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Abstract

We study extremal problems for decomposing a connected n-vertex graph G
into trees or into caterpillars. The least size of such a decomposition is the tree

thickness θT(G) or caterpillar thickness θC(G). If G has girth g with g ≥ 5, then
θT(G) ≤ bn/gc + 1. We conjecture that the bound holds also for g = 4 and
prove it when G contains no subdivision of K2,3 with girth 4. For θC, we prove
that θC(G) ≤ d(n − 2)/4e when G has girth at least 6 and is not a 6-cycle. For
triangle-free graphs, we conjecture that θC(G) ≤ d3n/8e and prove it for outerplanar
graphs. For 2-connected graphs with girth g, we conjecture that θC(G) ≤ bn/gc
when n ≥ max{6, g2/2} and prove it for outerplanar graphs. All the bounds are
sharp (sharpness in the d3n/8e bound is shown only for n ≡ 5 mod 8).

1 Introduction

A decomposition of a graph G is a set of pairwise edge-disjoint subgraphs with union G.
We study decompositions of connected n-vertex graphs into the fewest trees or the fewest
caterpillars, where a caterpillar is a tree of a restricted type, having a single path (the
spine) that contains at least one endpoint of every edge.

The complete graph Kn decomposes into dn/2e paths and no fewer. Gallai famously
conjectured that every connected n-vertex graph decomposes into dn/2e paths. Chung [1]
proved that dn/2e trees suffice. In fact, her proof decomposes every connected n-vertex
graph into dn/2e caterpillars of diameter at most 4. The connectedness condition is needed
because n/3 disjoint triangles do not decompose into fewer than 2n/3 trees. We consider
only connected graphs, and we use n for the number of vertices.

Given a class F of graphs, the F-decomposition number or F-thickness of a graph G,
written θF(G), is the minimum size of a decomposition of G into subgraphs that lie in F.
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We seek the maximum of θF over graphs in some class G. We can refine such problems
by seeking tighter bounds over classes smaller than G or by restricting the family F. Let
θT and θC denote the tree-thickness and caterpillar-thickness, respectively.

For connected graphs, the maximum tree-thickness dn/2e is attained by Kn. Forbid-
ding triangles excludes this example. The girth of a graph is the length of a shortest
cycle. For g ≥ 5, we prove in Theorem 5 that θT(G) ≤ bn/gc + 1 when G is connected
and has girth g; this is sharp for all n (Example 1). The conclusion also holds when
g = 4 among graphs containing no subdivision of K2,3 with girth 4. We conjecture that
θT(G) ≤ bn/gc + 1 in fact holds for all connected graphs with girth 4.

We next study caterpillar-thickness. Always θT(G) ≤ θC(G) ≤ dn/2e (by Chung’s
proof), with equality when n ≡ 4 mod 6 for special graphs with triangles (Example 1).
Forbidding triangles reduces the upper bound. We prove that girth at least 6 forces
θC(G) ≤ d(n − 2)/4e when G is not a 6-cycle (Theorem 6), with equality for a special
tree (Example 3).

Since θC(G) = d(n − 2)/4e holds for special trees, the upper bound cannot be further
reduced for general n-vertex graphs by enlarging the girth beyond 6. It remains to deter-
mine the best bounds for girth 4 and girth 5 and to determine the best bounds for larger
girth when trees are forbidden by restricting to 2-connected graphs.

For connected graphs with girth 4, we conjecture that θC(G) ≤ d3n/8e for all n, and
that for n > 8 the bound can be improved by 1 when n 6≡ 5 mod 8. The graphs in
Example 2 demonstrate sharpness. In Theorem 8, we prove that θC(G) ≤ d3n/8e for
triangle-free outerplanar graphs. A similar construction and conjecture exists for girth 5,
with d3n/10e as the uniform upper bound. The proof of this for outerplanar graphs is
very similar to that of Theorem 8, and we omit it (see [2]).

