ri) = 1 if ri is in B-part of BA

x , and

4. wsgn,sgn,BA
x ,P(ri) = 1 if ri is in the as-th part of the upper augmented part of BA

x .

Thus wsgn,sgn,BA
x
(P) = (−1)lP where lP is the number of rooks in P which lie in the lower

augmented part of BA
x . Similarly, rAk (BA, sgn, sgn) = |NA

k (B)| = rAk (BA).
Then we claim that (3.6) arises from two different ways of computing the sum

S(sgn, sgn,BA
x ).

If we first place the rooks starting with the leftmost column and working to the
right, then we can see that in the first column there are exactly x+b1 +2a1 cells in which
to place the first rook, where the “2a1” corresponds to the choices of placing the rook in
either the upper or the lower augmented part of the first column. Since all of the rooks
above the high bar are weighted with a “+1” and all of the rooks placed below the low
bar are weighted with a “−1”, we get a total weighting of x + b1 + a1 + (−a1) = x + b1

for the first column. When we go to place a rook in the second column, we have two
cases.

Case I: Suppose that the rook that was placed in the first column was placed below
the high bar. Then nothing was canceled in the second column, so we can place a
rook in any cell of the second column. Thus we have x + b2 + 2(a1 + a2) choices as to
where to put this rook. However, we weight the two choices which correspond to the
“2(a1 + a2)” term differently, as rooks in the upper augmented part get weighted with
a “+1” and those in the lower augmented part with a “−1”. Thus, the weighting for
this column is x + b2 + (a1 + a2) + (−a1 − a2) = x + b2.
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Case II: If the rook placed in the first column was placed above the high bar, then
the cells corresponding to a2-nd part in both the upper and the lower augmented parts
of the second column are canceled. Thus there are x + b2 + 2a1 cells left to place the
rook and, hence, the weighting of the second column is x + b2 + a1 + (−a1) = x + b2.

In general, suppose we are placing a rook in the j-th column where we have placed
s rooks above the high bar and t rooks below the high bar in the first j − 1 columns.
Then in the j-th column we have, by Lemma 3.2, x + bj + 2At+1 choices as to where to
place the rook in that column. Again, these placements will come with a weighting of
x + bj + At+1 + (−At+1) = x + bj . Thus, it follows that

S(sgn, sgn,BA
x ) =

n
∏

i=1

(x + bi)

which gives the left-hand side of (3.6).
The second way of computing S(sgn, sgn,BA

x ) is to organize the placements by how
many rooks lie above the high bar. That is, suppose that we fix a placement P of n − k

nonattacking rooks in BA. Then we wish to compute
∑

Q∈NA
n (BA

x )

Q∩BA=P

wsgn,sgn,BA
x
(Q). (3.7)

Each such Q in the sum arises from P by placing one rook below the high bar in each
of the k columns that do not contain a rook above the high bar. We will place the
remaining rooks in these available columns starting with the leftmost one and working
right. By Lemma 3.3, the number of ways we can do this will be (x+A1)(x+A2) · · · (x+
Ak). However, as all the rooks in the lower augmented part of BA

x have weight “−1”
and all the rooks in x-part of BA

x have weight “+1”, we see that
∑

Q∈NA
n (BA

x )

Q∩BA=P

wsgn,sgn,BA
x
(Q) = wsgn,sgn,BA(P)(x + (−A1))(x + (−A2)) · · · (x + (−Ak)). (3.8)

Thus,

S(sgn, sgn,BA
x ) =

n
∑

k=0

∑

P∈NA
n−k

(BA)

(x − A1)(x − A2) · · · (x − Ak)

=
n

∑

k=0

rAk (BA)(x − A1)(x − A2) · · · (x − Ak)

which gives the right-hand side of (3.6).
Next consider the case where sgn(i) = +1 and sgn(i) = +1 for every 1 ≤ i ≤ n. In

this case, we see that

1. wsgn,sgn,BA
x ,P(ri) = 1 if ri is in the as-th part of the lower augmented part of BA

x ,

the electronic journal of combinatorics 15 (2008), #R85 24



2. wsgn,sgn,BA
x ,P(ri) = 1 if ri is in the x-part of BA

x ,

3. wsgn,sgn,BA
x ,P(ri) = 1 if ri is in the base part of BA

x , and

4. wsgn,sgn,BA
x ,P(ri) = −1 if ri is in the as-th part of the upper augmented part of BA

x .

Thus, in this case, wsgn,sgn,BA
x
(P) = (−1)uP where uP is the number of rooks in P which

lie in the upper augmented part of BA
x . Hence rAk (BA, sgn, sgn) =

∑

P∈NA
k

(B)(−1)uP .
Now consider the two different ways of computing the sum S(sgn, sgn,BA

x ). First,
if we consider placing the rooks column by column, reading from left to right, then
the sum of the weights of possible placements of the rook in the i-th column is still
(x + bi) because that argument depended only on the fact that sum of the weights of
the uncanceled cells in the upper and the lower augmented parts of the board in the
i-th column equals 0. Thus,

S(sgn, sgn,BA
x ) =

n
∏

i=1

(x + bi)

as before.
For the second way of computing S(sgn, sgn,BA

x ), suppose that we fix a placement
P of n − k nonattacking rooks in BA. Then we wish to compute

∑

Q∈NA
n (BA

x )

Q∩BA=P

wsgn,sgn,BA
x
(Q). (3.9)

As before, each such Q in the sum arises from P by placing a rook below the high bar in
each of remaining k empty columns. Again we can argue that Lemma 3.3 implies that
the number of ways we can do this is (x + A1)(x + A2) · · · (x + Ak). Since the weights
of all rooks below the bar is “+1”, it follows that

∑

Q∈∈NA
n (BA

x )

Q∩BA=P

wsgn,sgn,BA
x
(Q) = wsgn,sgn,BA(P)(x + A1)(x + A2) · · · (x + Ak). (3.10)

Hence

S(sgn, sgn,BA
x ) =

n
∑

k=0

∑

P∈NA
n−k

(BA)

wsgn,sgn,BA(P)(x + A1)(x + A2) · · · (x + Ak)

=

n
∑

k=0

rn−k(sgn, sgn,BA)(x + A1)(x + A2) · · · (x + Ak).

Thus, in this case, we have
n

∏

i=1

(x + bi) =
n

∑

k=0

r̃An−k(B)(x + A1)(x + A2) · · · (x + Ak) (3.11)
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where r̃An−k(B) = rn−k(sgn, sgn,BA) with sgn(i) = sgn(i) = 1 for all i.
It is easy to check that these two special cases encapsulate all the q = 1 cases of the

product formulas stated in the Section 2.
To prove the general case of (3.3), we again claim that (3.3) arises from two different

ways of computing the sum S(sgn, sgn,BA
x ). That is, if we first place the rooks starting

with the leftmost column and working to the right, then we can see that in the first
column there are exactly x + b1 + 2a1 cells in which to place the first rook, where the
“2a1” corresponds to placing the rook in either the upper or the lower augmented part
of the first column. Since the rooks in the x-part are weighted with a “+1”, the rooks
in the i-th column of the base part are weighted with sgn(i), the rooks in the lower
augmented part in the as-part are weighted with sgn(s), and the rooks in the as-part of
the upper augmented part are weighted with −sgn(s), the placements of the rook in the
first column contributes a factor of x + sgn(1)b1 + (sgn(1)a1 − sgn(1)a1) = x + sgn(1)b1

to S(sgn, sgn,BA
x ). When we go to place a rook in the second column, we have two

cases.
Case I: Suppose that the rook in the first column was placed below the high bar.

Then nothing was canceled in the second column, so we can place a rook in any cell of
the second column. Thus we have x + b2 + 2(a1 + a2) choices as to where to put this
rook. Note that the contribution of the weights over all placements of rooks below the
low bar is sgn(1)a1 + sgn(2)a2 and the contributions of the weights over all placements
of rooks in the upper augmented part of BA

x is (−sgn(1)a1) + (−sgn(2)a2). Thus, the
placements of rooks the second column contribute a factor of x+sgn(2)b2 +(sgn(1)a1 +
sgn(2)a2) − (sgn(1)a1 + sgn(2)a2) = x + sgn(2)b2 to S(sgn, sgn,BA

x ).
Case II: If the rook in the first column was placed above the high bar, then the cells

corresponding to a2-nd part in both the upper and the lower augmented parts of the
second column are canceled. Hence, there are x + b2 + 2a1 cells left to place the rook.
Thus in this case, the placements of rooks in the second column contributes a factor of
x + sgn(2)b2 + sgn(1)a1 − sgn(1)a1 = x + sgn(2)b2 to S(sgn, sgn,BA

x ).
In general, suppose we are placing a rook in the j-th column where we have placed

s rooks above the high bar and t rooks below the high bar in the first j − 1 columns.
Then in the j-th column we have, by Lemma 3.2, x + bj + 2At+1 choices as to where to
place the rook in that column. Since the weight of the cells in the as-th part of the upper
augmented board in this column is −sgn(s) and the weight of the cells in the as-th part
of the lower augmented board in this column is sgn(s), it follows that the placements
in column j contribute a factor of x+sgn(j)bj +

∑t+1
i=1(sgn(i)ai−sgn(i)ai) = x+sgn(j)bj

to S(sgn, sgn,BA
x ). Thus, it follows that

S(sgn, sgn,BA
x ) =

n
∏

i=1

(x + sgn(i)bi),

which gives the left hand side of (3.3).
The second way of computing S(sgn, sgn,BA

x ) is to organize the placements by how
many rooks lie above the high bar. Suppose that we fix a placement P of n − k nonat-
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tacking rooks in BA. Then we wish to compute
∑

Q∈NA
n (BA

x )

Q∩BA=P

wsgn,sgn,BA
x
(Q). (3.12)

Again, each such Q in the sum arises from P by placing rooks below the high bar in the
remaining columns. Thus there are k columns left that need to have rooks placed in
them, below the high bar. We will place the remaining rooks in these available columns
starting with the leftmost one and working right. By Lemma 3.3, the number of ways
we can do this will be (x+A1)(x+A2) · · · (x+Ak). However, as all the rooks in the lower
augmented part of BA

x have weight sgn(i) if they are in the ai-th part of the column in
the lower augmented part of BA

x and all the rooks in x-part of BA
x have weight “+1”,

we see that

∑

Q∈NA
n (BA

x )

Q∩BA=P

wsgn,sgn,BA
x
(Q) = wsgn,sgn,BA(P)

k
∏

j=1

(x +
∑

s≤j

sgn(s)(as)). (3.13)

Thus,

S(sgn, sgn,BA
x ) =

n
∑

k=0

∑

P∈NA
n−k

(BA)

wsgn,sgn,BA(P)
k

∏

j=1

(x +
∑

s≤j

sgn(s)(as))

=

n
∑

k=0

rAn−k(B
A, sgn, sgn)

k
∏

j=1

(x +
∑

s≤j

sgn(s)(as))

which gives the right hand side of (3.3).

