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Abstract

Let G be a finite group of order g. A probability distribution Z on G is called
ε-uniform if |Z(x) − 1/g| ≤ ε/g for each x ∈ G. If x1, x2, . . . , xm is a list of elements
of G, then the random cube Zm := Cube(x1, . . . , xm) is the probability distribution
where Zm(y) is proportional to the number of ways in which y can be written as a
product xε1

1 xε2

2 · · · xεm
m with each εi = 0 or 1. Let x1, . . . , xd be a list of generators for

G and consider a sequence of cubes Wk := Cube(x−1
k , . . . , x−1

1 , x1, . . . , xk) where, for
k > d, xk is chosen at random from Wk−1. Then we prove that for each δ > 0 there
is a constant Kδ > 0 independent of G such that, with probability at least 1−δ, the
distribution Wm is 1/4-uniform when m ≥ d + Kδ lg |G|. This justifies a proposed
algorithm of Gene Cooperman for constructing random generators for groups. We
also consider modifications of this algorithm which may be more suitable in practice.

1 Introduction

In 2002 Gene Cooperman posted a manuscript “Towards a practical, theoretically sound
algorithm for random generation in finite groups” on arXiv:math [4]. He proposed a new
algorithm for generating (almost) random elements of a finite group G in which the cost
to set up the generator is proportional to lg2 |G| (where lg denotes the logarithm to base
2), and the average cost to produce each of the successive random elements from the
generator is proportional to lg |G|. The best theoretically justified generator previously
known is due to Babai [2] and has a cost proportional to lg5 |G|. Another widely studied
algorithm is the product replacement algorithm [3] (see also [9]). Although Pak (see [12])
has shown that the product replacement algorithm produces almost random elements in
time polynomial in lg |G|, there still exists a wide gap between the theoretical performance
of this algorithm and what the original proposers hoped for (see [11]). (Igor Pak has
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informed me that he has now been able to show that the time complexity to construct
the product replacement generator is O(lg5 |G|)).

Unfortunately, [4] is flawed. It has never been published, and it is not clear to me
how it can be repaired in its original form. However, in the present paper I shall present
a simplified variant of the proposed algorithm of Cooperman (see Theorem 1). Using
a different approach (generating functions), but similar underlying ideas, I give a short
proof that this variant algorithm is valid and has the asymptotic behaviour predicted
by Cooperman. (Igor Pak has informed me that he has proved a similar result using a
different approach. His proof is so far unpublished.)

Throughout this paper, G will denote a finite group of order g. We consider probability
distributions on G. The uniform distribution U has the property that U(x) = 1/g for all
x ∈ G, and a distribution Z on G is said to be ε-uniform for 0 ≤ ε < 1 if (1 − ε)/g ≤
Z(x) ≤ (1 + ε)/g for all x. For any list x1, x2, . . . , xm of elements of G, the random
cube Cube(x1, x2, . . . , xm) of length m is the probability distribution on G induced by
the mapping (ε1, ε2, . . . , εm) 7→ xε1

1 xε2

2 · · ·xεm
m from the the uniform distribution on the

vertex set {0, 1}m of the hypercube. It takes an average of (m − 1)/2 group operations
(multiplications) to construct an element of the cube. The concept of a random cube goes
back to [7].

Theorem 1 (Cooperman) Let x1,x2,...,xd be a set of generators for G. Consider the
random cubes

Zm := Cube(x1, x2, . . . , xm)

where for each m > d we choose xm := y−1
m zm where ym, zm are random elements from

Zm−1.
Then for each δ > 0 there exist a constant K > 0 (depending on δ but independent of

d or G) such that, with probability at least 1 − δ,

Cube(x−1
m , x−1

m−1, . . . , x
−1
1 , x1, x2, . . . , xm)

is 1/4-uniform for all m ≥ d + K lg |G|.

Remark 2 A more precise statement appears in Section 4. If m = d + dK lg |G|e, then
the construction of the cube requires only O((d + lg |G|) lg |G|) basic group operations
(multiplication or inversion).

