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Abstract

Recently, Smilansky expressed the determinant of the bond scattering matrix
of a graph by means of the determinant of its Laplacian. We present another
proof for this Smilansky’s formula by using some weighted zeta function of a graph.
Furthermore, we reprove a weighted version of Smilansky’s formula by Bass’ method
used in the determinant expression for the Ihara zeta function of a graph.

1 Introduction

Graphs treated here are finite. Let G = (V(G), E(G)) be a connected graph (possibly
multiple edges and loops) with the set V(G) of vertices and the set E(G) of unoriented
edges uv joining two vertices v and v. For uv € E(G), an arc (u,v) is the oriented edge

from u to v. Set R(G) = {(u,v), (v,u) | wv € E(G)}. For b = (u,v) € R(G), set u = o(b)
and v = #(b). Furthermore, let b = (v, u) be the inverse of b = (u, v).

A path P of length n in G is a sequence P = (by,--- ,b,) of n arcs such that b; €
R(G), t(b;)) = o(biy1)(1 < i < n — 1), where indices are treated mod n. Set | P |= n,
o(P) = o(by) and t(P) = t(b,). Also, P is called an (o(P), t(P))-path. We say that a path
P = (b1, - ,b,) has a backtracking or back-scatter if ISiH =b; for some i(1 <i<n-—1).
A (v, w)-path is called a v-cycle (or v-closed path) if v = w. The inverse cycle of a cycle
C = (by,---,by) is the cycle C = (b, -, by).

We introduce an equivalence relation between cycles. Two cycles C; = (e, -+, ep)
and Cy = (f1,- -+, fm) are called equivalent if there exists k such that f; = e;y, for all j.
The inverse cycle of C'is in general not equivalent to C. Let [C] be the equivalence class
which contains a cycle C. Let B" be the cycle obtained by going r times around a cycle
B. Such a cycle is called a power of B. A cycle C' is reduced if C' has no backtracking.
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Furthermore, a cycle C'is primitive if it is not a power of a strictly smaller cycle. Note that
each equivalence class of primitive, reduced cycles of a graph G corresponds to a unique
conjugacy class of the fundamental group 71 (G, u) of G at a vertex u of G. Furthermore,
an equivalence class of primitive cycles of a graph G is called a primitive periodic orbit of
G(see [13]).

The IThara zeta function of a graph G is a function of a complex variable ¢ with | ¢ |
sufficiently small, defined by

Z(G,t) = Zo(t) = [J(1 —£7) 7,

(7]

where [p] runs over all primitive periodic orbits without back-scatter of G(see [8]).

Ihara zeta functions of graphs started from Ihara zeta functions of regular graphs by
Thara [8]. Originally, Thara presented p-adic Selberg zeta functions of discrete groups, and
showed that its reciprocal is a explicit polynomial. Serre [12] pointed out that the Ihara
zeta function is the zeta function of the quotient T'/T" (a finite regular graph) of the one-
dimensional Bruhat-Tits building 7" (an infinite regular tree) associated with GL(2,k,).

A zeta function of a regular graph G associated with a unitary representation of
the fundamental group of G was developed by Sunada [15,16]. Hashimoto [7] treated
multivariable zeta functions of bipartite graphs. Bass [2] generalized Thara’s result on the
zeta function of a regular graph to an irregular graph, and showed that its reciprocal is
again a polynomial.

Theorem 1 (Bass) Let G be a connected graph. Then the reciprocal of the zeta function
of G is given by

Z(G, ) = (1 —t*)"" det(I - tC(G) + t*(D — 1)),

where r and C(G) are the Betti number and the adjacency matriz of G, respectively, and
D = (d;;) is the diagonal matriz with d;; = v; = degu; where V(G) = {u1, -+, up}.

Various proofs of Bass’ Theorem were given by Stark and Terras [14], Foata and
Zeilberger [4], Kotani and Sunada [9].