For 2-connected graphs with girth g, we conjecture that θC(G) ≤ bn/gc if n ≥ g2/2;
the graphs in Example 4 show that this is sharp. In Theorem 7, we prove the bound for
outerplanar graphs. In particular, if G is a 2-connected n-vertex outerplanar graph with

girth g, then the maximum possible value of θC(G) is bn/gc for n ≥ g2/2, is
⌊

n−g
g−2

⌋

for

3g − 4 ≤ n ≤ g2/2, and is 2 for g ≤ n ≤ 3g − 4.

2 Lower Bound Constructions

In this section we present examples showing that the bounds in our later theorems are
sharp. A cactus is a connected graph in which every edge appears in at most one cycle;
equivalently, every block is an edge or a cycle. Every cactus is outerplanar. The extremal
graphs presented in Example 1 are cacti and are not 2-connected.

Example 1 Cacti with large tree-thickness. For k ≥ 1, let Hk,g denote the cactus with
kg + 1 vertices formed from k disjoint g-cycles by adding one vertex x having one neigh-
bor in each cycle (see Figure 1). The cut-edges in Hk,g imply that only one tree in a
decomposition can extend out from each cycle. However, two trees must be used within
each cycle. Hence at least k trees are confined to the cycles, and at least one more tree
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must be used. There is such a decomposition, so θT(Hk,g) = k +1 = (n − 1)/g+1. When
n 6≡ 1 mod g, we obtain a graph with θT(G) = b(n − 1)/gc+ 1 by adding pendant edges
at x in Hk,g, where k = b(n − 1)/gc.

Figure 1: The graph Hk,g

When g | n there is a better construction. Starting with n/g disjoint g-cycles Q1, . . . , Qn/g,
add edges to make one vertex of Q1 adjacent to one vertex in each other Qi; this is again
a cactus. Again every tree decomposition has a member entirely contained in each of
Q2, . . . , Qn/g, but the graph that remains when the edges of these trees are deleted still
has a cycle. Hence the tree-thickness is n/g+1. This yields the uniform formula bn/gc+1,
which is also optimal for n < g among graphs with girth at least g.

Example 2 Cacti with large caterpillar-thickness. The decomposition of Hk,g in Exam-
ple 1 uses trees that are not caterpillars (when k ≥ 3). A caterpillar in Hk,g has edges in
at most two of the cycles, because a caterpillar cannot have three paths of length 2 with
a common endpoint. Since only k paths can start along and depart from a cycle, the best
we can do is save bk/2c by combining into pairs the paths that leave the cycles. Thus
θC(Hk,g) = 2k − bk/2c = d3k/2e. (Note that θC(Hk,3) = n/2 when n ≡ 4 mod 6. For
such n, the maximum value of caterpillar-thickness over n-vertex graphs is achieved not
only by Kn, but also by a cactus.)

To improve the construction for other congruence classes of n, form H ′
k,g by appending

a path of two edges to Hk,g at x. There are 2k + 1 paths needed to decompose the k + 1
components of H ′

k,g − x, only one can extend from each component, and they can at best
combine in pairs, so θC(H ′

k,g) = 2k + 1 − b(k + 1)/2c = d(3k + 1)/2e.
Let n = 2jg + r, where j and r are integers with j ≥ 1 and 1 ≤ r ≤ 2g. When

r ∈ {1, g + 1}, let G = H2j,g. When r = 3, let G = H ′
2j,g. For all other n, append a leaf

to the construction for n− 1, without increasing θC. With this construction, θC(G) is 3j
when 1 ≤ r ≤ 2, is 3j + 1 when 3 ≤ r ≤ g, and is 3j + 2 when g + 1 ≤ r ≤ 2g.