In order to discuss these and related questions, we need some further measures of
“almost” uniform. The deviation of Z from the uniform distribution in the variational
norm is defined in [6, page 21] by

‖P − U‖var :=
1

2

∑

x∈G

|P (x) − U(x)| = max
A⊆G

|P (A) − U(A)|.

Clearly ‖P − U‖var ≤ 1
2
ε whenever P is ε-uniform, but the condition ‖P − U‖var ≤ 1

2
ε

is a great deal weaker than being ε-uniform. We shall discuss this at greater length in
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Section 5. As well as the variational norm we shall use the Euclidean norm whose square
is given by

‖P − U‖2 :=
∑

x∈G

(P (x) − U(x))2

The value of the constant K in Theorem 1 which we obtain in Section 4 and the
fact that the number of group operations to construct the random element generator is
proportional to lg2 |G| still means that a direct implementation of an algorithm based
on Theorem 1 may be impractical. In Section 5 we examine some numerical examples,
possible ways in which the process may be speeded up, and how shorter random element
generators might be constructed. Some of these results reflect the following theorem which
shows how a faster generator can be constructed if we have available a distribution which
is close to uniform in the variational norm.

Theorem 3 Let U be the uniform distribution on G and suppose that W is a distri-
bution such that ‖W − U‖var ≤ ε for some ε with 0 ≤ ε < 1. Let x1, x2, . . . , xm be
random elements of G chosen independently according to the distribution W . If Zm :=
Cube(x1, x2, . . . , xm), and E denotes the expected value, then

E(‖Zm − U‖2) <

(

1 + ε

2

)m

for all m ≥ 1. (1)

Hence, if β := 1/ lg(2/(1 + ε)), then:
(a) E(‖Zm − U‖2

var) < 2−h when m ≥ β(lg |G| + h − 2);
(b) Pr(‖Zm − U‖var > 2−k) < 2−h when m ≥ β(lg |G| + h + 2k − 2);
(c) with probability at least 1−2−h, Zm is 2−k-uniform when m ≥ β (2 lg |G| + h + 2k) .

Remark 4 Part (c) was proved in [7] in the case where W = U , that is, when ε = 0 and
β = 1. (Their theorem is stated for abelian groups but the proof is easily adapted to the
general case.) It is shown in [2] that a result analogous to [7] holds if W is ε-uniform (a
much stronger assumption than we have here).

2 Some known results

Lemma 5 (Random subproducts) [5, Prop. 2.1] If x1, x2, . . . , xm generate G, and H
is a proper subgroup of G then, with probability ≥ 1

2
, a random element of G chosen using

the distribution Cube(x1, x2, . . . , xm) does not lie in H.

Lemma 6 Let λ, p and b be positive real numbers. Suppose that Y1, Y2, . . . are independent
nonnegative random variables such that Pr(Yk ≥ 1/λ) ≥ p for each k, and define the
random variable M to be the least integer m such that Y1 + Y2 + · · ·+ Ym ≥ b. Then

Pr(M > n) < exp

(

−2(np − bλ)2

n

)

.
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Proof. Chernoff’s inequality shows that if X has the binomial distribution B(n, p) then
for all a > 0 we have Pr(X − np < −a) < exp(−2a2/n) (see, for example, Theorem A.1.4
in [1], and replace p by 1 − p and X by n − X). Now define

Xk :=

{

1 if Yk ≥ 1/λ
0 otherwise

.

Thus, if X has the binomial distribution B(n, p), then

Pr(X < np − a) ≥ Pr(X1 + · · · + Xn < np − a) ≥ Pr(Y1 + · · ·+ Yn < (np − a)/λ)

and so Chernoff’s inequality shows that

Pr(M > n) = Pr(Y1 + · · ·+ Yn < b) < exp

(

−2(np − bλ)2

n

)

as required.