Let G be a connected graph. We say that a path P = (by,--- ,b,) has a bump at t(b;)
if by = b; (1 <i<n). The cyclic bump count cbe(r) of a cycle m = (w1, - -+ ,my,) is

CbC(Tf) :| {Z = 1a y 1 | T :ﬁ-i-i-l} |>

where m,,1 = m;. Then the Bartholdi zeta function of G is a function of two complex
variables u,t with | u |, | t | sufficiently small, defined by

Calu,t) = ((G,u,t) = H(l _ OO L,

[©]

where [C] runs over all primitive periodic orbits of G(see [1]). If u = 0, then the Bartholdi
zeta function of G is the Ihara zeta function of G.
Bartholdi [1] gave a determinant expression of the Bartholdi zeta function of a graph.
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Theorem 2 (Bartholdi) Let G be a connected graph with n vertices and m unoriented
edges. Then the reciprocal of the Bartholdi zeta function of G is given by

(G u, )™ =1 — (1 —u)*)™ " det(I — tC(G) + (1 — u)(D — (1 — u)I)t?).

In the case of u = 0, Theorem 2 implies Theorem 1.

Sato [11] defined a new zeta function of a graph by using not an infinite product but
a determinant.

Let G be a connected graph and V(G) = {uy, -+ ,u,}. Then we consider an n x n
matrix C = (wij)1<ij<n With ij entry the complex variable w;; if (u;,u;) € R(G), and
w;; = 0 otherwise. The matrix C = C(G) is called the weighted matriz of G. For
each path P = (u;, -+ ,u;) of G, the norm w(P) of P is defined as follows: w(P) =
WiyiyWigig * * * Wy, 4, Furthermore, let w(u;, uj) = w;;, u;,u; € V(G) and w(b) = w;;,b =
(Ui,Uj) c R(G) R R

Let G be a connected graph with n vertices and m unoriented edges, and C = C(G)
a weighted matrix of G. Two 2m x 2m matrices B = B(G) = (B f)e,fer() and Jo =
Jo(G) = (Jef)e,rer(c) are defined as follows:

Be,f:{ w(f) ift(e) = o(f), ,Jef—{ 1 if f=e,

0 otherwise | 0 otherwise.
Then the zeta function of G is defined by
Z,(G,w,t) = det(I, — t(B — Jy)) "
If w(e) =1 for any e € R(G), then the zeta function of G is the Ihara zeta function of G.

Theorem 3 (Sato) Let G be a connected graph, and let C = C(G) be a weighted matriz
of G. Then the reciprocal of the zeta function of G is given by

7 (G w, ) = (1 — )" " det(I, — tC(G) + t*(D — 1,,)),

where n =| V(G) |, m =| E(G) | and D = (d;;) is the diagonal matriz with d;; =
Zo(b):ui w(e), V(G) = {ula T >un}'

The spectral determinant of the Laplacian on a quantum graph is closely related to
the Thara zeta function of a graph(see [3,5,6,13]) .

Smilansky [13] considered spectral zeta functions and trace formulas for (discrete)
Laplacians on ordinary graphs, and expressed some determinant on the bond scattering
matrix of a graph G by using the characteristic polynomial of its Laplacian.

Let G be a connected graph with n vertices and m edges, V(G) = {uy,...,u,} and
R(G) = {by1, ..., by, byni1, - -, o } such that by,,; = b;(1 < j < m).

The Laplacian (matriz) L = L(G) of G is defined by

L=L(G) = -C(G) +D.
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Let A be a eigenvalue of L and ¢ = (¢4, ...,1,) the eigenvector corresponding to A. For
each arc b = (u;, ), one associates a bond wave function

wb(x) — abezﬁrx/él +a5e_i7rx/4, r =41
under the condition

Yu(1) = ¥, (1) = 9.

We consider the following three conditions:

1. uniqueness: The value of the eigenvector at the vertex u;, ¥;, computed in the terms
of the bond wave functions is the same for all the arcs emanating from u;.

2. 1 1s an eigenvector of L;

3. consistency: The linear relation between the incoming and the outgoing coefficients
(1) must be satisfied simultaneously at all vertices.