3.1 Comparisons With Other Rook Models
In this section, we shall compare our rook model to the j-attacking rook model of
Remmel-Wachs [9] and the j-creation model of Goldman-Haglund [5]. As noted in the
introduction, the special cases of the Remmel-Wachs model when j = 2 correspond
to the product formulas in the Haglund-Remmel model. The product formula in the
Remmel-Wachs model also cover the product formulas in Briggs-Remmel model. In
particular, we want to compare the rook numbers that correspond to a given product
formula in our model versus these two models.

3.1.1 The Remmel-Wachs j-Attacking Model

We start with the Remmel-Wachs model. Suppose that we are given a j-attacking board
D = F (d1, . . . , dn). Then in the Remmel-Wachs model, D gives rise to the following
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B   =AF(1,3,6,8) =

Figure 20: F (1, 3, 6, 8) versus BA where B = (1, 1, 2, 2) and A = (0, 2, 4, 6).

product formula:
n

∏

i=1

(x + di − j(i − 1)) =

n
∑

k=0

r̃
j
n−k,Dx(x − j) · · · (x − (k − 1)j) (3.14)

where r̃
j
n−k,D = r̃

j
n−k,D(1, 1) = |N j

k (D)|. Now if we want to obtain the same product in
our model, we must start with the sequences B = (d1, |d2 − j|, . . . , |dn − (n − 1)j|) and
A = (0, j, j, . . . , j). We also must define the sign functions, sgn and sgn so that for all
i = 1, . . . , n,

sgn(i) = −1 and

sgn(i) =

{

1 if di − j(i − 1) ≥ 0 and
−1 if di − j(i − 1) < 0.

Then our general product formula will take the form
n

∏

i=1

(di − j(i − 1)) =
n

∑

k=0

rAn−k(B
A, sgn, sgn)x(x − j) · · · (x − (k − 1)j). (3.15)

Because {(x)↓j,n}n≥0 is a basis for the polynomial ring Q[x], it immediately follows from
(3.14) and (3.15) that r̃

j
n−k,D = rAn−k(B

A, sgn, sgn) for all 0 ≤ k ≤ n. We shall show that
we can give a completely combinatorial proof of this fact. This result is best explained
through some examples.

In the simplest case, when di ≥ j(i − 1) for i = 1, . . . , n, then it will be the case
that the boards D and BA are identical. For example, if j = 2 and D = (1, 3, 6, 8), then
B = (1, 1, 2, 2) and the board BA is just the Ferrers board F (1, 3, 6, 8) as pictured in
Figure 20. In this case, it is easy to see that for any P ∈ N A

k (BA), wsgn,sgn,BA(P) = 1

so that rAk (BA, sgn, sgn) = |NA
k (BA)|. Thus to prove that r̃

j
n−k,D = rAn−k(B

A, sgn, sgn),
we need only find a bijection between N j

n−k(D) and NA
n−k(B

A). It is easy to see that in
the j-attacking Remmel-Wachs model, each rook r in a placement P ∈ N j

k (D) cancels
exactly j cells in each column to its right. Similarly since a1 = 0 and ai = j for i ≥ 2, it
easy to see that each rook placement Q ∈ NA

k (BA) also cancels j cells in each column
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Figure 21: An example of Θ(2) in the case where di ≥ 2(i − 1) all i.

to its right. Thus the only real difference between the two types of rook placements
in this case is the exact cells that get canceled. This suggests a very simple bijection
Θ(j) : N j

k (D) → NA
k (BA). Namely, if P ∈ N j

k (D) has rooks r1, . . . , rk in columns 1 ≤
i1 < · · · < ik ≤ n respectively, then Θ(j)(P) should be the placement of rooks r̃1, . . . , r̃k

in columns 1 ≤ i1 < · · · < ik ≤ n such that for all u, if ru is in the su-th cell in column
iu which is not canceled by a rook to the left of ru, reading from bottom to top, then r̃u

is in the su-th cell in column iu which is not canceled by a rook to the left of r̃u, reading
from bottom to top. For example, if P ∈ N 2

k (F (1, 3, 6, 8)) is the placement pictured on
the left in Figure 21, then its image Θ(2)(P) is pictured on the right in Figure 21. That is,
the leftmost rook of P is in row 2 of column 2 so that the leftmost rook of Θ(2)(P) must
be placed in row 2 of column 2. We then put a • in those cells canceled by the leftmost
rook in each case. Then we see that the rook in column 3 of P is in the third available
cell, reading from bottom to top, so that the rook in column 3 of Θ(2)(P) must be in the
third available cell, reading from bottom to top. We then put a ∗ in those cells canceled
by the rook in column 3 in each case. Finally, the rook in column 4 in P is in the second
available cell, reading from bottom to top, so that the rook in column 4 in Θ(2)(P) is in
the second available cell in that column, reading from bottom to top.

In the general case, it may not be the case that di ≥ j(i − 1). If di < j(i − 1),
then di − j(i − 1) is negative and hence sgn(i) must be negative. It follows that the
rooks in the base part of BA in the i-th column will contribute a factor of “−1” to the
weight of a placement. We will call such columns in BA the negative columns of BA.
If the i-th column of BA is a negative column so that di − j(i − 1) < 0, then clearly
|di − j(i − 1)| ≤ j(i − 1). In such a case, we will call the first |di − j(i − 1)| cells in the
augmented part of BA in column i, the mirror image of the base part of column i. For
example, suppose that j = 2 and D is the 2-attacking board F (0, 0, 1, 3, 6, 7). Hence, the
product formula for this 2-attacking board is

x(x − 2)(x + 1 − 4)(x + 3 − 6)(x + 6 − 8)(x + 7 − 10) =

6
∑

k=0

r̃
(2)
6−k(x)↓2,k (3.16)

Thus, the corresponding product formula for the board BA will be produced by defin-
ing B = (0, 2, 3, 3, 2, 3), A = (0, 2, 2, 2, 2, 2), sgn(i) = 1 for i = 1, . . . , 6 and sgn(1) = 1
and sgn(i) = −1 for i > 1. Then in Figure 22, we have pictured the board D and BA and
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=ABD = F(0,0,1,3,6,7) = 

Figure 22: An example with negative columns and their mirror images.

have shaded the squares in mirror images of negative columns. In this case, the nega-
tive columns are columns 2 through 6. Note that if column i is negative, then the first
j(i−1)−di cells of the augmented part of the board BA in column i will be in the mirror
image of the base part of column i and hence the number of squares in the augmented
part of column i which are not in the mirror image is j(i − 1) − (j(i − 1) − di) = di. Of
course, if column i is not negative, then the total number of squares in column i in BA

is di − j(i− 1) + j(i − 1) = di. Thus (d1, . . . , dn) represents the column heights, reading
from left to right, of either (i) all cells of BA in positive column or (ii) all cells in the
augmented part of a column that do not lie in the mirror image of the base part of a
negative column.

In the case where there are negative columns, we can define a simple sign-reversing
involution I on NA

k (BA) which reduces ourselves to considering only the class of place-
ments P ∈ NA

k (BA) in which no rook lies in either in a negative column or the mirror
image of a negative column. That is, suppose P is a placement which contains a rook in
a negative column or its mirror image. Let r be the leftmost rook of P with this property.
If r is in the s-th row of the base part of the column, we let I(P) denote the placement
which results in moving r to the s-th row of its mirror image and leaving all other rooks
in the same place. Note that in this case, wsgn,sgn,BA,P(r) = −1 and wsgn,sgn,BA,I(P)(r) = 1
so that wsgn,sgn,BA(P) = −wsgn,sgn,BA(I(P)). If r is in the s-th row of the mirror image of
the base part of the column, we let I(P) denote the placement which results in moving
r to the s-th row of the negative part of the column and leaving all other rooks in the
same place. Note that in this case, wsgn,sgn,BA,P(r) = 1 and wsgn,sgn,BA,I(P)(r) = −1 so that
once again wsgn,sgn,BA(P) = −wsgn,sgn,BA(I(P)). Finally, if P does not have any rooks in
either a negative column or its mirror image, then we let I(P) = P. An example of
the involution I , when D is the 2-attacking board F (0, 0, 1, 3, 6, 7), B = (0, 2, 3, 3, 2, 3),
A = (0, 2, 2, 2, 2, 2), sgn(i) = −1 for i = 1, . . . , 6 and sgn(1) = 1 and sgn(i) = −1 for
i > 1, is given in Figure 23.
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Figure 23: An example of the involution I .

