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Abstract

Recently, Smilansky expressed the determinant of the bond scattering matrix

of a graph by means of the determinant of its Laplacian. We present another

proof for this Smilansky’s formula by using some weighted zeta function of a graph.

Furthermore, we reprove a weighted version of Smilansky’s formula by Bass’ method

used in the determinant expression for the Ihara zeta function of a graph.

1 Introduction

Graphs treated here are finite. Let G = (V (G), E(G)) be a connected graph (possibly
multiple edges and loops) with the set V (G) of vertices and the set E(G) of unoriented
edges uv joining two vertices u and v. For uv ∈ E(G), an arc (u, v) is the oriented edge
from u to v. Set R(G) = {(u, v), (v, u) | uv ∈ E(G)}. For b = (u, v) ∈ R(G), set u = o(b)
and v = t(b). Furthermore, let b̂ = (v, u) be the inverse of b = (u, v).

A path P of length n in G is a sequence P = (b1, · · · , bn) of n arcs such that bi ∈
R(G), t(bi) = o(bi+1)(1 ≤ i ≤ n − 1), where indices are treated mod n. Set | P |= n,
o(P ) = o(b1) and t(P ) = t(bn). Also, P is called an (o(P ), t(P ))-path. We say that a path
P = (b1, · · · , bn) has a backtracking or back-scatter if b̂i+1 = bi for some i(1 ≤ i ≤ n− 1).
A (v, w)-path is called a v-cycle (or v-closed path) if v = w. The inverse cycle of a cycle
C = (b1, · · · , bn) is the cycle Ĉ = (b̂n, · · · , b̂1).

We introduce an equivalence relation between cycles. Two cycles C1 = (e1, · · · , em)
and C2 = (f1, · · · , fm) are called equivalent if there exists k such that fj = ej+k for all j.
The inverse cycle of C is in general not equivalent to C. Let [C] be the equivalence class
which contains a cycle C. Let Br be the cycle obtained by going r times around a cycle
B. Such a cycle is called a power of B. A cycle C is reduced if C has no backtracking.
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Furthermore, a cycle C is primitive if it is not a power of a strictly smaller cycle. Note that
each equivalence class of primitive, reduced cycles of a graph G corresponds to a unique
conjugacy class of the fundamental group π1(G, u) of G at a vertex u of G. Furthermore,
an equivalence class of primitive cycles of a graph G is called a primitive periodic orbit of
G(see [13]).

The Ihara zeta function of a graph G is a function of a complex variable t with | t |
sufficiently small, defined by

Z(G, t) = ZG(t) =
∏

[p]

(1 − t|p|)−1,

where [p] runs over all primitive periodic orbits without back-scatter of G(see [8]).
Ihara zeta functions of graphs started from Ihara zeta functions of regular graphs by

Ihara [8]. Originally, Ihara presented p-adic Selberg zeta functions of discrete groups, and
showed that its reciprocal is a explicit polynomial. Serre [12] pointed out that the Ihara
zeta function is the zeta function of the quotient T/Γ (a finite regular graph) of the one-
dimensional Bruhat-Tits building T (an infinite regular tree) associated with GL(2, kp).

A zeta function of a regular graph G associated with a unitary representation of
the fundamental group of G was developed by Sunada [15,16]. Hashimoto [7] treated
multivariable zeta functions of bipartite graphs. Bass [2] generalized Ihara’s result on the
zeta function of a regular graph to an irregular graph, and showed that its reciprocal is
again a polynomial.

Theorem 1 (Bass) Let G be a connected graph. Then the reciprocal of the zeta function
of G is given by

Z(G, t)−1 = (1 − t2)r−1 det(I − tC(G) + t2(D − I)),

where r and C(G) are the Betti number and the adjacency matrix of G, respectively, and
D = (dij) is the diagonal matrix with dii = vi = deg ui where V (G) = {u1, · · · , un}.