By the uniqueness, we have

ablez7r/4 + agle—mr/4 _ abzemr/4 + agze—mr/4 - .= abvje7,7r/4 + al;v.e—m/4’
J

where by, by, ..., b,; are arcs emanating from u;, and v; = degu;, i = v —1.
By the condition 2, we have

—im T 1 T —im
— g (ap, e” ™" + ag, e My =(\— vj); E (ap, ™4 +ay e .
k=1 J k=1

Thus, for each arc b with o(b) = u;,

where
2 1

v;1—i(1— A/vj))’

and 0; . is the Kronecker delta. The bond scattering matriz U(X) = (Ues)e, rer(c) of G is
defined by

oy (\) = i(8;, —

U = opf i 1(f) = ofe),
0 otherwise.

By the consistency, we have
U(N)a = a,

where a = "(ay,, Gy, - - -, Qp,,, ). This holds if and only if

det(Io — U(N)) = 0.
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Theorem 4 (Smilansky) Let G be a connected graph with n vertices and m edges. Then
the characteristic polynomial of the bond scattering matriz of G is given by
2mi" det(AL, + C(G) — D)
det (L, — UN)) = - : — =110 —a,(V)),
[T5=i (v — iv; + i) 1[;][ P

where [p] runs over all primitive periodic orbits of G, and

t(bn)) _(t(bn— tb
a,(\) = O-I()l(7bn))0-l(7n(ybn711)) . -al()2(7b11)), p=(b1,ba,...,by,).

In this paper, we reprove Smilansky’s formula for the characteristic polynomial of the
bond scattering matrix of a graph and its weighted version by using some zeta functions
of a graph. In Section 2, we consider a new zeta function of a graph G, and present
another proof of Smilansky’s formula for some determinant on the bond scattering matrix
of a graph by means of the Laplacian of G. Furthermore, we give Smilansky’s formula for
the case of a regular graph by using Bartholdi zeta function of a graph. In Section 3, we
present a decomposition formula for some determinant on the bond scattering matrix of
a semiregular bipartite graph. In Section 4, we give another proof for a weighted version
of the above Smilansky’s formula by Bass’ method used in the determinant expression
for the Thara zeta function of a graph. In Section 5, we express a new zeta function of a
graph by using the Euler product.

2 The scattering matrix of a graph

We present a proof of Theorem 4 by using Theorem 3, which is different from a proof in
[13].

Theorem 5 (Smilansky) Let G be a connected graph with n vertices and m edges.
Then, for the bond scattering matrix of G,

2mi" det(AL, + C(G) — D)
det(Iy,, — U(N\)) = — - -
(I (M) [I5=i (v — iv; + i)

Proof. Let GG be a connected graph with n vertices and m edges, V(G) = {u1,- -+, u,}
and R(G) ={b1,...,bp,b1,...,by}. Set v; = degu; and

2 1
Ti =Ty, = — -
! 7oy =il = A vy)
for each j = 1,...,n. Then we consider a 2m x 2m matrix B = (Bf)., rer(e) given by
_ [ mopy it t(e) = o(f),
Bes _{ 0 otherwise.
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By Theorem 3, we have
det(I,, —u(B — Jo)) = (1 — u*)™ " det(I,, — uW,(G) + u*(D, — 1,,)),
where W, (G) = (wj;) and D, = (d,i;) are given as follows:

Wi, = { .C(Ij if (Uj,Uk) S R(G), ,djk _ { Uj.ﬁ(}j lfj = ]{Z,

0 otherwise 0 otherwise.
Thus,
det(Ip, — u('B = 'Jy)) = (1 — u?)™ " det(I, — uW,(G) + v*(D, — 1,)),

where 'B is the transpose of B. Note that

= 2 (1<j<n)
ST Ay © =
But, since
iU\) + Jo =B,
we have
‘B —1J, = iU(\).
Substituting u = —i in (2), we obtain

det(ILyy — UN)) = 27" det(I, + iW,(G) — (D, — I,)).