3 Generating functions

The use of group representations to analyze probability distributions on finite groups is
widely used, particularly since the publication of the influential book [6]. What appears to
be less common is a direct use of properties of the group algebra which on one hand reflect
independence properties of probability distributions in a natural way and on the other
hand enable manipulation of these distributions as linear transformations on a normed
space.

We fix the group G. Let Z be a probability distribution on G. We identify Z with the
element

∑

x∈G ζxx in the group ring R [G] where ζx = Z(x). Note that ZW (product in
the group ring) is the convolution of distributions Z and W . This means that ZW is the
distribution of the product of two independent random variables from Z and W , respec-
tively (in general, when G is nonabelian, ZW 6= WZ). In particular, putting g := |G|,
the uniform distribution is U := (1/g)

∑

x∈G x. We write supp(Z) := {x ∈ G | ζx 6= 0}
for the support of Z.

For each x ∈ G, (1 + x)/2 is the distribution of a random variable which takes two
values, 1 and x, with equal probability. Hence Cube(x1, x2, . . . , xm) has distribution
Zm := 2−m

∏m
i=1(1 + xi).

There is a natural involution ∗ on R[G] given by
∑

x∈G ζxx 7→
∑

x∈G ζxx
−1, and a

corresponding inner product on R[G] given by 〈X, Y 〉 := tr(X∗Y ) (= 〈Y, X〉) where the
trace tr(

∑

x∈G ζxx) := ζ1. A simple calculation shows that this inner product is just the
dot product of the vectors of coefficients with respect to the obvious basis. In particular,
if Z =

∑

x∈G ζxx, then the square of the Euclidean norm ‖Z‖2 := 〈Z, Z〉 =
∑

x∈G ζ2
x. In

general it is not true that ‖XY ‖ ≤ ‖X‖ ‖Y ‖, but ‖Xx‖ = ‖X‖ for all x ∈ G.
The Euclidean norm is generally easier to work with than the variational norm, al-

though the latter has a more natural interpretation for probability distributions. By the
Cauchy-Schwarz inequality

4 ‖Z − U‖2
var ≤ g ‖Z − U‖2 . (2)
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On the other hand, if Z is any probability distribution, then ZU = UZ = U , and so

‖Z − U‖2 = ‖Z‖2 + ‖U‖2 − 2tr(Z∗U) = ‖Z‖2 − 1/g. (3)

In particular 1/g ≤ ‖Z‖2 ≤ 1.
Let Z be a distribution and consider the distribution Z∗Z =

∑

t∈G ωtt, say. Note that

Z∗Z is symmetric with respect to ∗ and that ωx = 〈Z, Zx〉. In particular, ωx ≤ ω1 = ‖Z‖2

for all x by the Cauchy-Schwarz inequality.

Lemma 7 For all x, y ∈ G

√

ω1 − ωxy ≤
√

ω1 − ωx +
√

ω1 − ωy

Proof. ‖Z(1 − x)‖2 = ‖Z‖2 + ‖Zx‖2 − 2 〈Z, Zx〉 = 2(ω1 − ωx). On the other hand, the
triangle inequality shows

‖Z(1 − xy)‖ = ‖Z(1 − y) + Z(1 − x)y‖
≤ ‖Z(1 − y)‖ + ‖Z(1 − x)y‖ = ‖Z(1 − y)‖ + ‖Z(1 − x)‖

so the stated inequality follows.
The next lemma is the central core of our proof of Theorem 1. Our object in that

proof will be to show that by successively extending a cube Z we shall (with high prob-
ability) push ‖Z‖2 down towards 1/g. Then (3) shows that the series of cubes will have
distributions converging to uniform. The following lemma proves that at each step we can
expect the square norm of the cube to be reduced at least by a constant factor (1 − 1

2
δ)

unless the distribution of Z∗Z is already close to uniform.