Various proofs of Bass’ Theorem were given by Stark and Terras [14], Foata and
Zeilberger [4], Kotani and Sunada [9].

Let G be a connected graph. We say that a path P = (b1, · · · , bn) has a bump at t(bi)
if bi+1 = b̂i (1 ≤ i ≤ n). The cyclic bump count cbc(π) of a cycle π = (π1, · · · , πn) is

cbc(π) =| {i = 1, · · · , n | πi = π̂i+1} |,

where πn+1 = π1. Then the Bartholdi zeta function of G is a function of two complex
variables u, t with | u |, | t | sufficiently small, defined by

ζG(u, t) = ζ(G, u, t) =
∏

[C]

(1 − ucbc(C)t|C|)−1,

where [C] runs over all primitive periodic orbits of G(see [1]). If u = 0, then the Bartholdi
zeta function of G is the Ihara zeta function of G.

Bartholdi [1] gave a determinant expression of the Bartholdi zeta function of a graph.
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Theorem 2 (Bartholdi) Let G be a connected graph with n vertices and m unoriented
edges. Then the reciprocal of the Bartholdi zeta function of G is given by

ζ(G, u, t)−1 = (1 − (1 − u)2t2)m−n det(I − tC(G) + (1 − u)(D − (1 − u)I)t2).

In the case of u = 0, Theorem 2 implies Theorem 1.
Sato [11] defined a new zeta function of a graph by using not an infinite product but

a determinant.
Let G be a connected graph and V (G) = {u1, · · · , un}. Then we consider an n × n

matrix C̃ = (wij)1≤i,j≤n with ij entry the complex variable wij if (ui, uj) ∈ R(G), and
wij = 0 otherwise. The matrix C̃ = C̃(G) is called the weighted matrix of G. For
each path P = (ui1, · · · , uir) of G, the norm w(P ) of P is defined as follows: w(P ) =
wi1i2wi2i3 · · ·wir−1ir . Furthermore, let w(ui, uj) = wij, ui, uj ∈ V (G) and w(b) = wij, b =
(ui, uj) ∈ R(G).

Let G be a connected graph with n vertices and m unoriented edges, and C̃ = C̃(G)
a weighted matrix of G. Two 2m × 2m matrices B = B(G) = (Be,f)e,f∈R(G) and J0 =
J0(G) = (Je,f)e,f∈R(G) are defined as follows:

Be,f =

{

w(f) if t(e) = o(f),
0 otherwise

,Je,f =

{

1 if f = ê,
0 otherwise.

Then the zeta function of G is defined by

Z1(G,w, t) = det(In − t(B − J0))
−1.

If w(e) = 1 for any e ∈ R(G), then the zeta function of G is the Ihara zeta function of G.

Theorem 3 (Sato) Let G be a connected graph, and let C̃ = C̃(G) be a weighted matrix
of G. Then the reciprocal of the zeta function of G is given by

Z1(G,w, t)
−1 = (1 − t2)m−n det(In − tC̃(G) + t2(D̃ − In)),

where n =| V (G) |, m =| E(G) | and D̃ = (dij) is the diagonal matrix with dii =
∑

o(b)=ui
w(e), V (G) = {u1, · · · , un}.

The spectral determinant of the Laplacian on a quantum graph is closely related to
the Ihara zeta function of a graph(see [3,5,6,13]) .

Smilansky [13] considered spectral zeta functions and trace formulas for (discrete)
Laplacians on ordinary graphs, and expressed some determinant on the bond scattering
matrix of a graph G by using the characteristic polynomial of its Laplacian.

Let G be a connected graph with n vertices and m edges, V (G) = {u1, . . . , un} and
R(G) = {b1, . . . , bm, bm+1, . . . , b2m} such that bm+j = b̂j(1 ≤ j ≤ m).