Clearly, I(I(P)) = P so that I shows that

rAk (BA, sgn, sgn) =
∑

P∈NA
k

(BA)

wsgn,sgn,BA(P)

=
∑

P∈NA
k

(BA)

I(P)=P

wsgn,sgn,BA(P).

Since the weight of any P ∈ NA
k (BA) such that I(P) = P is “+1”, then we need only

show that there is a bijection Θ(j) from N j
k (D) to the fixed points of I . But we have

already shown that the fixed points of I lies in a region of BA whose column heights
are (d1, . . . , dn), reading from left to right. Since in both the Remmel-Wachs model and
our model, each rook cancels j cells in each column to its right, we can use the same
bijection Θ(j) described previously to give the desired bijection between these two sets
of rook placements.

3.1.2 Goldman-Haglund j-Creation Boards

Next we consider the j-creation model of Goldman and Haglund [5]. If we fix j and
start with a Ferrers board D = F (d1, . . . , dn), then the product formula that arises out
of the j-creation model in this case is

n
∏

i=1

(x + di + (j − 1)(i − 1)) =

n
∑

k=0

r
(j)
n−k(D)(x) ↑k,j−1 (3.17)

In this case, to get an equivalent product formula in our model, we must let B =
(d1, d2 + j − 1, d3 + 2(j − 1), . . . , dn + (n − 1)(j − 1)), A = (0, j − 1, j − 1, . . . , j − 1)
and sgn(i) = sgn(i) = 1 for all i so that our product formula will become

n
∏

i=1

(x + di + (j − 1)(i − 1)) =
n

∑

k=0

rAn−k(B
A, sgn, sgn)(x) ↑k,j−1 . (3.18)
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F(0,1,2,3,3) = B
A 

=

Figure 24: An example of the difference of shapes between the 3-creation board B(3)

with B = F (0, 1, 2, 3, 3) and the corresponding augmented rook board.

Since {(x) ↑n,j}n≥0 is a basis for the polynomial ring Q[x], it immediately follows from
(3.17) and (3.18) that r

(j)
n−k(D) = rAn−k(sgn, sgn,BA) in this case.

Again our goal is to give a completely combinatorial proof of this fact. To do this,
we will follow the same steps that we did for the general case of the Remmel-Wachs
model, namely, we will first define an involution J on NA

k (BA) and then give a bijection
between N (j)(D) and the fixed points of J . As before, these steps are best illustrated
through an example. We will let j = 3 and consider the 3-creation board B(3) with
B = F (0, 1, 2, 3, 3). Thus the product formula for B

(3)
x in this case is

x(x + 3)(x + 6)(x + 9)(x + 11) =

5
∑

k=0

r
(3)
5−k(B)x ↑k,2 . (3.19)

To generate the same product formula in our model, we must set B = (0, 3, 6, 9, 11),
A = (0, 2, 2, 2, 2), and sgn(i) = sgn(i) = 1 for every i. If we then construct BA, we
can see the vast difference in shape between these two boards which are pictured in
Figure 24.

Note also that our weighting ensures that each rook in the augmented part of the
board has weight “−1” and each rook in base part of the board has weight “+1”. For
each rook placement P ∈ NA

k (BA), we define the mirror image of the augmented part of
BA in the i-th column relative to P to consist of the top s cells in the base part of column
i if there are s cells in the augmented part of the column i which are not canceled by
the rooks to the left of column i. In Figure 25, we have pictured a placement P which
has rooks in columns 2 and 4. We have placed a • in the cells canceled by the rook in
column 2 and we have placed an ∗ in the cells canceled by the rooks in column 4. We
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Figure 25: An example of the involution J .

have also shaded, in the base part of the board, each cell which is in the mirror image
of the uncanceled cells in the augmented part of its column. Now the involution J is
very simple. That is, suppose P is a placement which contains a rook in an cell in the
augmented part of BA or its mirror image. Let r be the rightmost rook of P with this
property. If r is in the s-th row, reading from bottom to top, in the augmented part of
the column, we let J(P) denote the placement which results by moving r to the s-th
row of its mirror image, reading from bottom to top, and leaving all other rooks in the
same place. Note that in this case, wsgn,sgn,BA,P(r) = −1 and wsgn,sgn,BA,J(P)(r) = 1 so that
wsgn,sgn,BA(P) = −wsgn,sgn,BA(J(P)). If r is in the s-th row, reading bottom to top, of the
mirror image of the uncanceled cells in the augmented part of its column, we let J(P)
denote the placement which results by moving r to the s-th row of the uncanceled cells
in the augmented part of its column, reading bottom to top, and leaving all other rooks
in the same place. Note that in this case, wsgn,sgn,BA,P(r) = 1 and wsgn,sgn,BA,J(P)(r) = −1
so that once again wsgn,sgn,BA(P) = −wsgn,sgn,BA(J(P)). Finally, if P does not have any
rooks in either an uncanceled cell in the augmented part or its mirror image in any
column, then we let J(P) = P. In Figure 25, we have pictured a placement P ∈ N A

2 (BA)
on the left, where B = (0, 3, 6, 9, 11), A = (0, 2, 2, 2, 2), and sgn(i) = sgn(i) = +1 for
every j, and the placement J(P) on the right.

Clearly, J(J(P)) = P, so J shows that

rAk (BA, sgn, sgn) =
∑

P∈NA
k

(BA)

wsgn,sgn,BA(P)

=
∑

P∈NA
k

(BA)

J(P)=P

wsgn,sgn,BA(P).
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The weight of any P ∈ NA
k (BA) such that J(P) = P is 1 since the only way that J(P) = P

is to have all the rooks of P lie in the base part of BA. Thus we need only show that
there is a bijection ∆ from the fixed points of J to N (j)

k (D). In this case, the bijection ∆
can be constructed by recursion. That is, suppose that D = F (d1, . . . , dn, ) is a Ferrers
board where n ≥ 2. Then we claim that for 0 ≤ k ≤ n, we have the following recursion
among rook numbers in the j-creation model of Goldman and Haglund [5].

r
(j)
k (F (d1, . . . , dn)) = (3.20)

r
(j)
k (F (d1, . . . , dn−1)) + (dn + (j − 1)(k − 1))r

(j)
k−1(F (d1, . . . , dn−1)).

The recursion given in (3.20) is the result of classifying the rook placements in
N (j)

k (F (d1, . . . , dn)) according to whether there is a rook in the last column or not. If
P ∈ N (j)

k (F (d1, . . . , dn)) does not have a rook in the last column, then we can also re-
gard P as a placement in N (j)

k (F (d1, . . . , dn−1)). However if P ∈ N (j)
k (F (d1, . . . , dn)) has

a rook in the last column, then we let Q ∈ N (j)
k−1(F (d1, . . . , dn−1)) be the rook placement

which consists of the rooks of P in the first n − 1 columns. For each such Q, there will
be a total of dn + (j − 1)(k − 1) rows in which to place a rook in the last column since
each of the k − 1 rooks in Q create j − 1 new rows in which to place a rook in the last
column.

Next consider the two sequences of length n,

Bn = (d1, d2 + (j − 1), . . . , dn + (n − 1)(j − 1)) and An = (0, j − 1, . . . , j − 1)

and the two sequences of length n − 1,

Bn−1 = (d1, d2 + (j − 1), . . . , dn−1 + (n − 2)(j − 1)) and An−1 = (0, j − 1, . . . , j − 1).

We claim that if
r̃An

k (BAn

n ) = |{P ∈ NAn

k (BAn

n ) : J(P) = P}|, (3.21)
then,

r̃An

k (BAn

n ) = r̃
An−1

k (BAn−1

n−1 ) + (dn + (j − 1)(k − 1))r̃
An−1

k−1 (BAn−1

n−1 ). (3.22)

Again, this recursion is the result of classifying the rook placements in P ∈ N An

k (BAn
n )

such that J(P) = P according to whether or not there is a rook in the last column. That
is, if R ∈ {P ∈ NAn

k (BAn
n ) : J(P) = P} has no rook in the last column, then R can

be viewed as an element of {P ∈ NAn−1

k (BAn−1

n−1 ) : J(P) = P}. On the other hand, if P

does have a rook in its last column, then let Q be the placement that is the restriction
of P to the first n − 1 columns. It is easy to check that our definition of the involution
J for NAn−1

k−1 (BAn−1

n−1 ) ensures that Q ∈ NAn−1

k−1 (BAn−1

n−1 ) and J(Q) = Q. Moreover, we
claim that number of ways to extend Q to placement in {P ∈ NAn

k (BAn
n ) : J(P) = P}

is dn + (j − 1)(k − 1). Note that the n-th column of BAn
n has height dn + (j − 1)(n −

1) + (j − 1)(n − 1) with the top (j − 1)(n − 1) cells being in the augmented part of the
board. Each of the rooks in Q cancels j − 1 cells in the augmented part of BAn

n in the
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Figure 26: The recursive deconstruction of P ∈ NA
3 (BA).

n-th column. Thus there are (j − 1)(n − 1) − (j − 1)(k − 1) = (j − 1)(n − k) cells in the
augmented part of BAn

n in the n-th column which are not canceled so that the mirror
image of these cells is the top (j − 1)(n − k) cells in the base part of BAn

n . Since for a
fixed point of J , we are not allowed to place a rook in either the augmented part of
the n-th column or the mirror image of its uncanceled cells, it follows that we have a
total of dn + (j − 1)(n − 1) − (j − 1)(n − k) = dn + (j − 1)(k − 1) ways to extend Q to a
placement P ∈ {P ∈ NAn

k (BAn
n ) : J(P) = P}.