Lemma 8 Suppose that Z := Cube(x1, x2, . . . , xm) and that x1, x2, . . . , xm generate G.
Set Z∗Z =

∑

t∈G ωtt. Then ‖Z(1 + x)/2‖2 = 1
2
(ω1 + ωx) ≤ ‖Z‖2for all x ∈ G. Moreover,

for each δ with 0 < δ < 1
12

, either

(a) (1 − 4δ) 1
g
≤ ωt ≤ 1

1−4δ
1
g

for all t ∈ G, or

(b) the probability that

‖Z(1 + x)/2‖2 < (1 − 1

2
δ) ‖Z‖2 (4)

holds for x ∈ G (under the distribution Z∗Z) is at least (1 − 12δ)/(2 − 13δ).

Remark 9 Taking δ = 0.05 in (b) we find that the norm is reduced by 2.5% with proba-
bility nearly 0.3. Note that Z∗Z = Cube(x−1

m , x−1
m−1, . . . , x

−1
1 , x1, x2, . . . , xm).

Proof. We have ‖Z(1 + x)/2‖2 = 1
4

{

‖Z‖2 + ‖Zx‖2 + 2 〈Z, Zx〉
}

= 1
2
(ω1 + ωx) .In par-

ticular, ‖Z(1 + x)/2‖2 ≤ ω1 = ‖Z‖2 and inequality (4) holds if and only if ωx < (1−δ)ω1.
Set C := {t ∈ G | ωt ≥ (1 − δ)ω1}. We have 1 ∈ C and C = C−1 since Z∗Z is

symmetric under ∗. The probability that x ∈ C under the distribution Z∗Z is α :=
∑

t∈C ωt.
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Now ω1 − ωx ≤ δω1 for all x ∈ C, so Lemma 7 shows that for all x, t ∈ C we have

√
ω1 − ωxt ≤

√
ω1 − ωt +

√

δω1

which shows that

ω1 − ωxt ≤ ω1 − ωt + 2
√

ω1 − ωt

√

δω1 + δω1 ≤ ω1 − ωt + 3δω1.

Thus

ωxt ≥ ωt − 3δω1 ≥ ωt(1 − 3δ

1 − δ
) for all x, t ∈ C.

Again Lemma 7 shows that

√

ω1 − ωy ≤ 2
√

δω1 for all y ∈ C2 (5)

and so a similar argument shows that

ωyt ≥ ωt(1 − 8δ

1 − δ
) for all t ∈ C and y ∈ C2.

Therefore for all x ∈ C and y ∈ C2

∑

t∈C

ωxt +
∑

t∈C

ωyt ≥ β := (2 − 11δ

1 − δ
)
∑

t∈C

ωt = α
2 − 13δ

1 − δ
.

First suppose that β > 1. Then, since
∑

z∈G ωz = 1, there exist s, t ∈ C such that
xs = yt and this implies that x−1y = st−1 ∈ C2. Since this holds for all x ∈ C = C−1 and
y ∈ C2, we conclude that C2C2 = C(CC2) ⊆ CC2 ⊆ C2, and so the nonempty set C2 is
a subgroup of G. If C2 were a proper subgroup of G, then Lemma 5 would show that an
element x chosen using the cube distribution Z∗Z is not in C2 with probability at least 1

2
.

Since 1 ∈ C, this shows that Pr(x /∈ C) ≥ 1
2
, contrary to the fact that α > β/2. Thus the

subgroup C2 equals G. But now equation (5) shows that

ω1 ≥ ωx ≥ (1 − 4δ)ω1

for all x ∈ G. Since gω1 ≥
∑

x∈G ωx = 1, this shows that 1 ≥ (1− 4δ)gω1 ≥ 1− 4δ. Thus
1/(1 − 4δ) ≥ gω1 ≥ gωx ≥ 1 − 4δ and (a) holds in this case.

On the other hand, suppose that β ≤ 1. Then the probability that ωx < (1 − δ)ω1

(that is, x /∈ C) is

1 − α = 1 − β(1 − δ)

2 − 13δ
≥ 1 − 12δ

2 − 13δ
.

By the observation at the beginning of this proof, alternative (b) holds in this case.
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4 Proof of Theorem 1

We shall prove the theorem in the following form. Note that, for all positive K and p,
a unique positive solution of the equation ε2 = K(p − ε) exists and lies in the interval
(Kp/(K + p), p).