The Laplacian (matrix) L = L(G) of G is defined by

L = L(G) = −C(G) + D.
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Let λ be a eigenvalue of L and ψ = (ψ1, . . . , ψn) the eigenvector corresponding to λ. For
each arc b = (uj, ul), one associates a bond wave function

ψb(x) = abe
iπx/4 + ab̂e

−iπx/4, x = ±1

under the condition
ψb(1) = ψj, ψb(−1) = ψl.

We consider the following three conditions:

1. uniqueness: The value of the eigenvector at the vertex uj, ψj, computed in the terms
of the bond wave functions is the same for all the arcs emanating from uj.

2. ψ is an eigenvector of L;

3. consistency: The linear relation between the incoming and the outgoing coefficients
(1) must be satisfied simultaneously at all vertices.

By the uniqueness, we have

ab1e
iπ/4 + ab̂1

e−iπ/4 = ab2e
iπ/4 + ab̂2

e−iπ/4 = · · · = abvj
eiπ/4 + ab̂vj

e−iπ/4,

where b1, b2, . . . , bvj
are arcs emanating from uj, and vj = deg uj, i =

√
−1.

By the condition 2, we have

−
vj

∑

k=1

(abk
e−iπ/4 + ab̂k

eiπ/4) = (λ− vj)
1

vj

vj
∑

k=1

(abk
eiπ/4 + ab̂k

e−iπ/4).

Thus, for each arc b with o(b) = uj,

ab =
∑

t(c)=uj

σ
(uj)
b,c (λ)ac, (1)

where

σ
(uj)
b,c (λ) = i(δb̂,c −

2

vj

1

1 − i(1 − λ/vj)
),

and δb̂,c is the Kronecker delta. The bond scattering matrix U(λ) = (Uef )e,f∈R(G) of G is
defined by

Uef =

{

σ
(t(f))
e,f if t(f) = o(e),

0 otherwise.

By the consistency, we have
U(λ)a = a,

where a = t(ab1 , ab2 , . . . , ab2m
). This holds if and only if

det(I2m − U(λ)) = 0.
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Theorem 4 (Smilansky) Let G be a connected graph with n vertices and m edges. Then
the characteristic polynomial of the bond scattering matrix of G is given by

det(I2m − U(λ)) =
2min det(λIn + C(G) − D)

∏n
j=1(vj − ivj + λi)

=
∏

[p]

(1 − ap(λ)),

where [p] runs over all primitive periodic orbits of G, and

ap(λ) = σ
(t(bn))
b1,bn

σ
(t(bn−1))
bn,bn−1

· · ·σ(t(b1))
b2,b1

, p = (b1, b2, . . . , bn).

In this paper, we reprove Smilansky’s formula for the characteristic polynomial of the
bond scattering matrix of a graph and its weighted version by using some zeta functions
of a graph. In Section 2, we consider a new zeta function of a graph G, and present
another proof of Smilansky’s formula for some determinant on the bond scattering matrix
of a graph by means of the Laplacian of G. Furthermore, we give Smilansky’s formula for
the case of a regular graph by using Bartholdi zeta function of a graph. In Section 3, we
present a decomposition formula for some determinant on the bond scattering matrix of
a semiregular bipartite graph. In Section 4, we give another proof for a weighted version
of the above Smilansky’s formula by Bass’ method used in the determinant expression
for the Ihara zeta function of a graph. In Section 5, we express a new zeta function of a
graph by using the Euler product.

2 The scattering matrix of a graph

We present a proof of Theorem 4 by using Theorem 3, which is different from a proof in
[13].

Theorem 5 (Smilansky) Let G be a connected graph with n vertices and m edges.
Then, for the bond scattering matrix of G,

det(I2m − U(λ)) =
2min det(λIn + C(G) − D)

∏n
j=1(vj − ivj + λi)

.