Now, we have

1 0
W.(G) = C(G)
0 Tn
and
1 0
D, = D
0 Tn
Let
Ty 0
X —
0 Tn

Then it follows that

det(Io, — UN)) = 2" det (21, + iXC(G) — XD)

= 2™ det X det(—2iX ! + C(G) +iD) =

2mi" det(—2iX~! + C(G) +iD)

[T—, (v; —iv; + Xi)

J=1
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Since 2$j_1 = v; — W + Ai, we have

—2iX"t = —i(1 —i)D + A,

and so
—2iX"' + C(G) +iD = AL, + C(G) — D.
Hence 2™ det (Al C(G)-D
det(Lyy, — U(N)) = 2o detQ, + C(G) — D)
szl(vj — v, + i)
Q.E.D.

We present some determinant on the bond scattering matrix of a regular graph G by
using the Bartholdi zeta function of G.

Corollary 1 (Smilansky) Let G be an r-requar graph with n vertices and m edges.
Then, for the bond scattering matriz of G,

det(Io, — U(N)) = 2™ (r — ir + Xi) " det(A, + C(G) — rl,).

Proof. Let GG be an r-regular graph with n vertices and m edges, V(G) = {u1, -+, u,}
and R(G) ={by,...,bm,b1,...,bn}. Then we have

2
Tl —i(1— A7)

T =T; = Ty

for each j = 1,...,n. Thus, each agﬁc))()\) in (1) are given by

—ix if t(c) = o(b),
al(fic)) =4 i(l—xz) ifc=0b,
0 otherwise.

By Theorem 4, we have

det(Ip,, — UN) ™" = [J(1 = a,(N) 7,

[p]

where [p] runs over all primitive periodic orbits of G. Since
t(bn)) _(t(bn— t(b
1) = o0 D, = (bbb,
we have

det(I, — UN)) = H (1 — (z(l — x))cbc(p)(_ix>|P|—cbc(P))_1
[p]
’L(l . SL’) cbe(p) . -1
ST (- (e (—ir)? )
(- (5 )
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Now, let
i(l—x)

—x

u =

t= —ir.
By Theorem 2, since u = 1 +i/t, we have
det(Io,, —U(N)) = (1 — (1 —w)*?)""det(I, — tC(G) + (1 — w)t*(rL, — (1 — u)L,))
= 2™ "det(I, — tC(G) —i(rt +1i)I,)
= 2™ "det(2L, — t(C(G) + irL,))

= 9mn(—t)rdet(—2/tL, + C(G) +irl,)

Since 5
5= —i(r — i+ M),
we have
det(Ioy, — U(N)) = 27" (r — ri + A)" " det(AL, + C(G) — r1L,,).
Q.E.D.

3 The scattering matrix of a semiregular bipartite
graph

We present a decomposition formula for some determinant on the scattering matrix of a
semiregular bipartite graph.

A graph G is called bipartite, denoted by G = (Vi, V) if there exists a partition
V(G) = V4 UV, of V(G) such that wv € E(G) if and only if w € V; and v € V5. A
bipartite graph G = (V1,V5) is called (¢1 + 1, ¢z + 1)-semiregular if degqv = ¢; + 1 for
each v € V;(i = 1,2). For a (¢; + 1, g2 + 1)-semiregular bipartite graph G = (V1, V5), let
G be the graph with vertex set V; and an edge between two vertices in Gl if there is a
path of length two between them in G for i = 1,2. Then G is (g + 1)go-regular, and
G is (g + 1)gi-regular.

By Theorem 5, we obtain the following result.