When g = 4 and n > 8, these cases combine to yield θC(G) = d3n/8e when n ≡ 5
mod 8 and θC(G) = d3n/8e − 1 otherwise.
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Example 3 When g > 6, a special tree has caterpillar-thickness greater than Hk,g. Form
Tn by subdividing b(n − 1)/2c edges in the star K1,d(n−1)/2e (each subdivided once); this
yields n vertices. At most two of the edges not containing the center can lie in a single
caterpillar, so db(n − 1)/2c /2e caterpillars are needed, and this many suffice. For n > 2,
we obtain θC(Tn) = d(n − 2)/4e. For g = 6, this construction improves the lower bound
from Example 2 in some congruence classes; for g > 6, it improves it for all n.

The family Hk,g can be excluded by restricting to 2-connected graphs, but the tree-
thickness can still be almost as large as for Hk,g. Again the graphs are outerplanar.

Figure 2: The graph Jk,g

Example 4 For k ≥ g/2, let Jk,g denote the graph formed from the n-vertex cycle Cn,
where n = kg and the vertices are v1, . . . , vn in order, by adding chords of the form
vgi−g+1vgi for 1 ≤ i ≤ k (see Figure 2). Note that Jk,g has girth g.

Each chord forms a cycle, which requires two trees in the decomposition. Only one
of those two trees can continue on to the next higher cycle in the direction of increasing
indices, so a new tree must start within that cycle. In traversing the full outer cycle, at
least k trees must be started. Hence θT(Jk,g) ≥ k = n/g, and equality holds using n/g
paths.

When n is not a multiple of g, we can start with a cycle of length n and insert bn/gc
chords in this way while maintaining girth g (if n ≥ g dg/2e), so for n ≥ g2/2 we obtain
examples with tree-thickness (and caterpillar-thickness and path-thickness) bn/gc.

When g ≤ n < g2/2 (or k < g/2), the cycle on the “inside” is too short. Instead of
inserting all k chords, insert only the first m. The cycle through these chords and the re-
maining higher-indexed vertices has length 2m+(n−mg). We require 2m+(n−mg) ≥ g

and set m =
⌊

n−g
g−2

⌋

. As above, decomposing G needs m trees, so θT(G) = θC(G) =
⌊

n−g
g−2

⌋

.

When g ≤ n < 3n − 4, the existence of one chord yields θT(G) = θC(G) = 2.
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3 Thickness Bounds for General Graphs

We write G[A] for the subgraph of G induced by a vertex set A. The tree-thickness
arguments for connected graphs with girth at least 5 and for connected graphs with girth
at least 4 that avoid subdivisions of K2,3 are essentially the same, so we combine them.

Theorem 5 Let G be an n-vertex connected graph. If girth (G) ≥ g ≥ 5, or if g = 4 and
G contains no subdivision of K2,3 with girth 4, then θT(G) ≤ bn/gc+1, and this is sharp.

Proof. Sharpness was shown in Example 1. For the upper bound, we use induction on
n. If n < g, then G has no cycle and is a tree itself. If n = g, then G is a cycle and
decomposes into two trees. For the induction step, consider n > g. We may assume that
G is not a tree, since then θT(G) = 1.

Let P be a longest path in G, with vertices v1, . . . , vm in order. Since girth (G) ≥ g,
we have m ≥ g. Let R = {v1, . . . , vg}. No two vertices in R have more than one common
neighbor outside R, because this would create a subdivision of K2,3 containing a 4-cycle
(vertices in R with a common neighbor cannot be consecutive on R, since girth (G) ≥ 4).
The same observation holds for R − {vg}.

Let T be a spanning tree of G that contains P . For 1 ≤ i ≤ m, let Si be the set of
vertices outside P whose path to V (P ) in T arrives at vi. Let S = S1 ∪ · · ·∪Sg; note that
S1 = ∅. Among all the spanning trees that contain P , let T be one that minimizes |S|.
With this choice of T , no vertex in S has a neighbor outside S ∪ R.