Our proofs of the recursions (3.20) and (3.22) naturally lead to a recursive way to
define our desired bijection ∆ from {P ∈ NAn

k (BAn
n ) : J(P) = P} to N (j)

k (D). That is,
suppose we are given a P ∈ NAn

k (BAn
n ) such that J(P) = P. Then consider the sequence

of j-creation rook placements P = Pn, Pn−1, . . . P1 where Pi is just the restriction of P to
the first i columns for i = 1, . . . , n. For example, if we start with the Ferrers board D =
F (0, 1, 3, 3, 3) and we consider the 3-creation version of the Goldman-Haglund model,
then in our model we must take B = (0, 3, 6, 9, 11), A = (0, 2, 2, 2, 2), and sgn(i) =
sgn(i) = +1 for every j. Then such a sequence P = P5, P4, P3, P2, P1 is pictured in
Figure 26.

Now, the image ∆(P) will be obtained by constructing an element of N (j)
k (D) by

using the analogous steps to build up ∆(P)1, . . . , ∆(P)n = ∆(P). That is, at step 1, if P1

has no rook in the first column, then ∆(P)1 has no rook in the first column. Otherwise,
the length of the first column in both the restriction of D to the first column and BA is
the same, namely d1, so that if the rook in P1 is in the r-th row, reading from bottom
to top, then we place the rook in ∆(P)1 in the r-th row, reading from bottom to top. In
general, having constructed ∆(P)1, . . . , ∆(P)i, then if Pi+1 has no rook in the column
i + 1, we define ∆(P)i+1 so that it has no rook in column i + 1 and the restriction of
∆(P)i+1 to the first i columns is just ∆(Pi). Otherwise, if the rook in the (i + 1)-st
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Figure 27: The recursive construction of ∆(P) ∈ N (j)
3 (D).

column of Pi+1 is in the r-th available cell, reading from bottom to top, then we set
∆(P)i+1 to be the rook placement which results by extending ∆(P)i by adding a rook
in the column i + 1 which is in the r-th available cell, reading from bottom to top.
that is not in either the augmented part of the n-th column or the mirror image of its
uncanceled cells. An example of the sequence ∆(P)1, . . . , ∆(P)5 for the P pictured in
Figure 26 is given in Figure 27.

Thus, in both the j-cancellation model of Remmel and Wachs and j-creation model
of Goldman and Haglund, one can give direct combinatorial proofs of the fact that the
rooks numbers that appear in the product formulas for those models are the same as
the rook numbers that appear in the corresponding product formulas in our model.

Here we should point out that our model gives rise to a much wider class of prod-
uct formulas than can be derived in either of those two models. That is, in the j-
cancellation model of Remmel-Wachs, the product formulas holds only for j-attacking
Ferrers boards. Similarly, in the j-creation model of Goldman and Haglund, the prod-
uct formula holds only for Ferrers boards. However, the boards in our model that give
rise to our product formulas can be arbitrary skyline boards.

4 Q-Analogues of the General Product Formula
In this section, we shall describe how we can derive several q-analogues of Theorem
3.1 by q-counting rook placements in our model. For any n ∈ N, define [n]q = 1 + q +
q2 + · · · + qn−1 and [−n]q := −[n]q.

Now fix two sequences B = (b1, . . . , bn) and A = (a1, . . . , an) and two sign functions
sgn, sgn : {1, . . . , n} → {1,−1}. Let Ai :=

∑i

s=1 sgn(s)as. First we shall define the
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q-weight, µq,BA
x
(c), of each cell c in BA

x as follows.

1. For each i, the q-weights, µq,BA
x
(c), of the cells c in the i-th column of the x-part of

BA
x are 1, q, q2, . . . , qx−1, reading from bottom to top.

2. For each i, the q-weights, µq,BA
x
(c), of the cells c in the i-th column of the base part

of BA
x are sgn(i), sgn(i)q, sqn(i)q2, . . . , sgn(i)qbi−1, reading from bottom to top.

3. For each i, we assign the q-weights, µq,BA
x
(c), to the cells c in the i-th column

of the lower augmented part as follows. First, we assign the q-weights sgn(i)1,
sgn(i)q, sgn(i)q2, . . ., sgn(i)qa1−1 to the cells in a1-st part of column i in the lower
augmented board reading from top to bottom. Thus the sum of the q-weights
of the cells in a1-st part of column i in the lower augmented board is [sgn(i)a1]q.
Next suppose that we have assigned the q-weights to the cells in aj-th part of
column i in the lower augmented part for j = 1, . . . , s so that the sum of the
q-weights of the cells that lie in aj-th part of column i in the lower augmented
board for j ≤ s is [As]q. Then we assign the q-weights to the cells in as+1-st part
of column i in the lower augmented part according to the following cases.

Case 1: 0 ≤ As ≤ As+1. In this case, we assign the q-weights of the cells in the
as+1-st part to be qAs, qAs+1, . . . , qAs+1−1, reading from top to bottom.

Case 2: 0 ≤ As+1 < As. In this case, we assign the q-weights of the cells in the
as+1-st part to be −qAs−1,−qAs−2, . . . ,−qAs+1 , reading from top to bottom.

Case 3: As+1 < 0 ≤ As. In this case, we assign the q-weights of the cells in the
as+1-st part to be −qAs−1,−qAs−2, . . . ,−q,−1,−1,−q, . . . − q|As+1|−1, reading
from top to bottom.

Case 4: 0 ≥ As ≥ As+1. In this case, we assign the q-weights of cells in the as+1-st
part to be −q|As|,−q|As|+1, . . . ,−q|As+1|−1, reading from top to bottom.

Case 5: 0 ≥ As+1 > As. In this case, we assign the q-weights of the cells in the
as+1-st part to be q|As|−1, q|As|−2, . . . , q|As+1|, reading from top to bottom.

Case 6: As+1 > 0 ≥ As. In this case, we assign the q-weights of the cells in the
as+1-st part to be q|As|−1, q|As|−2, . . . , q, 1, 1, q1, . . . qAs+1−1, reading from top to
bottom.

4. For each i, the cell in the r-th row of the i-th column of the upper augmented part,
reading from bottom to top, is equal to −1 times the weight of the cell in the r-th
row of i-th column of the lower augmented board, reading from top to bottom.
That is, in the upper augmented part of column i, the q-weight of a cell in the i-th
column is just the negative of the q-weight of its corresponding cell in the lower
augmented part.
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The key property of our weighting of the cells in BA
x , which is easily established by

induction, is that the sum of the q-weights of cells that lie in aj-th part of column i in
the lower augmented board for j ≤ s is [As]q and the sum of the q-weights of cells that
lie in aj-th part of column i in the upper augmented board for j ≤ s is [−As]q.

This given, we define the q-weight of a placement P ∈ NA
k (BA) which has rooks in

cells c1, . . . , ck by

µq,BA(P) =

k
∏

i=1

µq,BA
x
(ci). (4.1)

Similarly, we define the weight of placement Q ∈ NA
n (BA

x ) which has rooks in cells
c1, . . . , cn by

µq,BA
x
(Q) =

n
∏

i=1

µq,BA
x
(ci). (4.2)

Finally we define
rAk (BA, sgn, sgn, q) =

∑

P∈NA
k

(BA)

µq,BA(P). (4.3)

An example of the q-weights of the cells in BA
x is given on the left-hand side of

Figure 28 in the case where x = 4, B = (1, 2, 2, 4), A = (2, 1, 2, 1),

sgn(i) =

{

+1 if i = 1, 2, 4,
−1 if i = 3

and
sgn(i) =

{

+1 if i = 2,
−1 if i = 1, 3, 4.

If we consider the placement, P, pictured on the right-hand side of Figure 28 , then the
rooks are placed in cells with q-weights 1, q2, q,−1, reading from left to right. Thus

µq,BA
x
(P) = (1)(q2)(q)(−1) = −q3.

Our first q-analogue of Theorem 3.1 is the following.

Theorem 4.1. Suppose B = (b1, . . . , bn) and A = (a1, . . . , an) are two sequences of nonneg-
ative integers and sgn : {1, . . . , n} → {1,−1} and sgn : {1, . . . , n} → {1,−1} are two sign
functions. Then,

n
∏

i=1

([x]q + sgn(i)[bi]q) =

n
∑

k=0

rAn−k(B
A, sgn, sgn, q)

k
∏

s=1

([x]q + [As]q). (4.4)

Proof. We would like to compute the polynomial

G(q) :=
∑

P∈NA
n (BA

x )

µq,BA
x
(P) (4.5)
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Figure 28: The weighting of cells in placements in BA
x

in two different ways.
First, we consider placing the rooks starting with the leftmost column and working

to the right. Then the sum of the q-weights of the cells in the first column is [x]q +
[sgn(1)b1]q + [sgn(1)a1]q + [−sgn(1)a1]q = [x]q + [sgn(1)b1]q. When we go to place a rook
in the second column, we have two cases.

Case I: Suppose that the rook that was placed in the first column was placed below
the high bar. Then nothing was canceled in the second column so that we can place a
rook in any cell of the second column. It follows that our weighting ensures that the
sum of the q-weights of the cells in the second column is [x]q + [sgn(2)b2]q + [A2]q +
[−A2]q = [x]q + [sgn(2)b2]q.

Case II: If the rook placed in the first column was placed above the high bar, then
the cells corresponding to a2-nd part of the second column in both the upper and lower
augmented parts are canceled. It follows that our weighting ensures that the sum of
the q-weights of the cells in the second column is [x]q + [sgn(2)b2]q + [A1]q + [−A1]q =
[x]q + [sgn(2)b2]q.