Proof. Let G be a connected graph with n vertices and m edges, V (G) = {u1, · · · , un}
and R(G) = {b1, . . . , bm, b̂1, . . . , b̂m}. Set vj = deg uj and

xj = xuj
=

2

vj

1

1 − i(1 − λ/vj)

for each j = 1, . . . , n. Then we consider a 2m× 2m matrix B = (Bef)e,f∈R(G) given by

Bef =

{

xo(f) if t(e) = o(f),
0 otherwise.
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By Theorem 3, we have

det(I2m − u(B− J0)) = (1 − u2)m−n det(In − uWx(G) + u2(Dx − In)),

where Wx(G) = (wjk) and Dx = (djk) are given as follows:

wjk =

{

xj if (uj, uk) ∈ R(G),
0 otherwise

, djk =

{

vjxj if j = k,
0 otherwise.

Thus,

det(I2m − u(tB − tJ0)) = (1 − u2)m−n det(In − uWx(G) + u2(Dx − In)), (2)

where tB is the transpose of B. Note that

vjxj =
2

1 − i(1 − λ/vj)
(1 ≤ j ≤ n).

But, since
iU(λ) + J0 = tB,

we have
tB − tJ0 = iU(λ).

Substituting u = −i in (2), we obtain

det(I2m − U(λ)) = 2m−n det(In + iWx(G) − (Dx − In)). (3)

Now, we have

Wx(G) =







x1 0
. . .

0 xn






C(G)

and

Dx =







x1 0
. . .

0 xn






D.

Let

X =







x1 0
. . .

0 xn






.

Then it follows that

det(I2m − U(λ)) = 2m−n det(2In + iXC(G) − XD)

= 2m−nin detX det(−2iX−1 + C(G) + iD) =
2min det(−2iX−1 + C(G) + iD)

∏n
j=1(vj − ivj + λi)

.
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Since 2x−1
j = vj − ivj + λi, we have

−2iX−1 = −i(1 − i)D + λIn

and so
−2iX−1 + C(G) + iD = λIn + C(G) − D.

Hence

det(I2m − U(λ)) =
2min det(λIn + C(G) − D)

∏n
j=1(vj − ivj + λi)

.

Q.E.D.
We present some determinant on the bond scattering matrix of a regular graph G by

using the Bartholdi zeta function of G.

Corollary 1 (Smilansky) Let G be an r-reguar graph with n vertices and m edges.
Then, for the bond scattering matrix of G,

det(I2m − U(λ)) = 2min(r − ir + λi)−n det(λIn + C(G) − rIn).

Proof. Let G be an r-regular graph with n vertices and m edges, V (G) = {u1, · · · , un}
and R(G) = {b1, . . . , bm, b̂1, . . . , b̂m}. Then we have

x = xj = xuj
=

2

r

1

1 − i(1 − λ/r)

for each j = 1, . . . , n. Thus, each σ
(t(c))
b,c (λ) in (1) are given by

σ
(t(c))
b,c =







−ix if t(c) = o(b),

i(1 − x) if c = b̂,
0 otherwise.

By Theorem 4, we have

det(I2m − U(λ))−1 =
∏

[p]

(1 − ap(λ))−1,

where [p] runs over all primitive periodic orbits of G. Since

ap(λ) = σ
(t(bn))
b1,bn

σ
(t(bn−1))
bn,bn−1

· · ·σ(t(b1))
b2,b1

, p = (b1, b2, . . . , bn),

we have

det(I2m − U(λ)) =
∏

[p]

(

1 −
(

i(1 − x)
)cbc(p)

(−ix)|p|−cbc(p)
)−1

=
∏

[p]

(

1 −
(

i(1 − x)

−ix

)cbc(p)

(−ix)|p|
)−1

.
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Now, let

u =
i(1 − x)

−ix , t = −ix.

By Theorem 2, since u = 1 + i/t, we have

det(I2m − U(λ)) = (1 − (1 − u)2t2)m−n det(In − tC(G) + (1 − u)t2(rIn − (1 − u)In))

= 2m−n det(In − tC(G) − i(rt+ i)In)

= 2m−n det(2In − t(C(G) + irIn))

= 2m−n(−t)n det(−2/tIn + C(G) + irIn)

Since

−2

t
= −i(r − ri+ λi),

we have

det(I2m − U(λ)) = 2m−nin(r − ri+ λ)−n det(λIn + C(G) − rIn).