Theorem 10 Let x1,x2,...,xd be a set of generators of a finite group G of order g. Consider
the random cubes

Zm := Cube(x1, x2, . . . , xm)

where for each m > d we choose xm := y−1
m zm where ym, zm are random elements from

Zm−1.
Now, for each η > 0 define ε as the positive solution of ε2 = (0.3−ε) lg(1/η)/(56 lg g),

and note that ε → 0 as g → ∞. Then, with probability at least 1−η, Z∗
mZm is 1/4-uniform

for all m ≥ d + d28 lg g/(0.3 − ε)e.

Proof. We can assume that the generators x1, x2, . . . , xd are all nontrivial. Consider
the random variable φm := lg(1/ ‖Zm‖2). Since ‖Z1‖2 = 1

2
, it follows from Lemma 8

(with close-to-optimal δ = 0.049) that 1 = φ1 ≤ φ2 ≤ · · · and that, for m ≥ d, there
is a probability > 0.3 that φm+1 − φm ≥ lg(1/0.9755) > 1/28 unless the coefficients of
Z∗

mZm all lie between 0.804/g and 1/(0.804g). In the latter case Z∗
mZm is a 1/4-uniform

distribution.
The minimum value for the square norm of a distribution is ‖U‖2 = 1/g, and so each

φm ≤ lg g. Define the random variable M to be the least value of n for which Z∗
n+dZn+d

is a 1/4-uniform distribution. Then Lemma 6 (with λ = 28, p = 0.3 and b = lg g) shows
that Pr(M > n) < η whenever

exp

(

−2(0.3n − 28 lg g)2

n

)

< η.

Putting ε := (0.3 − 28 lg g)/n, we require that 2ε2n > lg(1/η), and the given estimate is
now easily verified.

5 Faster random element generators

The results proved in the previous section are undoubtedly weaker than what is really
true. To compare them with some numerical examples, GAP [8] was used to compute
22mZ∗

mZm (m = 1, 2, . . . ) in the group ring Z[G] for various groups G until Z∗
mZm was

1/4-uniform. This experiment was repeated 20 times for each group and a record kept
of the number r of random steps required in each case (so the resulting cube had length
d + r where d was the number of generators). The results are summarized in the table
below.
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Group G d |G| lg |G| r
S5 2 120 6.9 8–16
Cyclic group C128 1 128 7.0 13–39
17 : 8 2 136 7.1 8–20
PSL(2, 7) 2 168 7.4 9–16
Dihedral group D256 2 256 8.0 18-32
(A4 × A4) : 2 2 288 8.2 8–18
(24 : 5).4 2 320 8.3 9–15
AGL(1, 16) : 2 2 480 8.9 10–15
24.(S4 × S4) 3 576 9.2 8–13
ASL(3, 2) 2 1344 10.4 10–17
PΓL(2, 9) 2 1440 10.5 12–17
ASL(2, 4) : 2 2 1920 10.9 10–15

For comparison, if we calculate m − d from Theorem 10 at the 90% confidence level
(η = 0.1), the bounds we obtain for r range from 790 (for |G| = 120) up to 1190 (for
|G| = 1920) which are several orders of magnitude larger than the experimental results.
Although the groups considered in the table are necessarily small (limited by the time
and space required for the computations), the values for r suggest that the best value
for the constant K in Theorem 1 is much smaller than that given by Theorem 10. Note
that the experimental values obtained for r are largest for C128 and D256, both of which
contain an element of order 128.

Remark 11 It should be noted that for permutation groups there are direct ways to com-
pute (pseudo-)random elements via a stabilizer series and such series can be computed for
quite large groups. The practical problem of generating random elements by other means
is of interest only for groups of much larger size (see the end of this section).