Case 1: S 6= ∅.
Let A = S ∪R−{vg}. Note that G−A is connected. Also |V (G−A)| ≤ n− g, since

S 6= ∅. By the induction hypothesis, θT(G − A) ≤ b(n − g)/gc + 1 = bn/gc. Call the
trees in such a decomposition the “old” trees. We will incorporate the edges incident to
A by adding some edges to old trees and creating one additional tree for the rest.

The key observation is that G[A] is a forest. If there is a cycle C among the vertices
of A, then it has at least g vertices. Combining a path around C with a shortest path
from V (C) to vg in G[A ∪ {vg}] contradicts the choice of P as a longest path in G.

Let W1, . . . , Wt be the components of G[A]. One component contains all of v1, . . . , vg−1

and S1, . . . , Sg−1, and the others form G[Sg]. By the choice of T , vg is the only vertex
outside A having neighbors in S, and vg has a neighbor in each Wi. Use one such edge
to each Wi along with G[A] to form a new tree T ′ for the decomposition. Add the other
edges from vg to S to the tree containing vgvg+1.

We have now assigned all edges of G to trees in the decomposition except those from
v1, . . . , vg−1 to neighbors outside A. We can add these edges to T ′ unless two of them reach
a common vertex outside A. Since G has girth at least g, the only vertices in v1, . . . , vg−1

that can have such a common neighbor are v1 and vg−1. We have observed that they can
have only one such common neighbor; call it x. If x = vg, then we have already put one
of {v1x, vg−1x} into T ′ and the other into an old tree containing an edge incident to x. If
x 6= vg, then we can do the same, since x has no other neighbor in the component of T ′

containing vg−1, and v1 has no other neighbor in the old tree.
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Case 2: S = ∅.
Let A = {v1, . . . , vg}. Note that G − A is connected, since S = ∅; also, it has n − g

vertices. By the induction hypothesis, θF(G − A) ≤ bn/gc. Call the trees in such a
decomposition “old” trees. An additional tree T ′ will contain all other edges incident to
the path G[A], with a few possible exceptions.

Since girth (G) ≥ g, the only pairs in A that can have common neighbors (and only
one for each pair, as noted earlier) are {v1, vg}, {v1, vg−1}, {v2, vg}. Let x, y, z denote their
possible common neighbors, respectively.

If the edge v1vg exists, then actually y = vg and z = v1, and x does not exist. In this
case we add vg−1vg and vgvg+1 to an old tree and put all other edges incident to A in T ′.

If v1vg 6∈ E(G), then we can add all of {xv1, yvg−1, zv2} that exist into old trees and
put all other edges incident to A into T ′.

As mentioned in the introduction, we conjecture that θT(G) ≤ bn/4c+ 1 whenever G
has girth 4. The method in Chung’s proof [1] can be strengthened to improve the upper
bound from dn/2e to dn/3e when G does not have a subgraph isomorphic to the graph
obtained from K4,3 by deleting one edge. Since this argument is rather technical and
does not enlarge the family where the conjecture is known to hold, we omit it; the details
appear in [2].

When the girth is at least 6, an argument similar to that of Theorem 5 yields a tight
upper bound for caterpillar thickness in general graphs. The bound is weaker than in
Theorem 5 due to the restriction to caterpillars in the decomposition.

Theorem 6 If G is an n-vertex graph with girth at least 6, then θC(G) ≤ d(n − 2)/4e
(unless G = C6), and this is sharp.

Proof. We observed in Example 3 that the bound is achieved by the tree obtained by
subdividing b(n − 1)/2c edges of a star that has d(n − 1)/2e edges.

For the upper bound, we use induction on n. Every graph with at most six vertices
having girth at least 6 is a caterpillar except the 6-cycle. Also, every connected edge-
disjoint union of a 6-cycle and a caterpillar decomposes into two caterpillars. Hence it
suffices to show for n ≥ 7 that V (G) contains a set A of size at least 4 such that G − A
is connected and the set of edges incident to A forms a caterpillar.