Q.E.D.

3 The scattering matrix of a semiregular bipartite

graph

We present a decomposition formula for some determinant on the scattering matrix of a
semiregular bipartite graph.

A graph G is called bipartite, denoted by G = (V1, V2) if there exists a partition
V (G) = V1 ∪ V2 of V (G) such that uv ∈ E(G) if and only if u ∈ V1 and v ∈ V2. A
bipartite graph G = (V1, V2) is called (q1 + 1, q2 + 1)-semiregular if deg Gv = qi + 1 for
each v ∈ Vi(i = 1, 2). For a (q1 + 1, q2 + 1)-semiregular bipartite graph G = (V1, V2), let
G[i] be the graph with vertex set Vi and an edge between two vertices in G[i] if there is a
path of length two between them in G for i = 1, 2. Then G[1] is (q1 + 1)q2-regular, and
G[2] is (q2 + 1)q1-regular.

By Theorem 5, we obtain the following result.

Theorem 6 Let G = (V1, V2) be a connected (q1 + 1, q2 + 1)-semiregular bipartite graph
with ν vertices and ε edges. Set | V1 |= n, | V2 |= m(n ≤ m). Then

det(I2ε −U(λ)) = 2min(λ− q2 − 1)m−n

∏n
j=1(λ

2 − (q1 + q2 − 2)λ+ (q1 + 1)(q2 + 1) − λ2
j)

((q1 + 1)(1 − i) + λi)n((q2 + 1)(1 − i) + λi)m
.

where Spec(G) = {±λ1, · · · ,±λn, 0, · · · , 0}.
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Proof. The argument is an analogue of Hashimoto’s method [7].
By Theorem 5, we have

det(I2ε − U(λ)) =
2εiν det(λIν + C(G) − D)

((q1 + 1)(1 − i) + λi)n((q2 + 1)(1 − i) + λi)m
.

Let V1 = {u1, · · · , un} and V2 = {s1, · · · , sm}. Arrange vertices of G as follows:
u1, · · · , un; v1, · · · , vm. We consider the matrix C(G) under this order. Then, with the
definition, we can see that

C(G) =

[

0 B
tB 0

]

.

Since C(G) is symmetric, there exists a orthogonal matrix U ∈ U(m) such that

BU =
[

C 0
]

=







µ1 0 0 · · · 0
. . .

...
...

? µn 0 · · · 0






.

Now, let

P =

[

In 0
0 U

]

.

Then we have

tPC(G)P =





0 F 0
tF 0 0
0 0 0



 ,

where tF is the transpose of F. Furthermore, we have

tPDP = D.

Thus,

det(I2ε − U(λ))

=
2min(λ− q2 − 1)m−n

((q1 + 1)(1 − i) + λi)n((q2 + 1)(1 − i) + λi)m
det

[

(λ− q1 − 1)In −F
− tF (λ− q2 − 1)In

]

=
2min(λ− q2 − 1)m−n

((q1 + 1)(1 − i) + λi)n((q2 + 1)(1 − i) + λi)m

× det

[

(λ− q1 − 1)In 0
− tF (λ− q2 − 1)In − (λ− q1 − 1)−1tFF

]

=
2min(λ− q2 − 1)m−n

((q1 + 1)(1 − i) + λi)n((q2 + 1)(1 − i) + λi)m
det

(

(λ− q1 − 1)(λ− q2 − 1)In − tFF
)

.