Also in practice we would use a different approach to generate random elements when
the group is abelian. If x1, x2, . . . , xd generate an abelian group G of order g and 2m ≥ g,
then define Zi := Cube(1, xi, x

2
i , . . . , x

2m−1

i ) for each i. Write 2m = gq + r for integers q, r
with 0 ≤ r < g. We define the partial ordering < on R[G] by: X < Y if all coefficients
of X − Y are nonnegative. Now it is simple to verify that

(1 + (g − r)/2m)Ui < Zi = 2−m
2m−1
∑

j=0

xj
i < (1 − r/2m)Ui where Ui := (1/g)

g−1
∑

j=0

xj
i .

Since U1U2 · · ·Ud = U (the uniform distribution on G), Z := Z1Z2 · · ·Zd lies between

(1 + (g − r)/2m)dU and (1 − r/2m)dU.

Thus Z is a random cube of length md which is ε-uniform on G where

ε = max
(

(1 + (g − r)/2m)d − 1, 1 − (1 − r/2m)d
)

.

For an alternative approach see [10].
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An examination of Lemma 8 shows that we should be able to do considerably better
if we choose x using a different distribution. The (m + 1)st generator of the cube in
Cooperman’s algorithm is chosen using the distribution Z∗

mZm which gives a value of ωx

with probability ωx. This is biased towards relatively large value of ωx and hence towards
large values of ‖Zm+1‖2. We do better if we can choose x so as to obtain smaller values
of ωx. Theorem 3 examines what happens if we choose x using a distribution close to
uniform on G. Leading up to the proof of that theorem, Lemma 13 lists a number of
related results, part (c) being the primary result needed to prove the theorem. We begin
by proving a simple property of the variational norm (valid even if G is not a group).

Lemma 12 Let W be a probability distribution on G, and φ be any real valued function
on G. Denote the maximum and minimum values of φ by φmax and φmin, respectively,
and put φ̄ :=

(
∑

t∈G φ(t)
)

/g. If ‖W − U‖var ≤ ε, then the expected value of φ − φ̄ under
the distribution W satisfies

∣

∣E(φ − φ̄)
∣

∣ ≤ ε(φmax − φmin).

Proof. (Compare with Exercise 2 in [6, page 21].) Set W =
∑

t∈G λtt, say. Enumerate
the elements x1, x2, . . . , xg of G so that φmax = φ(x1) ≥ φ(x2) ≥ · · · ≥ φ(xg) = φmin and
define Λi :=

∑i
j=1

(

λxj
− 1/g

)

for each i. Then

E(φ − φ̄) =

g
∑

i=1

(λxi
− 1/g)φ(xi) =

g
∑

i=1

(Λi − Λi−1)φ(xi)

=

g−1
∑

i=1

Λi (φ(xi) − φ(xi+1)) + Λgφ(xg).

The hypothesis on W shows that |Λi| ≤ ε for all i, and Λg = 0. Since φ(xi) ≥ φ(xi+1) for
all i, we conclude that

∣

∣E(φ − φ̄)
∣

∣ ≤
g−1
∑

i=1

ε (φ(xi) − φ(xi+1)) = ε(φ(x1) − φ(xg))

as claimed.

Lemma 13 Let Z and W be probability distributions on G. Then
(a) If s := |Supp(Z)| and ‖W − U‖var ≤ ε, then for x chosen from the distribution W

E(|Supp (Z(1 + x)/2)|) lies in the range s (2 − s/g ± ε) .

(b) Suppose that 2m ≤ g. If Z := Cube(x1, x2, . . . , xm) and s := |Supp(Z)|, then
‖Z − U‖var = 1 − s/g. Moreover, if x1, x2, . . . , xm are independent and uniformly dis-
tributed, then

E(‖Z − U‖var) ≤ (1 − 1/g)2m ≤ exp(−2m/g).
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(c) If ‖W − U‖var ≤ ε and x is chosen from the distribution W , then

E(‖Z(1 + x)/2‖2 − 1/g) ≤ 1
2
(1 + ε)(‖Z‖2 − 1/g).

Hence if Z = Cube(x1, x2, . . . , xm) where x1, x2, . . . , xm are independent and from the
distribution W , then

E(‖Z − U‖2) <

(

1 + ε

2

)m

.