Let P be a longest path in G, with vertices v1, . . . , vm in order. The girth requirement
yields m ≥ 6. Let R = {v1, v2, v3}. No vertex has two neighbors in R.

Let T be a spanning tree of G that contains P . For 1 ≤ i ≤ m, let Si be the set
of vertices outside P whose path to V (P ) in T arrives at vi (note that S1 = ∅). Let
S = S2 ∪ S3 ∪ S4. Among all the spanning trees that contain P , consider those that
minimize |S|, and among these choose T to maximize |S2 ∪ S3|.

With this choice of T , no vertex in S has a neighbor outside S∪R∪{v4}. Furthermore,
every component of G[S3] is a star whose center is adjacent to v3, and S2 is an independent
set. If |S2∪S3| ≥ 2, then let A consist of v1, v2, S2, and the vertices in a largest component
of G[S3], or the vertices in two components of G[S3] if S3 is independent and S2 = ∅.
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Except for the edges from S3 to v3, only v1 and v2 have neighbors outside A, and no two
vertices of A have common neighbors. Thus A has the desired properties.

If |S2 ∪ S3| = 1, then let A = R ∪ S2 ∪ S3. Again only vertices on the path formed by
R have neighbors outside A, so A has the desired properties.

If S2 ∪ S3 = ∅ and S4 6= ∅, consider a component H of G[S4]; H is a tree whose
vertices have distance at most 3 from v4. If H contains a vertex with distance 3 from
v4, then H is a path, by the choice of T . Otherwise, H is a star with center adjacent to
v4. In either case, the choices of P and T prevent further edges from V (H) to R. Let
A = V (H) ∪ R. Now A ∪ {v4} induces a caterpillar, and the only edges leaving A are
incident to R and reach distinct neighbors. Thus A has the desired properties.

4 Caterpillar Thickness of Outerplanar Graphs

In studying caterpillar thickness for graphs with girth 4 and for 2-connected graphs, our
proofs require outerplanarity, but we conjecture that the same bounds hold without that
restriction. We first solve the extremal problem for 2-connected outerplanar graphs.

Theorem 7 If G is a 2-connected n-vertex outplanar graph with girth at least g, then
θC(G) is bounded as given below, and all these bounds are sharp.

θC(G) ≤















2 if g ≤ n ≤ 3g − 4,
⌊

n−g
g−2

⌋

if 3g − 4 ≤ n ≤ g2/2,

bn/gc if n ≥ g2/2 (except n = 5 when g = 3).

Proof. In Example 4, we presented 2-connected outerplanar graphs with girth g having
tree-thickness and caterpillar-thickness as specified above. Note that g2/2 < 3g − 4 when
g = 3; the middle “range” is empty.

For the upper bound, let C be the outer boundary in an outerplanar embedding of
G. Since G is 2-connected, C is a cycle with vertices v1, . . . , vn in order, and G has no
other vertices. A chord vivj of C is minimal if one of the vi, vj-paths on C has no other
endpoint of a chord as an internal vertex. Let m be the number of minimal chords.

If m ≤ 1, then G is a cycle with at most one chord, and two caterpillars (paths) suffice.
Hence we consider m ≥ 2. Because G has girth at least g, the computation in Example 4

yields m ≤
⌊

n−g
g−2

⌋

. Therefore, to complete the proof when n ≤ g2/2 it suffices to show

that θC(G) ≤ m always. For n > g2/2, we will prove (inductively) that θC(G) ≤ n/g.
Bound 1: If m ≥ 2, then θC(G) ≤ m. Decompose C into m “boundary paths”

P1, . . . , Pm such that the endpoints of each path are internal to the paths generated by
the chords. In particular, if vrvs is the ith minimal chord, then some internal vertex of the
path from vr to vs along C is the end of Pi and the beginning of Pi+1. By the minimality
of vrvs, no chord is incident to the common vertex of Pi and Pi+1. We use P1, . . . , Pm as
the spines of the caterpillars in the decomposition.
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Each chord of C joins vertices from two boundary paths; we assign it to one of these
two paths (we have observed that each end is incident to only one boundary path). Since
every chord incident to Pi is incident at its other end to exactly one other boundary path,
it suffices to show that the chords joining Pi and Pj can be distributed to those two paths
in such a way that the chords assigned to each have distinct endpoints in the other.