In general, suppose we are placing a rook in the j-th column where we have placed
s rooks above the high bar and t rooks below the high bar in the first j − 1 columns.
Then in the j-th column we have, by Lemma 3.2, x + bj + 2At+1 choices as to where to
place the rook in that column. Again, it follows that our weighting ensures that the sum
of the q-weights of the cells in the j-th column is [x]q +[sgn(j)bj]q +[At+1]q +[−At+1]q =
[x]q + [sgn(j)bj]q.
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Thus, it follows that

G(q) =
n

∏

i=1

([x]q + [sgn(i)bi]q)

which gives the left-hand side of (4.4).
The second way of computing G(q) is to organize the placements by how many

rooks lie above the high bar. Suppose that we fix a placement P of n − k nonattacking
rooks in BA. Then we wish to compute

∑

Q∈NA
n (BA

x )

Q∩BA=P

µq,BA
x
(Q). (4.6)

Clearly each such Q in the sum arises from P by placing k rooks below the high bar in
the remaining columns. We will place the remaining rooks in these available columns
starting with the leftmost one and working right. By Lemma 3.3, the number of ways
we can do this will be (x+A1)(x+A2) · · · (x+Ak). However, it follows by the properties
of our assignment of weights to the cells that

∑

Q∈NA
n (BA

x )

Q∩BA=P

µq,BA
x
(Q) = µq,BA(P)([x]q + [A1]q)([x]q + [A2]q) · · · ([x]q + [Ak]q). (4.7)

Thus

G(q) =

n
∑

k=0

∑

P∈NA
n−k

(BA)

µq,BA(P)([x]q + [A1]q)([x]q + [A2]q) · · · ([x]q + [Ak]q)

=
n

∑

k=0

rAn−k(B
A, sgn, sgn, q)([x]q + [A1]q)([x]q + [A2]q) · · · ([x]q + [Ak]q)

which gives the right-hand side of (4.4).

4.1 Modified q-analogues of the general product formula
Note that in (4.4), we have taken the q-analogue of (x + a) to be [x]q + [a]q and the q-
analogue of (x − a) to be [x]q − [a]q if x and a are nonnegative integers. This does not
agree with the q-analogues of the models discussed in section 2. For example, in the
Garsia and Remmel model, the q-analogue of x − a is [x − a]q. Similarly, in Goldman
and Haglund’s j-creation model, the q-analogue of (x + a) is [x + a]q. It turns out
that we can easily modify (4.4) to produce q-analogues of our general product formula
formulas where we take the q-analogue of (x + a) to be [x + a]q and the q-analogue of
(x− a) to be [x− a]q by using some simple transformations of our formulas and q-rook
numbers. That is, consider the following simple identities which hold when x and a

are nonnegative integers with x ≥ a:

[x]q − [a]q = qa[x − a]q (4.8)

the electronic journal of combinatorics 15 (2008), #R85 40



and
[x]q + qx[a]q = [x + a]q. (4.9)

We shall first explore how these transformations force us to modify our q-rook numbers
to prove q-analogues of our general product formula in four special cases. Throughout
this section, we shall fix two sequences of nonnegative integers
B = (b1, . . . , bn) and A = (a1, . . . , an).

Case I: sgn(i) = sgn(i) = −1 for all i.
In this case, it is easy to see that Ai =

∑i

j=1 sgn(i)ai = −Ai where Ai = a1 + · · ·ai.
Thus (4.4) becomes

n
∏

i=1

([x]q − [bi]q) =
n

∑

k=0

rAn−k(B
A, sgn, sgn, q)

k
∏

s=1

([x]q − [As]q). (4.10)

Now if x ≥ max({bi, Ai : i = 1, . . . , n}), then (4.10) becomes

n
∏

i=1

qbi [x − bi]q =

n
∑

k=0

rAn−k(B
A, sgn, sgn, q)

k
∏

s=1

(qAs[x − As]q). (4.11)

If we now replace rAk (BA, sgn, sgn) with r̂Ak (BA, q) where

r̂Ak (BA, q) := q(A1+A2+···+An−k)−(b1+···+bn)rAk (BA, sgn, sgn, q),

we obtain the following q-analogue of Equation (3.3):
n

∏

i=1

[x − bi]q =

n
∑

k=0

r̂An−k(B
A, q)[x − A1]q[x − A2]q · · · [x − Ak]q. (4.12)

We note that in this case, our weighting of cells in BA
x is very simple.

1. For each i, the q-weights of the cells in the i-th column of the x-part of BA
x are

1, q, . . . , qx−1, reading from bottom to top.

2. For each i, the q-weights of the cells in the i-th column of the base part of BA
x are

−1,−q, . . . ,−qbi−1, reading from bottom to top.

3. For each i, the q-weights of the cells in the i-th column of the lower augmented
part of BA

x are −1,−q, . . . ,−qAi−1, reading from top to bottom.

4. For each i, the q-weights of the cells in the i-th column of the upper augmented
part of BA

x are 1, q, . . . , qAi−1, reading from bottom to top.
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Figure 29: The weighting of cells in placements in BA
x when sgn(i) = sgn(i) = −1.

An example of such a weighting of the cells of BA
x is pictured in Figure 28 in the case

where B = (0, 1, 3, 3) and A = (1, 2, 1, 2).

Case II: sgn(i) = +1, sgn(i) = −1 for all i

If sgn(i) = 1, then the left-hand side of (4.4) is
∏k

i=1([x]q + [bi]q). Since [x + bi]q =

[x]q + qx[bi]q, we can can replace by
∏k

i=1([x]q + [bi]q) by
∏k

i=1[x + bi]q on the left-hand
side of (4.4) by simply weighting each rook that appears in the base part of the board
BA with an extra factor of qx. In this case, for any P ∈ NA

k (BA), we set

µq,BA(P) = qbase(P)xµq,BA(P) (4.13)

where base(P) is the number of rooks of P which lie in the base part of the board BA.
Then if we define

rAn−k(B
A, q) =

∑

P∈NA
n−k

(BA)

qA1+···+Akµq,BA(P), (4.14)

one can show that
n

∏

i=1

[x + bi]q =

n
∑

k=0

rAk (BA, q)[x − A1]q[x − A2]q · · · [x − Ak]q (4.15)

Case III: sgn(i) = −1, sgn(i) = +1 for all i.
If we want to replace [x]q + [Ai]q by [x + Ai]q = [x]q + qx[Ai], then we should weight

each rook that lies in the lower augmented part of BA by an extra factor of qx. This
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means that when we consider placements in BA
x , then we must also weight each rook

that lies in the upper augmented part of BA
x with an extra factor of qx so that for any

given column the weights of possible placements in the lower and upper augmented
parts cancel each other as in the proof of (4.4). In this case, for any P ∈ N A

k (BA), we set

µq,BA(P) = qaug(P)xµq,BA(P) (4.16)

where aug(P) is the number of rooks of P which lie in the augmented part of the board
BA. Then if we define

˜̃rAn−k(B
A, q) = q−(b1+b2+···+bn)

∑

P∈NA
n−k

(BA)

µq,BA(P), (4.17)

one can show that
n

∏

i=1

[x − bi]q =

n
∑

k=0

˜̃rAn−k(B, q)[x + A1]q[x + A2]q · · · [x + Ak]q. (4.18)

Case IV: sgn(i) = sgn(i) = +1 for all i.
In this case, we need to weight each rook in base part of the board by an extra

factor of qx and weight each rook in both the lower and the upper augmented part of
the board BA

x by an extra factor of qx to obtain new q-rook numbers r
A
n−k(B

A, q). Then
it will be the case that

n
∏

i=1

([x + bi]q) =

n
∑

k=0

r
A
n−k(B

A, q)([x + A1]q)([x + A2]q) · · · ([x + Ak]q) (4.19)

We end this subsection by making a few remarks about how one can modify our
q-analogue of the general product formulas to obtain the following q-analogue of our
general product formula

n
∏

i=1

[x + sgn(i)bi]q =
∑

k=0

Rn−k(B
A, sgn, sgn, q)

k
∏

j=1

([x +
∑

s≤j

sgn(s)as]q). (4.20)

The basic idea to obtain the left-hand side is simple. That is, if sgn(i) = 1, then we
can obtain a factor of [x]q + qx[bi]q = [x + bi]q weighting each cell in the base part of
column i with an extra factor of qx. If sgn(i) = −1, then we weight each rook in the
base part of BA

x as we did in the proof of (4.4) so that the cells in the base part and the
x-part of BA

x in the i-th column will contribute a factor of [x]q − [bi]q = qbi[x − bi]q.
The basic idea to obtain the right-hand side is to ensure that we weight the cells

in the lower augmented part of the board so that the sum of the weights of the cells
that lie in the as-th part of the lower augmented board for s ≤ i is qx[

∑i

s=0 sgn(s)as]q if
∑i

s=0 sgn(s)as ≥ 0 and is [
∑i

s=0 sgn(s)as]q if
∑i

s=0 sgn(s)as < 0. We can accomplish this
by defining a new weight, Mq,sgn,sgn,BA

x
(c), for the cells c ∈ BA

x according the following
scheme.
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1. For each i, the weights, Mq,sgn,sgn,BA
x
(c), of the cells c in the i-th column of the

x-part of BA
x are 1, q, q2, . . . , qx−1, reading from bottom to top.

2. For each i, the weights, Mq,sgn,sgn,BA
x
(c), of the cells c in the i-th column of the base

part of BA
x are −1,−q, −q2, . . . ,−qbi−1, reading from bottom to top, if sgn(i) = −1.

3. For each i, the weights, Mq,sgn,sgn,BA
x
(c), of the cells c in the i-th column of the base

part of BA
x are qx,qx+1, qx+2, . . . , qx+bi−1, reading from bottom to top, if sgn(i) = 1.