(Note that the inequalities in (c) are for the Euclidean norm).

Proof. (a) Set W =
∑

t∈G λtt and S := Supp(Z). For each u ∈ S define F (u) :=
{x ∈ G | u ∈ Sx ∩ S}. Then each F (u) has size |S| and so

∑

x∈G

|Sx ∩ S| =
∑

u∈S

|F (u)| = |S|2 .

Now |Supp(Z(1 + x)/2)| = |S ∪ Sx| = 2 |S| − |Sx ∩ S|, and so

E(|Supp(Z(1 + x)/2)|) =
∑

t∈G

λt (2 |S| − |St ∩ S|) (6)

= 2 |S| − 1

g
|S|2 −

∑

t∈G

(λt − 1/g) |St ∩ S| .

Applying Lemma 12 we conclude that the absolute value of E(|Supp(Z(1 + x)/2)|) −
2 |S| + 1

g
|S|2 is at most ε(|S| − 0) = ε |S| as claimed.

(b) Write Z =
∑

t∈G ζtt. Since Z = 2−m
∏m

i=1(1 + xi), we have ζt ≥ 2−m ≥ 1/g for
each t ∈ Supp(Z) and so

‖Z − U‖var =
1

2

∑

t∈G

|ζt − 1/g|

=
1

2

{

∑

t∈G

(ζt − 1/g) + 2
∑

t/∈Supp(Z)

1/g

}

= (g − s)/g.

This proves the first part. Now let Sk be the support of Zk := Cube(x1, x2, . . . , xk)
with S0 = {1}, and put sk := |Sk| for each k. Then (6) with λt = 1/g shows that

E(sk+1) = 2E(sk) − 1
g
E(s2

k) ≤ 2E(sk) − 1
g
E(sk)

2 for k = 0, 1, . . . , m − 1

because E(X2) ≥ E(X)2 for every real valued random variable X. Hence E(1−sk+1/g) ≤
(E(1 − sk/g))2. Now induction on m gives

E(‖Zm − U‖var) = E(1 − sm/g) ≤ (1 − 1/g)2m

whenever 2m ≤ g.
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(c) Write Z∗Z =
∑

t∈G ωtt and W =
∑

t∈G λtt. From Lemma 8 we know that

‖Z(1 + x)/2‖2 = 1
2
(ω1 + ωx) and ‖Z‖2 = ω1. By hypothesis E(ωx) =

∑

t∈G λtωt.
Since ω1 ≥ ωx ≥ 0 for all x, Lemma 12 shows that |E(ωx − 1/g)| ≤ εω1. Thus
E(‖Z(1 + x)/2‖2 − 1/g) = 1

2
(ω1 + E(ωx)) − 1/g ≤ 1

2
(1 + ε)(ω1 − 1/g) as required.

Since ‖Zm − U‖2 = ‖Zm‖2 − 1/g, the final inequality in (c) follows from a simple
induction.

Proof of Theorem 3. The initial inequality has been proved in Lemma 13. It remains
to prove the consequences (a)-(c).

(a) Equations (1) and (2) show

E(‖Zm − U‖2) <
g

4

(

1 + ε

2

)m

≤ 2−h

when m ≥ β (lg g + h − 2).
(b) If we replace h by h + 2k in (a) and apply the Markov inequality we obtain

Pr(‖Zm − U‖ > 2−k) = Pr(‖Zm − U‖2 > 2−2k) < 2−h

when m ≥ β (lg g + h + 2k − 2).
(c) Clearly ‖Zm − U‖2 ≤ 2−2k/g2 implies that Zm is 2−k-uniform. On the other hand,

(1) and Markov’s inequality show that

Pr
(

‖Zm − U‖2 > 2−2k/g2
)

<

(

1 + ε

2

)m

g222k < 2−h

when m ≥ β (2 lg g + h + 2k).
Theorem 3 says roughly that if we have a source of approximately random elements

then we can construct a cube which is not too long and produces (with high probability)
elements which are more closely random. It might also be interpreted as saying that it is
not much harder to construct an ε-uniform random generator than to construct a random
distribution Z satisfying ‖Z − U‖var ≤ ε which is a little surprising since the latter seems
much cruder than the former.