Let H be a graph consisting of paths 〈u1, . . . , ur〉 and 〈w1, . . . , ws〉 joined by noncross-
ing chords of the form uiwj. “Noncrossing” means that the chords obey a linear order L
such that the indices of the vertices from each path are nondecreasing. The subgraph of
G consisting of Pi and Pj and the chords joining them has this form.

Process the chords in H in the order L. If the next chord shares an endpoint with the
current chord, assign it to the path containing the shared vertex; otherwise assign it to
either path (this case covers the initial chord). If two vertices on one path have chords to
a common neighbor on the other path, then the second chord among these two is assigned
to the other path. Hence the chords assigned to each path have distinct endpoints on the
other path.

Bound 2: If n ≥ 2g, then θC(G) ≤ n/g. We prove inductively that G decomposes into
bn/gc caterpillars whose spines cover E(C). Two such caterpillars suffice when m ≤ 1.

If no two minimal chords share an endpoint, then the minimal chords lie on m disjoint
cycles, and n ≥ mg. If n ≤ g2/2, then m ≤ (n − g)/(g − 2) ≤ n/g. In either case, the
construction for Bound 1 suffices, since the union of its spines is C. Hence we may assume
that n > g2/2 and that some two minimal chords share an endpoint.

If m = 2, then all chords have a common endpoint, and G is the edge-disjoint union
of a star and a path, each of which is a caterpillar. Two edges of the star lie on C and
form the spine of this caterpillar; the path is the remainder of C. Hence we may assume
that m > 2.

Let vivj and vjvk be two minimal chords with a common endpoint; we may assume
that i < j < k. Let P be the vi, vk-path through vj along C. Form a smaller 2-connected
outerplanar graph G′ as follows: If g = 3, then delete V (P ) − {vi, vk} from G and add
the edge vivk (if not already present); if g ≥ 4, then delete V (P )−{vi, vj, vk}. In the first
case, we deleted k − i − 1 vertices; in the second, we deleted k − i − 2.

Since k − i − 1 ≥ 2g − 3 ≥ g if g = 3 and k − i − 2 ≥ 2g − 4 ≥ g if g ≥ 4, there are
at most n − g vertices in G′. We can apply the induction hypothesis unless G′ has fewer
than 2g vertices. If so, then G′ is a cycle. Since G has at least three minimal chords, this
case arises only if g = 3 and G is the union of a spanning cycle and a triangle. Such a
graph decomposes into two paths; all edges lie along the spines.

Now the induction hypothesis provides a decomposition of G′ into at most bn/gc − 1
caterpillars whose spines cover the outer edges. When g ≥ 4, it suffices to add P to this
decomposition. When g = 3 and vivk /∈ E(G), the edge vivk lies on the outer face in
G′ and hence is on the spine of its caterpillar T in the decomposition of G′. Replacing
vivj with vivj and vjvk in T yields again a caterpillar. The desired decomposition is now
completed by adding the caterpillar consisting of P and all other edges incident to vj

except vivj and vkvj.
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Finally, suppose that g = 3 and vivk ∈ E(G). The edges vi−1vi, vivk, and vkvk+1 all
lie on spines in the decomposition of G′. If they are not in the same caterpillar in the
decomposition, then we add vivj and vjvk to two different caterpillars and add P as a new
caterpillar. If these three edges are in the same caterpillar T , then we break the spine of
T at vi; the piece containing vi−1vi continues along P to vj and then directly to vk and
vk−1, while the piece containing vk+1vk and vkvi continues directly to vj and then along
P to vk−1. All the edges of G that are not in G′ become spine edges in the resulting
decomposition.