4. For each i, we assign the weights, Mq,sgn,sgn,BA
x
(c), to the cells c in the i-th col-

umn of the lower augmented part as follows. First, if sgn(1) = −1, we as-
sign the weights −1,−q,−q2, . . . ,−qa1−1 to cells in a1-st part of column i in the
lower augmented board, reading from top to bottom. If sgn(1) = 1, then we
assign the weights qx, qx+1, qx+2, . . . , qx+a1−1 to cells in a1-st part of column i in
the lower augmented board, reading from top to bottom. Thus, the sum of the
weights of cells in a1-st part of column i in the lower augmented board is −[a1]q
if sgn(1) = −1 and qx[a1]q if sgn(1) = 1.
Next suppose that we have assigned the weights to cells in the aj-th part of
column i in the lower augmented part for j = 1, . . . , s so that the sum of the
weights of cells that lie in the aj-th part of column i in the lower augmented board
for j ≤ s is −[

∑s

r=0 sgn(r)ar]q if
∑s

r=0 sgn(r)ar < 0 and is qx[
∑s

r=0 sgn(r)ar]q if
∑s

r=0 sgn(r)ar ≥ 0. Then we define the weights to the cells in the as+1-st part of
column i in the lower augmented part according to the following cases.

Case 1: 0 ≤
∑s

r=0 sgn(r)ar ≤
∑s+1

r=0 sgn(r)ar.
In this case, the weights of the cells in the as+1-st part are
qxq

Ps
r=0 sgn(r)ar , qxq1+

Ps
r=0 sgn(r)ar , . . ., qxq(

Ps+1
r=0 sgn(r)ar)−1,

reading from top to bottom.
Case 2: 0 ≤

∑s+1
r=0 sgn(r)ar <

∑s

r=0 sgn(r)ar.
In this case, the weights of the cells in the as+1-st part are
−qxq(

Ps
r=0 sgn(r)ar)−1, −qxq(

Ps
r=0 sgn(r)ar)−2, . . ., −qxq(

Ps+1
r=0 sgn(r)ar),

reading from top to bottom.
Case 3: (

∑s+1
r=0 sgn(r)ar) < 0 ≤ (

∑s

r=0 sgn(r)ar).
In this case, the weights of the cells in the as+1-st part are
−qxqAs−1, −qxqAs−2, . . ., −qx,−q0, −q1, . . ., −q|

Ps+1
r=0 sgn(r)ar |−1,

reading from top to bottom.
Case 4: 0 ≥ (

∑s

r=0 sgn(r)ar) ≥ (
∑s+1

r=0 sgn(r)ar).
In this case, the weights of the cells in the as+1-st part are
−q|

Ps
r=0 sgn(r)ar |,−q|

Ps
r=0 sgn(r)ar |+1, . . ., −q|

Ps+1
r=0 sgn(r)ar |−1,

reading from top to bottom.
Case 5: 0 ≥ (

∑s+1
r=0 sgn(r)ar) > (

∑s

r=0 sgn(r)ar).
In this case, the weights of the cells in the as+1-st part are
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q|
Ps

r=0 sgn(r)ar |−1, q|
Ps

r=0 sgn(r)ar |−2, . . ., q|
Ps

r=0 sgn(r)ar |,
reading from top to bottom.

Case 6: (
∑s+1

r=0 sgn(r)ar) > 0 ≥ (
∑s

r=0 sgn(r)ar).
In this case, the weights of the cells in the as+1-st part are
q|

Ps
r=0 sgn(r)ar |−1, q|

Ps
r=0 sgn(r)ar |−2, . . ., q, 1, qx, qx+1, . . ., qxq(

Ps+1
r=0 sgn(r)ar)−1,

reading from top to bottom.

5. For each i, the cell in the r-th row of the i-th column of the upper augmented part,
reading from bottom to top, is equal to −1 times the weight of the cell in the r-th
row of i-th column of the lower augmented board, reading from top to bottom.
That is, in the upper augmented part of column i, the q-weight of a cell in the i-th
column is just the negative of the q-weight of its corresponding cell in the lower
augmented part.

An example of this kind of q-weighting can be seen in Figure 30 where x = 4,
B = (1, 2, 3, 4), A = (2, 1, 2, 1),

sgn(i) =

{

+1 if i = 1, 2, 4,
−1 if i = 3

and
sgn(i) =

{

+1 if i = 2, 3, 4,
−1 if i = 1.

Now suppose that P ∈ NA
k (BA) has rooks in cells c1, . . . , ck. Then we set

Mq,sgn,sgn,BA(P) =
k

∏

i=1

Mq,sgn,sgn,BA
x
(ci). (4.21)

Similarly, if Q ∈ NA
n (BA

x ) has rooks in cells c1, . . . , cn, we set

Mq,sgn,sgn,BA
x
(Q) =

n
∏

i=1

Mq,sgn,sgn,BA
x
(ci). (4.22)

Then we define

MRA
k (BA, sgn, sgn, q) =

∑

P∈NA
k

(BA)

Mq,sgn,sgn,BA(P). (4.23)

By computing the sum

H(q) =
∑

Q∈NA
n (BA

x )

Mq,sgn,sgn,BA
x
(Q) (4.24)
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Figure 30: The modified weighting of cells in placements in BA
x .

in two different ways as we did in the proof of (4.4), we can prove the following:




∏

i:sgn(i)=1

([x]q + qx[bi]q)









∏

i:sgn(i)=−1

([x]q − [bi]q)



 (4.25)

=

n
∑

k=0

MRA
n−k(B

A, sgn, sgn, q)

k
∏

i=1

φ(i)

where

φ(s) =

{

[x]q + qx[
∑s

r=0 sgn(r)ar]q if (
∑s

r=0 sgn(r)ar) ≥ 0, and
[x]q − [

∑s

r=0 sgn(r)ar]q if (
∑s

r=0 sgn(r)ar) < 0.
(4.26)

Thus, if we set

RA
n−k(B

A, sgn, sgn, q) = (4.27)




∏

i:sgn(i)=−1

q−bi













∏

r≤k
Ps

r=0 sgn(r)ar<0

q|
Ps

r=0 sgn(r)ar |









MRA
n−k(B

A, sgn, sgn, q),

then we will have the following theorem.
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Theorem 4.2. Suppose B = (b1, . . . , bn) and A = (a1, . . . , an) are two sequences of nonneg-
ative integers and sgn : {1, . . . , n} → {1,−1} and sgn : {1, . . . , n} → {1,−1} are two sign
functions. Then,

n
∏

i=1

[x + sgn(i)bi]q =

n
∑

k=0

RA
n−k(B

A, sgn, sgn, q)

k
∏

j=1

([x +
∑

s≤j

sgn(s)as]q). (4.28)

4.2 Comparisons with q-analogues of other rook models.
It is no longer the case that the q-rook numbers RA

n−k(B
A, q) that occur in (4.28) are the

same as the q-rook numbers that appear in the other rook models described in section
2.

For example, consider the j-attacking Remmel-Wachs model where we have a j-
attacking Ferrers board D = F (d1, . . . , dn) such that di ≥ j(i − 1) for all i. In this case,
we would be led to the following product formula in the Remmel-Wachs model.

n
∏

i=1

[x + di − j(i − 1)]q =

n
∑

k=0

r̃
(j)
n−k,D(1, q)[x]q↓k,j. (4.29)

We can obtain the same product formula from (4.15) by setting A = (0, j, . . . , j), B =
(d1, d2 − j, . . . , dn − j(n − 1)), sgn(i) = 1, and sgn(i) = −1 for all i. In that case, (4.15)
becomes

n
∏

i=1

[x + di − j(i − 1)]q =

n
∑

k=0

rAn−k(B
A, q)[x]q↓k,j. (4.30)

It is not necessarily the case that rAn−k(B
A, q) = r̃

(j)
n−k,D(1, q) as the following example

will show. Let j = 2 and D = F (1, 2). Then in our model, we must set B = (1, 0), A =
(0, 2), and sgn(i) = 1 and sgn(i) = −1 for all i. In Figure 31, we have pictured all the
rook placements in N (2)

k (D) for k = 1, 2 and their corresponding weights W̃
(2)
1,q,D(P) at

the top of the figure. Note that N (2)
2 (D) is empty since the rook in first column 2-attacks

both cells in the second column and hence r̃
(2)
2,D = 0. Similarly, at the bottom of the

figure, we have pictured all the weights of NA
k (BA) for k = 1, 2 and their corresponding

weights qA1+···+Akµq,BA(P). Again NA
2 (BA) is empty so that rA2 (BA, q) = 0. It follows

that r̃
(2)
0,D = q3, r̃

(2)
1,D = 1 + q + q2, and r̃

(2)
2,D = 0 so that (4.15) becomes

[x + 1]q[x]q = q3[x]q[x − 2]q + (1 + q + q2)[x]q. (4.31)

Similarly rA0 (BA, q) = q2, rA1 (BA, q) = 1+q+qx, and rA2 (BA, q) = 0 so that (4.30) becomes

[x + 1]q[x]q = q2[x]q[x − 2]q + (1 + q + qx)[x]q. (4.32)

Note that in this case, these two identities hold because there are two ways to write
[x + 1]q when x ∈ N, namely,

[x + 1]q = q3[x − 2]q + (1 + q + q2) = q2[x − 2]q + (1 + q + qx). (4.33)
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Figure 31: Rook placements in N (2)
k (F (1, 2)) and NA

k (BA) for k = 1, 2.