Theorem 6 Let G = (V1,Vs) be a connected (q1 + 1, qo + 1)-semireqular bipartite graph
with v vertices and € edges. Set | Vi |=n, | Vo |=m(n <m). Then

o LN = (@1 4+ g2 = 2)A + (q1 + 1) (g2 + 1) = A3)
(g1 + 1)1 —14) + Ai)"((g2 + D)(1 — @) + Ai)™

where Spec(G) = {1, -+, £X,,0,---,0}.

det(Lo — U\)) = 2" (A — g — 1)
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Proof. The argument is an analogue of Hashimoto’s method [7].
By Theorem 5, we have

2% det (AL, + C(G) — D)

At = U = (00 0 =0 + 2y (@ + D01 — 1) + 3™

Let Vi = {uy, - ,u,} and Vo = {s1,--,s,}. Arrange vertices of G as follows:
UL,y Up; V1, , Uy We consider the matrix C(G) under this order. Then, with the

definition, we can see that
0 B

C@y:LB 0}

Since C(@) is symmetric, there exists a orthogonal matrix U € U(m) such that

[ 00 --- 0
BU=[C 0]= : :
* fn O 0
Now, let
I, O
p-[L 0]
Then we have
0 FoO
'PC(G)P=|'F 0 O |,
0O 0 O

where 'F is the transpose of F. Furthermore, we have

'"PDP = D.
Thus,
det(Io. — U(N))
_ 2 (N — qp — 1) ot { (A—q — DI, —F
(g1 4+ 1)A = 1) + X)) ((qe + 1)(1 — i) + i)™ —'F (A—gq — DI,
B 2 (N — gp — 1)
(D) =) 4+ M) (e + D)1 —3) + Xi)m
A—q — DI, 0
x det e (A—go— 1)L, — (A—q — 1)"FF }

_ 2Mi" (A — gy — )" e
_«m+Uﬂ—®+Mw«@+nu-@+MyﬁWUA @ —1)(A— g — 1)L, - 'FF).

Since C(G) is symmetric, 'FF is Hermitian and positive definite, i.e., the eigenvalues
of 'FF are of form:

)\%a 7)\31()\17 7)\n20)
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Therefore it follows that

[ (o +q@—2A+ (@ +1)(g2+ 1) =A%)

det(Ly = UN) = 2"\ = = )" " = = (@ - DA = ) £ )"

But, we have
det(M — C(@)) = A det (A’ — 'FF),
and so
Spec(G) = {1, -+, £N,,0,---,0}.
Therefore, the result follows. Q.E.D.

4 A weighted version of the scattering matrix of a
graph

Let G be a connected graph with n vertices and m unoriented edges, and C = C(G)
a symmertic weighted matrix of G with all nonnegative elements. Then C(G) is called
a non-negative symmetrlc weighted matrix of G. Set V(G) = {uy, - ,u,}, R(G) =
{bi, ... by by, b m}. and

vj = Z w(b) forj=1,...,n

o(b)=u;

Smilansky [13] considered a weighted version of the characteristic polynomial of the
bond scattering matrix of a regular graph GG, and expressed it by using the characteristic
polynomial of its weighted Laplacian of G.

The weighted bond scattering matriz U(X) = (Uep)e,rer(e) of G is defined by

0 = { 801 = e ST 47 = o)

othervvlse

where

2
j_Ujl—i(l—/\/Uj)

Tj= Ty

foreach j=1,...,n
Smilansky [13] stated a formula for some determinant on the weighted scattering
matrix of a graph G without a proof.

Theorem 7 (Smilansky) Let G be a connected graph with n vertices and m unoriented
edges and C(G) a non-negative symmetric weighted matriz of G. Then, for the weighted
scattering matriz of G,

27i" det (AL, + C(G) — D)

det(Iz, — U(N)) = T, (v; — iv; + i)
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Proof. The argument is an analogue of Bass’ method [2].

Let p be a unitary representation of I'; and d the degree of p. Furthermore, let V(G) =
{uy, - ,u,} and R(G) = {b1, -+ , by, byms1, -+, bam} such that b,,; = 13,(1 < i< m).
Let K = (K ;)1<i<ai:1<j<n be the 2] x n matrix defined as follows:

. w(b;) if t(b;) = uy,
koL

R otherwise.