Lemma 13 (b) suggested the following procedure which we carried out in GAP. Given
generators x1, x2, . . . , xd for a group G and an integer l ≥ d, two random cubes Xl+d and
Yl+d of lengths l + d were constructed as follows. Let Xd := Cube(x1, x2, . . . , xd) and
Yd := Cube(y1, y2, . . . , yd) where y1 := x1, y2 := x2x1, . . . , yd := xdxd−1 · · ·x1. Then, for
k = d + 1, . . . , l, Xk := Cube(x1, . . . , xk) where xk is a random element from Yk−1, and
Yk := Cube(y1, . . . , yk) where yk is a random element from Xk (we also added a technical
condition to ensure that for each cube the generators were distinct and nontrivial). Finally,
Zm := Cube(x1, . . . , xl+d, yd+1, . . . , yl+d) is a cube of length m := 2l + d. The idea behind
this ad hoc construction is that the distributions of Xk and Yk should be approximately
independent and so the arguments used in the proof of Lemma 13 (b) may possibly apply.
The final cube Zm was then used to generate a list of 2000 random elements of G which
were classified according to the conjugacy classes into which they fell. Then, if G had
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k := k(G) conjugacy classes of sizes h1, h2, . . . , hk and the number of random elements
which lay in the ith class was fi, we computed

varm :=
1

2

k
∑

i=1

∣

∣

∣

∣

hi

g
− fi

∑

fj

∣

∣

∣

∣

as an approximation to ‖Zm − U‖var . The table below compares values of varm for dif-
ferent lengths m of cubes for some groups which are available in the permutation group
library of GAP. Since varm is computed from a statistical sample of size 2000, there is
always some part of this variation which is due simply to this sampling. We therefore
also calculated as a bench mark a value of var∞ in which the frequencies fi arise from
sampling the various classes in exact proportion to their sizes. It is not easy to interpret
these figures (all the groups have relatively few conjugacy classes), but for the groups
listed it appears that random samples of size 2000 from cubes of length 25 and random
samples from the uniform distribution are essentially indistinguishable in terms of how
they are distributed over the conjugacy classes of G.

Group G |G| d k(G) var10 var15 var25 var∞
Cyclic group 512 1 512 0.93 0.59 0.20 0.19

73 · 2016 6.9 × 105 2 74 0.12 0.07 0.06 0.06
HS 4.4 × 107 2 24 0.12 0.03 0.03 0.04
M24 2.4 × 108 2 26 0.40 0.14 0.04 0.04
S12 4.8 × 108 2 77 0.51 0.15 0.05 0.05

McL 9.0 × 108 2 24 0.16 0.05 0.04 0.04
Sp(8, 2) 4.7 × 1010 2 81 0.13 0.05 0.06 0.06

O−(10, 2) 2.5 × 1013 2 115 0.16 0.07 0.07 0.07

In one application of particular interest (see [3] and [9]), only a very rough approx-
imation to uniformity is required. In this situation G is a subgroup of the finite linear
group GL(f, q) where values of f of interest might lie between, say, 10 and 100. The
time required to carry out a single group operation (a matrix multiplication or inversion)
is proportional to f 3, and as a consequence the number of group operations allowed in
generating a random element is quite limited (in this context, lg |GL(f, q)| ∼ f 2 lg q is too
large). On the other hand, what is required is also quite modest. We want to be able
to generate a list of elements which, with high probability, includes at least one element
from each of two specified subsets of G, where it is known that each of these subsets is
of size at least |G| /(f + 1). This will certainly be possible if we can construct a cube Z
with ‖Z − U‖var ≤ 1/2f , say, but presumably some much weaker condition is sufficient.
The product replacement algorithm was proposed as a practical solution to this problem,
but the theoretical justification remains open.
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