However, there are many cases where the q-rook numbers in the j-attacking rook
model of Remmel and Wachs do coincide with the q-rooks numbers in our model.
For example, consider the case of the Remmel-Wachs model where we start with a j-
attacking Ferrers board D = F (d1, . . . , dn) such that di ≤ j(i − 1) for all i. In particular,
this forces d1 = 0. In such a case, the q-analogue of the product formula, which is just
the p = 1 case of the (2.9), is

[x]q[x − (j − d2)]q · · · [x − ((n − 1)j − dn)]q =

n
∑

k=0

r̃
j
k,B(1, q)[x]q ↓n−k,j (4.34)

We can produce an equivalent formula from (4.11) if we set A = (0, j, . . . , j), B =
(0, j − d2, . . . , j(n − 1) − dn), and sgn(i) = sgn(i) = −1 for all i. In that case, (4.11)
becomes

[x]q[x − (j − d2)]q · · · [x − ((n − 1)j − dn)]q =

n
∑

k=0

r̂Ak (BA, q)[x]q ↓n−k,j (4.35)

If one thinks of [x− a] as qxq−a−1
q−1

, then one can think of (4.11) and (4.35) as formulas
involving the variable qx with coefficients which are in the field Q(q). That is, we can
think of (4.11) and (4.35) as identities in Q(q)[qx]. Thus, since {[xq]↓n,j}n≥0 is basis for
Q(q)[qx], it automatically follows that r̂Ak (BA, q) = r̃

j
k,B(1, q) for all k in this case. As in

the q = 1 case, we can give a completely combinatorial proof of this fact.
Recall the involution I that we used to show that the rook numbers in our model

and the j-attacking Remmel-Wachs model were equivalent in the q = 1 case. In the
current case, we are assuming that every non-empty column is negative. Thus our
q-weighting of cells in this case ensures that the q-weight of the cells in r-th row of a
negative column is −qr−1 while in its mirror image in the augmented part, the q-weight
of the cell in the r-th row is qr−1, reading from bottom to top. It follows that our sign
reversing involution I has the property that µq,BA(P) = −µq,BA(I(P)) if I(P) 6= P. Thus
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I shows that
r̂Ak (BA, sgn, sgn, q) =

∑

P∈NA
k

(BA)

I(P)=P

µq,BA(P). (4.36)

Moreover, if I(P) = P, then all the rooks P must lie in the augmented part of BA.
Since the weights of the cells in augmented part of BA are just powers of q with no
negative signs, it follows that in order to prove that r̂Ak (BA, q) = r̃

j
k,B(1, q), we need

only construct a weight preserving bijection from {P ∈ NA
k (BA) : I(P) = P} onto

N (j)(D). We can construct such a map by recursion in essentially the same way that
we constructed a map to show that rook numbers in our model and the rook numbers
in j-creation model are equivalent.

First suppose that Dn = F (d1, . . . , dn) is a j-attacking Ferrers board. Then we have
that

r̃
j

k,F (d1,...,dn)(1, q) = qdn−jkr̃
j

k,F (d1,...,dn−1)
(1, q) (4.37)

+ [dn − j(k − 1)]qr̃
j

k−1,F (d1,...,dn−1)(1, q).

This recursion is proved by partitioning the placements P ∈ N j
k (F (d1, . . . , dn)) based

on whether or not P has a rook in column n. That is, if P does not have a rook in column
n, then P can be regarded as a placement in N j

k (F (d1, . . . , dn−1)). Then our definition
of the weight function W̃1,q,F (d1,...,dn) ensures that

W̃1,q,F (d1,...,dn)(P) = qdn−jkW̃1,q,F (d1,...,dn−1)(P), (4.38)

since there are a total of dn − jk uncanceled cells in the last column and each to these
cells contributes a factor of q to W̃1,q,F (d1,...,dn)(P). Thus the sum of W̃1,q,F (d1,...,dn)(P)

over all placements P ∈ N j
k (F (d1, . . . , dn)) which do not have a rook in last column

is qdn−jkr̃
j

k,F (d1,...,dn−1)(1, q). Now if P does have a rook in the last column and Q is the
restriction of P to the first n − 1 columns of D, then Q can be regarded as a place-
ment in N j

k−1(F (d1, . . . , dn−1)). Moreover, if we want to extend Q to a placement P∗ ∈

N j
k (F (d1, . . . , dn)), then we can place the rook in any of the dn − j(k − 1) cells in

the last row since there are exactly dn − j(k − 1) cells in column n which are not
canceled by the rooks in Q. The rook in the last column will contribute a factor of
1, q, q2, . . . , qdn−j(k−1)−1 to weight W̃1,q,F (d1,...,dn)(P

∗) depending on whether it is placed
in highest row with an uncanceled cell, second highest with an uncanceled cell, etc..
It follows that the sum of W̃1,q,F (d1,...,dn)(P) over all placements P ∈ N j

k (F (d1, . . . , dn))

which do have a rook in last column is [dn − j(k − 1)]qr̃
j

k−1,F (d1,...,dn−1)(1, q).
Now assume that di ≤ j(i − 1) for all i ≤ n, B = (d1, j − d2, . . . , j(n − 1) − dn),

A = (0, j, . . . , j), and sgn(i) = sgn(i) = −1 for all i. The sequence of partial sums of the
ai’s is A1 = 0 and Ai = j(i − 1) for i ≥ 0. Now consider the sequences of length n − 1,
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Bn−1 and An−1, which result by removing the last elements of B and A respectively. Let

ˆ̂r
A

k (BA, q) =
∑

P∈NA
k

(BA)

I(P)=P

µq,BA(P) and

ˆ̂r
An−1

k (BAn−1

n−1 , q) =
∑

P∈N
An−1
k

(B
An−1
n−1 )

I(P)=P

µ
q,B

An−1
n−1

(P).

Then we claim that

ˆ̂r
A

k (BA, q) = qdn−jk ˆ̂r
An−1

k (BAn−1

n−1 , q) + [dn − j(k − 1)]q ˆ̂r
An−1

k−1 (BAn−1

n−1 , q). (4.39)

That is, we can partition the placements P ∈ NA
k (BA) into two sets depending on

whether there is a rook in the last column or not. If P does not have a rook in the last
column, then P can be regarded as a placement in NAn−1

k (BAn−1

n−1 ) such that I(P) = P.
Then our definitions ensure that

qA1+···+An−k−
Pn

i=1(j(i−1)−di)µq,BA(P)

= qAn−k−(j(n−1)−dn)
(

qA1+···+An−1−k−
Pn−1

i=1 (j(i−1)−di)µ
q,B

An−1
n−1

(P)
)

= qj(n−k−1)−(j(n−1)−dn)
(

qA1+···+An−1−k−
Pn−1

i=1 (j(i−1)−di)µ
q,B

An−1
n−1

(P)
)

= qdn−kj
(

qA1+···+An−1−k−
Pn−1

i=1 (j(i−1)−di)µ
q,B

An−1
n−1

(P)
)

.

Hence it follows that the sum of the qA1+···+An−k−
Pn

i=1(j(i−1)−di)µq,BA(P) over all place-
ment P ∈ NA

k (BA) which have no rook in the last column and I(P) = P is equal to
qdn−kj ˆ̂r

An−1

k (BAn−1

n−1 , q). Now if P does have a rook in its last column, then let Q be the
restriction of P to first n − 1 columns. Then Q can be regarded as a placement in
NAn−1

k−1 (BAn−1

n−1 ) for which I(Q) = Q. We can extend Q to placement P∗ ∈ NA
k (BA) such

that I(P∗) = P∗ in dn − j(k − 1) ways. That is, there are a total of j(n − 1) cells in
the augmented part of the last column. Of those cells in the augmented part, the first
j(n − 1) − dn are in the mirror image of the base part of the n-th column so that we
have a total of j(n − 1) − (j(n − 1) − dn) = dn cells at the top of the column where
we can place a rook. Then each rook in Q will cause the top j(k − 1) cells in the aug-
mented part of column n to be canceled. Thus we can only have dn − j(k − 1) cells the
augmented part of column n in which to place a rook to obtain such a P∗. Those cells
are in rows (j(n − 1) − dn) + 1, . . . , j(n − 1) − dn + (dn − j(k − 1)) which have weights
q(j(n−1)−dn), . . . , qj(n−1)−j(k−1)−1 respectively. Now whenever we place rook in the cell
with weight q(j(n−1)−dn)+i for i = 0, . . . , dn − j(k − 1) − 1 to obtain a rook placement P∗,
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then we have that

qA1+···+An−k−
Pn

i=1(j(i−1)−di)µq,BA(P∗)

= q(j(n−1)−dn)+iq−(j(n−1)−dn)

× qA1+···+An−1−(k−1)−
Pn−1

i=1 (j(i−1)−di)µ
q,B

An−1
n−1

(Q)

= qi
(

qA1+···+An−1−(k−1)−
Pn−1

i=1 (j(i−1)−di)µ
q,B

An−1
n−1

(Q)
)

.

It then follows that the sum of the qA1+···+An−k−
Pn

i=1(j(i−1)−di)µq,BA(P) over all placements
P ∈ NA

k (BA) which have a rook in the last column and I(P) = P is

(1 + q + · · · qdn−j(k−1)−1)ˆ̂r
An−1

k−1 (BAn−1

n−1 , q)

= [dn − j(k − 1)]q ˆ̂r
An−1

k−1 (, q).

Our proofs of the recursions (4.37) and (4.39) show that we can recursively construct
a weight preserving bijection Θ from N j

k (D) onto {P ∈ NA
k (BA) : I(P) = P}. That is,

given a placement Q ∈ N j
k (D), let Q = Qn, . . . , Q1 be the sequence of placements that

results by letting Qi be the restriction of Q to the first i columns. Then we can construct
a sequence P1, . . . , Pn such that Pi ∈ NAn−1

ki
(BAn−1

n−1 ) where ki is the number of rooks in
Qi and I(Pi) = Pi as follows.

Case 1: If Q1 is the empty placement, then P1 is the empty placement.

Case 2: If Q1 has a rook in row i so that its weight is qd1−1−i, then P1 has rook in row
d1 − i so that its weight is qd1−1−i.

Assuming that we have constructed Pi so that

W̃
j

1,q,F (d1,...,di)
(Qi) = qA1+···+Ai−ki

−
Pi

s=0 j(s−1)−dsµq,(d1,j−d2,...,,j(i−1)−di)(0,j,...,j)(Pi),

we define Pi+1 as follows.