Next we define two 2m X n matrices L = (Li,j)lgiSQm;ISan and H = (Hi,j)1§i§2m;1§j§n
as follows:

Li,j = { 0 w(bi)l’uj if O(bz) = Uy, H . = { A ’LU(b,) if O(bl) = uj,

otherwise. P otherwise.
Note that
Ty 0
L=H = HX (4)
0 T,
Then we have
L'K = 'B. (5)
and .
'HK = C(G), (6)

where two matrices B = (Bey)e, rer(q) and C(G) = (Wys)u,sev(e) are given by

B — d Tie) w(e)w(f) if t(e) = o(f), S w(u,s) if (u,s) € R(G),
of * 0 otherwise. P 0 otherwise.
Furthermore, .
'HH = D. (7)
Next, we have
"KL = "W, (G) (8)
and
‘HL = D,, (9)

where two matrices W, = ((Wg)us)usev(e) and Dy = (dus)usev(e) are given by

(1) = { w(u, s)z, if (u,s) € R(G), P { Vuly ifu=s,

10 otherwise. 0 otherwise.

Now, let
J— { ’ w(b1)Z o4y @ - - B w(bm) T,
W(b1)Tomy) @ - -+ B W(bm)To(b,) 0
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and
T=B-J.

Then we have R
L'H ="T"Jo + (w(b1)Topy) D - B W(bim)Ty,.)- (10)
We introduce two (2m + n) x (2m + n) matrices as follows:
1—-u)I, —'K+u'H ] Q- [ I, 'K—-u'H ]

b= 0 Lo, uL (1 —u?)Iy,

By (8) and (9), we have

[ (1 —u?)I, —u ‘KL +v? ‘HL 0
L ulLL (1 — U2)Igm
(1 —u)I, —u "W,(G) +u’D,

uLL (1 —ud)Iy, |-

By (5) and (10),

QP — (1 —u?)I, 0
| u(l =)L —ul'K + w?L'H + (1 — vy, |

Since R
W(b1)To(p) B+ O w(bn) Ty, = tJ'J,

and (1Jg)? = I,,, we have

—uL'K + v*L'H + (1 — u?)1y,
= Igm — u(tT + tJ) + U2(tTtJ0 + tJtJQ — tJotJQ)

= (Igm — u(tT + tJ - tJo))(Igm - utJo).

Thus,
QP — (1—u?)IL, 0
o u(l — u2)L (Igm — U(tT + tJ — tJO))(IQm — UtJo) '

Since det(PQ) = det(QP), we have
(1 —u?)?™det(I, — u "W,(G) + (D, — I,,)u?)
= (1 —u?)"det(Ipy, — u(*T +'J —'Jp)) det(Iy,, —u *Jo).

(1, ul I —ul
_ t _ m m m m
det(Iy,, —u tJy) = det < 0 L. }) det ([ I, L, })

— det ( (1= w3 Ii D = (1—u?)™
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Therefore it follows that
(1—u?)®det(I, — u *W,(G) + (D, — L,)u?) = (1 — u®)™™ det(I,,, — u(*'T +'J —1Jy)).
Hence
det(I, — u('B —tJy)) = (1 — u®)™ ™ det(I,, — uW,(G) + (D, — L,))u?). (11)

But, since
iU\) +Jo ="'B,

we have
‘B—-1tJ, = iU(N).

Substituting v = —i in (11), we obtain
det(Iy,, — U(N)) = 2" " det(I, + iW,(G) — (D, — 1,)). (12)
By (4), (6) and (8), we have
W, (G) = 'LK = 'X'HK = XC(G).
Furthermore, by (4), (7) and (9), we have
D, = 'LH = 'X'HH = XD.

Thus, we have 5 5
det(I,, — U(N)) = 2" " det(21, + XC(G) 4 iXD)
. 1 A = 2mindet(2X ! +iC(G) — D)
i" det X det(—2i + C(G) + D) T (o) 0 = )

i=1

Since 2$j_1 = v; — W + Ai, we have

—21 Xt = —i(1 —i)D + M,

and so . . . .
—2iX"' + C(G) +iD = AL, + C(G) — D.
Hence ~ ~
2m" det(MI,, + C(G) — D)
det(Is, —U(N)) = 7 . .
Ml &) [15-1(d; — id; + Xi)
Q.E.D.