Our final result is the most difficult. We prove the uniform upper bound of d3n/8e
for the caterpillar-thickness of triangle-free outerplanar graphs. As mentioned in the
introduction, we believe that the bound improves to d3n/8e − 1 when n 6≡ 5 mod 8 and
n > 8. Obtaining this improvement would require extensive case analysis, so we omit it.
One source of difficulty is that the savings does not occur in most congruence classes until
n exceeds 8; this complicates the base case. Another is that the optimal formula (with or
without the floor or ceiling function) is not uniform across congruence classes. Hence we
are content with a uniform formula for the bound that is sharp on one congruence class.

A block in a graph G is a maximal subgraph that has no cut-vertex. A leaf block in G
is a block that contains only one cut-vertex of G. A penultimate block in G is a leaf block
in the graph G′ obtained by deleting the non-cut-vertices of leaf blocks in G.

Theorem 8 If G is a connected triangle-free outerplanar graph with n vertices, then
θC(G) ≤ d3n/8e. This bound is sharp when n ≡ 5 mod 8 and is always within one of
sharpness (except for n = 3).

Proof. In Example 2 we presented cacti that demonstrate the sharpness results.
For the upper bound, we consider a counterexample G with fewest vertices, n. We

will derive structural properties of G that eventually forbid its existence.
A subgraph H is deletable if it has a vertex subset S such that G − E(H) − S is

connected and θC(H) ≤ b3|S|/8c. With a = 3|S|/8, we have d3(n − |S|)/8e + θC(H) ≤
d3n/8 − ae + bac ≤ d3n/8e. Therefore, a minimal counterexample contains no deletable
subgraph. When S is a set of at least three vertices, and the edges incident to S form a
caterpillar H, and G−S is connected, then H is deletable, so we also say that the vertex
set S is deletable.

For 2-connected outerplanar graphs, Theorem 7 already provides an upper bound of
bn/4c, which is always at most d3n/8e. Thus G is not 2-connected and has at least 2
blocks. In an embedding of G with all vertices on the unbounded face, the vertices of a
leaf block occur consecutively.

Step 1: Every leaf block is an edge or a 4-cycle. Suppose that a leaf block B has at
least five vertices. Let v1 be the cut-vertex of G in B, and let v1, . . . , vk be the vertices of B
in order on the unbounded face. If N(vi−1)∩N(vi+1) = {vi} for some i with 3 ≤ i ≤ k−1,
then the girth condition implies that the edges incident to S form a caterpillar, where
S = {vi−1, vi, vi+1}. Also, G − S is connected, so S is deletable.
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If {v2, v3, v4} is not deletable, then there exists vj ∈ N(v2) ∩ N(v4) − {v3}. If j 6= 5,
then {v3, v4, v5} is deletable. If j = 5, then girth 4 forces k > 5, and now {v4, v5, v6} is
deletable.

Step 2: Every vertex in at most one non-leaf block lies in at most one leaf block. Let v
be a vertex in leaf blocks B and B ′. If B is a 4-cycle, with vertices v, w, x, y in order, and
z is a neighbor of v in B ′ (whether B′ is an edge or a 4-cycle), then {x, y, z} is deletable
(the edges incident to {x, y, z} form a path). If three leaf blocks that are edges share v,
then their leaves form a deletable triple.

Thus at most two leaf blocks can contain v, and if so both are edges. This makes
it impossible that every block is a leaf block, since then n = 3 and G is a path. If leaf
blocks B and B′ are both edges containing v, and v is in at most one non-leaf block, then
V (B ∪ B′) is now deletable.

Step 3: G has no “spear”. Define a spear to be a subgraph H consisting of two
leaf blocks and a nontrivial path P connecting them, such that only the (possibly equal)
vertices w and w′ of P in the same penultimate block B∗ have neighbors outside H, and
G − S is connected, where S = V (H) − {w′}.