Case 3: If Qi+1 has no rook in the last column, then Pi+1 is the placement that results
by using Pi in the first i-columns and leaving column i + 1 empty.

Case 4: If Qi+1 has a rook in the s-th row from the top which contains a cell which
is not canceled so that W̃

j

1,q,F (d1,...,di,di+1)(Qi+1) = qs−1, then Pi+1 is the result of
starting with Pi and placing rook in row (j(i− 1)− di) + s of the augmented part
of column i so that weight of Pi+1 is just qs−1 times the corresponding weight of
Pi.

Then we let Θ(Q) = Pn.
For example, in Figure 32, we have pictured Q = Q5, . . . , Q1 for a Q ∈ N (2)

3 (D)
where D is the 2-attacking board F (0, 1, 2, 3, 6) at the top of the figure. In this case, B =
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X

X

X *

*

X
X

X

XX

*

X

X

X
*
*

X

Figure 32: An example of the bijection Θ between a placement of 3 rooks in a 2-
attacking Ferrers board B = F (0, 1, 2, 3, 6) and a placement in the corresponding board
BA.

(0, 1, 2, 3, 2) and A = (0, 2, 2, 2, 2). Since we are assuming that sgn(i) = sgn(i) = −1 for
all i, all columns are negative so that we have shaded the cells in the upper augmented
board of BA which are in the mirror image of its column. Then we have pictured the
corresponding sequence of rook placements P1, . . . , P5 at the bottom. In each case, we
have used a • to indicate the cells canceled by the rook in column 3 and an ∗ to indicate
the cells canceled by the rook in column 4.

5 A (P, Q)-Analogue of the General Product Formula
In this section, we will define an appropriate (p, q)-analogue rAn−k(B

A, sgn, sgn, p, q) of
the rook numbers rAn−k(B

A, sgn, sgn) so that we can prove the following theorem.

Theorem 5.1. Suppose B = (b1, . . . , bn) and A = (a1, . . . , an) are two sequences of nonneg-
ative integers and sgn : {1, . . . , n} → {1,−1} and sgn : {1, . . . , n} → {1,−1} are two sign
functions. Then,

n
∏

i=1

([x]p,q + sgn(i)[bi]p,q) =

n
∑

k=0

rAn−k(B
A, sgn, sgn, p, q)

k
∏

s=1

([x]p,q + [As]p,q). (5.1)

If n is positive integer, then [n]p,q = pn−1 + qpn−2 + · · · pqn−2 + qn−1 and [−n]p,q =
−[n]p,q. We will refer to equation (4.4) as the (p, q)-general product formula.

The proof of this theorem is essentially the same as the proof of Theorem 4.1 with
the exception that we have to use a different weighting function on the cells. However,
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this case is a bit harder because we cannot just have the (p, q)-weight of the cell be of the
form ±paqb in the lower augmented part of the board. That is, the key property of our
weighting of cells in the proof of Theorem (4.1) is that the sum of the weights of the cells
that lie in the aj-th part of column i in the lower augmented part of the board for j ≤ s

was [As]q and the sum of weights of the cells that lie in the aj-th part of column i in the
upper augmented part of the board for j ≤ s was −[As]q. We would like to define the
(p, q)-weights of the cells so that the sum of the (p, q)-weights of the cells that lie in the
aj-th part of column i in the lower augmented part for j ≤ s is [As]p,q and the sum of the
(p, q)-weights of the cells that lie in the aj-th part of column i in the upper augmented
part for j ≤ s is −[As]p,q. Now suppose that sgn(1) = sgn(2) = 1 and a1 = a2 = 3.
Then the most natural thing to do would be to assign the (p, q)-weights to the cells in
the a1-st part of the lower augmented board to be p2, pq, q2 reading from top to bottom.
However, at that point, we want the sum of the (p, q)-weights of the cells that lie in the
a1-st part plus a2-nd part of column i to be [6]p,q = p5 + p4q + p3q2 + p2q3 + pq4 + p5.
But there is no way to weight the cells of the a2-nd part with weights of the form
paqb to transform [3]p,q to [6]p,q. Thus we have to allow the (p, q)-weights of cells to be
polynomials in p and q if we are going to be able to make such a transformation. Our
idea is quite simple. Namely, we shall just weight the lowest cell of the a2-nd part with
[6]p,q − [3]p,q and the other cells with 0. Extending this idea will allow us to define the
(p, q)-weights of the cells so that the sum of the (p, q)-weights of the cells that lie in
the aj-th part of column i in the lower augmented board for j ≤ s is [As]p,q and the
sum of the (p, q)-weights of the cells that lie in the aj-th part of column i in the upper
augmented board for j ≤ s is −[As]p,q.

Fix the two sequences B = (b1, . . . , bn) and A = (a1, . . . , an) and the two sign func-
tions sgn : {1, . . . , n} → {1,−1} and sgn : {1, . . . , n} → {1,−1}. The first step in
proving equation (5.1) is to define the (p, q)-weight, µp,q,BA(P), of each placement P ∈
NA

k (BA) and the (p, q)-weight, µp,q,BA
x
(Q), of each placement Q ∈ NA

n (BA
x ). To do this,

we shall define the (p, q)-weight, µp,q,BA
x
(c), of each cell c in BA

x . Then if P ∈ NA
k (BA)

has rooks in cells c1, . . . , ck, we set

µp,q,BA(P) =
k

∏

i=1

µp,q,BA
x
(ci). (5.2)

Similarly, if Q ∈ NA
n (BA

x ) has rooks in cells c1, . . . , cn, then

µp,q,BA
x
(Q) =

n
∏

i=1

µp,q,BA
x
(ci). (5.3)

Then we define
rAk (BA, sgn, sgn, p, q) =

∑

P∈NA
k

(BA)

µp,q,BA(P). (5.4)

To define µp,q,BA
x
(c), we proceed as follows.
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1. For each i, the (p, q)-weights, µp,q,BA
x
(c), of the cells c in the i-th column of the

x-part of BA
x are px−1, px−2q, px−3q2, . . . , pqx−2, qx−1, reading from bottom to top.

2. For each i, the (p, q)-weights, µp,q,BA
x
(c), of the cells c in the i-th column of the base

part of BA
x are sgn(i)pbi−1, sgn(i)pbi−2q, sqn(i)pbi−3q2, . . . , sgn(i)pqbi−2, sgn(i)qbi−1,

reading from bottom to top.

3. For each i, we assign (p, q)-weights, µp,q,BA
x
(c), to the cells c in the i-th column of

the lower augmented part as follows. First, we assign the (p, q)-weights
sgn(i)pa1−1, sgn(i)pa1−2q, sgn(i)pa1−3q2, . . ., sgn(i)pqa1−2, sgn(i)qa1−1 to the cells
in the a1-st part of column i in the lower augmented part of the board reading
from top to bottom. Thus the sum of the (p, q)-weights of cells in the a1-st part
of column i in the lower augmented part is [sgn(i)a1]p,q. Next suppose that we
have assigned the (p, q)-weights to cells in the aj-th part of column i in the lower
augmented part for j = 1, . . . , s so that the sum of the (p, q)-weights of the cells
that lie in the aj-th part of column i in the lower augmented part for j ≤ s is
[As]p,q. Then we define the (p, q)-weights to the cells in the as+1-st part of column
i in the lower augmented part according to the following cases.

Case 1: 0 ≤ As ≤ As+1. In this case, we assign the (p, q)-weights of cells in the
as+1-st part to be [As+1]p,q − [As]p,q, 0, . . . , 0, reading from top to bottom.

Case 2: 0 ≤ As+1 < As. In this case, we assign the (p, q)-weights of cells in the
as+1-st part to be [As+1]p,q − [As]p,q, 0, . . . , 0, reading from top to bottom.

Case 3: As+1 < 0 ≤ As. In this case, we assign the (p, q)-weights of the cells in the
as+1-st part to be −[As]p,q, 0, . . . , 0,−p|As+1|−1,−qp|As+1|−2, . . . ,−pq|As+1|−2,

− q|As+1|−1, reading from top to bottom.
Case 4: 0 ≥ As ≥ As+1. In this case, we assign the (p, q)-weights of the cells in

the as+1-st part to be [As+1]p,q − [As]p,q, 0, . . . , 0, reading from top to bottom.
Case 5: 0 ≥ As+1 > As. In this case, we assign the (p, q)-weights of the cells in the

as+1-st part to be [As+1]p,q − [As]p,q, 0, . . . , 0, reading from top to bottom.
Case 6: As+1 > 0 ≥ As. In this case, we assign the (p, q)-weights of the cells in the

as+1-st part to be −[As]p,q, 0, . . . , 0, p
|As+1|−1, qp|As+1|−2, . . . , pq|As+1|−2, q|As+1|−1,

reading from top to bottom.

4. For each i, the cell in the r-th row of the i-th column of the upper augmented part
of the board, reading from bottom to top, is equal to −1 times the weight of the
cell in the r-th row of the i-th column of the lower augmented part of the board,
reading from top to bottom.

Then we can prove Theorem 5.1 by computing the sum

L(q) =
∑

Q∈NA
n (BA

x )

µp,q,BA
x
(Q) (5.5)
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in two different ways as before.
We can also obtain variations of the (p, q)-analogue Theorem 5.1 where we replace

[x]p,q − [a]p,q by [x − a]p,q and replace [x]p,q + [a]p,q by [x + a]p,q much as we did in the
q-analogue case by using the transformations

[x]p,q − px−a[a]p,q = qa[x − a]p,q (5.6)

and
pa[x]p,q + qx[a]p,q = qa[x + a]p,q (5.7)

where x ≥ a ≥ 0.
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