Let G be a connected graph and C = C(G) a weighted matrix of G. Then G is called
a r-reqular weighted graph if Zo(b):u w(b) = r for each u € V(G).
By Theorem 7, the following result holds.
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Corollary 2 Let G be an r-requar weighted graph with n vertices and m edges, and C(G)
a non-negative symmetric weighted matrixz of G. Then

det(Iy, — U(N)) = 273" (r — ir + M) " det(AL, + C(G) — rL,).

Let G = (V4,V4) be a bipartite graph. Then G is called a (¢1 + 1, g2 + 1)-semiregular
weighted bipartite graph if > _ w(e) =¢; + 1 for each v € Vi(i = 1,2).
Similarly to the proof of Theorem 6, the following result holds.

Corollary 3 Let G = (V1, V) be a connected (q1+1, go+1)-semiregular weighted bipartite
graph with v vertices and € edges, and C = C(G) a real symmetric weighted matriz of G.
Set | Vi|=mn, | Vo |=m(n <m). Then

L = (@2 = 2)A+ (¢ + 1) (g2 + 1) — AF)

detlloe = UA) = 2" A = = )" S =) 20 (e + D0 — ) + A0

where Spec(C(G)) = {1, -+, £A,,0,---,0}.

5 The Euler product for a new zeta function

We present the Euler product for a new zeta function of a graph.

Foata and Zeilberger [4] gave a new proof of Bass’s Theorem by using the algebra of
Lyndon words. Let X be a finite nonempty set, < a total order in X, and X* the free
monoid generated by X. Then the total order < on X derive the lexicographic order <
on X*. A Lyndon word in X is defined to a nonempty word in X* which is prime, i.e.,
not the power [" of any other word [ for any r > 2, and which is also minimal in the class
of its cyclic rearrangements under <(see [9]). Let L denote the set of all Lyndon words
in X.

Let F be a square matrix whose entries b(z,2’)(z,2’ € X) form a set of commuting
variables. If w = x129-- -1, is a word in X*, define

ﬂ(w) = b(Il, l’g)b(ﬂ?g, 1’3) s b(ﬂ?m_l, me)b(ﬂl‘m, LE‘l).

Furthermore, let

B(L) =[-8

leL

The following theorem played a central role in [4].
Theorem 8 (Foata and Zeilbereger) (L) = det(I — F).

Let G be a connected graph and C(G) a weighted matrix of G. Then, let w(e, f) be
the (e, f)-array of the matrix B — J.
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Theorem 9 Let G be a connected graph, and let C = C(G) be a weighted matrixz of G.
Then the reciprocal of the zeta function of G is given by

Zl(G7w7 t) = H(]' - wptlpl)_1>
(p]

where [p] runs over all primitive periodic orbits of G, and
Wp = w (b, b2)w(by, bs) - - - w(by_1,b,), p= (b1,b2,...,bn)

Proof. Let R(G) = {b1,--- , by} such that b,,.; = Bj(l < j<m),and by < by <
-+ < boy, a total order of R(G). We consider the free monid R(G)* generated by R(G),
and the lexicographic order on R(G)* derived from <. If a cycle p is primitive, then there

exists a unique cycle in [p] which is a Lyndon word in R(G).
For z € R(G)*, let

B(z) = w, 1l if 2 is a primitive cycle,
10 otherwise.

Then we have

BL) =11 =5@) = [T — w,t?),

lelL [p]

where [p] runs over all primitive periodic orbits of G. Furthermore, we define variables
b(z,2")(x, 2" € R(G)) as follows:

N w(x, ) if t(x) = o(a'),
bz, ) = { 0 otherwise.

Theorem 8 implies that

[ = w,t) = det(I — tF) = det (T — ¢(B — Jy)).
[p]

Q.E.D.
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