If the leaf blocks B and B ′ are edges, then H is a path and |S| ≥ 3, so H is deletable.
If B is a 4-cycle, then let the vertices be v, x, y, z in cyclic order, with v the cut-vertex

of G. If B′ is an edge, then H decomposes into the edge xv of B and a path. Thus H is
deletable if |S| ≥ 6, which fails only if P has length 1 and w 6= w′. In that case, delete
only the path H − xv, with marked set S ′ consisting of {y, z} and the leaf of B ′.

If B and B′ are 4-cycles, then H decomposes into the edge xv, one edge of B ′, and a
path. Thus H is deletable if |S| ≥ 8, which fails only if P has length 1 and w 6= w′. In
that case, we may assume by symmetry that w′ = v. Now delete only H − xw′ (a path
plus an edge of B′), with marked 6-set S ′ consisting of V (B′) ∪ {y, z}.

Step 4: Every penultimate block is an edge. We observed that not all blocks are leaf
blocks. Let B∗ be a penultimate block. Since B∗ is not a leaf block, it has a vertex v
that lies in at least one leaf block and in no other non-leaf block. By Step 2, v belongs to
exactly one leaf block; call it B.

Suppose that B∗ is not an edge. Among the two neighbors of v along the unbounded
face of B∗, we may choose x to avoid the only vertex that B∗ can share with another
non-leaf block. If x lies in a leaf block B ′, then B ∪B′ ∪xv is a spear. Otherwise, we find
a deletable triple. It is V (B)∪{x} if B is an edge, and it is x together with two adjacent
vertices of B other than v if B is a 4-cycle.

Step 5: Two penultimate blocks cannot intersect. Suppose that B∗
1 and B∗

2 are penul-
timate blocks with a common vertex w. By Step 3, each B∗

i is an edge; let vi be the
endpoint opposite w. By Step 2, each vi lies in one leaf block Bi. Now B1 ∪B2 ∪B∗

1 ∪B∗
2

is a spear.

Step 6: A peripheral penultimate block intersects only one other non-leaf block. A
chain of blocks is a list of distinct blocks in which any two consecutive blocks intersect
and the shared cut-vertices are all distinct. The leaf block and penultimate block at
the beginning or end of a longest such chain are peripheral such blocks. Choose B and
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B∗ to start a longest chain C, so B and B∗ are a peripheral leaf block and peripheral
penultimate block.

By Step 3, B∗ is an edge; as usual, let w be the vertex it shares with a non-leaf block.
If there are two such blocks, then one of them is not in the chain of blocks starting with
B and B∗. By Step 5 it is not a penultimate block. It therefore has another vertex in a
non-leaf block. Thus it yields a chain of at least three blocks that can replace B and B∗

in C to form a longer chain, contradicting the choice of C.

Step 7: There is no minimal counterexample. Let B be a peripheral leaf block,
sharing v with a penultimate block B∗. Let w be the other vertex of B∗. By Step 5, w
lies in only one other non-leaf block, B0.

If w lies in a leaf block, B ′, then B ∪B∗ ∪B′ is a spear, since w lies in only one other
block. Hence w lies only in B0 and B∗.

Let x be a neighbor of w in B0, along the unbounded face, and let S = V (B)∪{w, x}.
Note that either (1) |S| = 6 (if B is a 4-cycle) and the subgraph of edges incident to
S decomposes into two caterpillars, or (2) |S| = 4 (if B is an edge) and the subgraph
of edges incident to S decomposes into one caterpillar. If a leaf block or a penultimate
block is attached at x, then we obtain a spear. If a longer chain is attached at x, then it
contradicts B′ being a leaf block. Hence nothing is attached at x. Now G−S is connected,
and the subgraph is deletable.

When the girth is at least 5, a proof similar to that of Theorem 8 yields the weaker
bound with 8 replaced by 10 in the formulas of Theorem 8. Since the techniques are the
same, we omit the details, which can be found in [2].
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