Since C(G) is symmetric, tFF is Hermitian and positive definite, i.e., the eigenvalues
of tFF are of form:

λ2
1, · · · , λ2

n(λ1, · · · , λn ≥ 0).
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Therefore it follows that

det(I2ε −U(λ)) = 2min(λ− q2 − 1)m−n

∏n
j=1(λ

2 − (q1 + q2 − 2)λ+ (q1 + 1)(q2 + 1) − λ2
j)

((q1 + 1)(1 − i) + λi)n((q2 + 1)(1 − i) + λi)m
.

But, we have
det(λI − C(G)) = λ(m−n) det(λ2I − tFF),

and so
Spec(G) = {±λ1, · · · ,±λn, 0, · · · , 0}.

Therefore, the result follows. Q.E.D.

4 A weighted version of the scattering matrix of a

graph

Let G be a connected graph with n vertices and m unoriented edges, and C̃ = C̃(G)
a symmertic weighted matrix of G with all nonnegative elements. Then C̃(G) is called
a non-negative symmetric weighted matrix of G. Set V (G) = {u1, · · · , un}, R(G) =
{b1, . . . , bm, b̂1, . . . , b̂m}. and

vj =
∑

o(b)=uj

w(b) for j = 1, . . . , n.

Smilansky [13] considered a weighted version of the characteristic polynomial of the
bond scattering matrix of a regular graph G, and expressed it by using the characteristic
polynomial of its weighted Laplacian of G.

The weighted bond scattering matrix U(λ) = (Uef)e,f∈R(G) of G is defined by

Uef =

{

i(δê,f − xt(f)

√

w(e)
√

w(f)) if t(f) = o(e),
0 otherwise,

where

xj = xuj
=

2

vj

1

1 − i(1 − λ/vj)

for each j = 1, . . . , n.
Smilansky [13] stated a formula for some determinant on the weighted scattering

matrix of a graph G without a proof.

Theorem 7 (Smilansky) Let G be a connected graph with n vertices and m unoriented
edges and C̃(G) a non-negative symmetric weighted matrix of G. Then, for the weighted
scattering matrix of G,

det(I2m − U(λ)) =
2min det(λIn + C̃(G) − D̃)

∏n
j=1(vj − ivj + λi)

.
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Proof. The argument is an analogue of Bass’ method [2].
Let ρ be a unitary representation of Γ, and d the degree of ρ. Furthermore, let V (G) =

{u1, · · · , un} and R(G) = {b1, · · · , bm, bm+1, · · · , b2m} such that bm+i = b̂i(1 ≤ i ≤ m).
Let K = (Ki,j)1≤i≤2l;1≤j≤n be the 2l × n matrix defined as follows:

Ki,j :=

{ √

w(bi) if t(bi) = uj,
0 otherwise.

Next we define two 2m × n matrices L = (Li,j)1≤i≤2m;1≤j≤n and H = (Hi,j)1≤i≤2m;1≤j≤n

as follows:

Li,j :=

{ √

w(bi)xuj
if o(bi) = uj,

0 otherwise.
,Hi,j :=

{ √

w(bi) if o(bi) = uj,
0 otherwise.

Note that

L = H







xu1
0

. . .

0 xun






= HX. (4)

Then we have
LtK = tB. (5)

and
tHK = C̃(G), (6)

where two matrices B = (Bef)e,f∈R(G) and C̃(G) = (wus)u,s∈V (G) are given by

Bef :=

{

xt(e)

√

w(e)w(f) if t(e) = o(f),
0 otherwise.

, wuv :=

{

w(u, s) if (u, s) ∈ R(G),
0 otherwise.

Furthermore,
tHH = D̃. (7)

Next, we have
tKL = tWx(G) (8)

and
tHL = Dx, (9)

where two matrices Wx = ((wx)us)u,s∈V (G) and Dx = (dus)u,s∈V (G) are given by

(wx)us :=

{

w(u, s)xu if (u, s) ∈ R(G),
0 otherwise.

, dus :=

{

vuxu if u = s,
0 otherwise.

Now, let

J =

[

0 w(b1)xo((b̂1) ⊕ · · · ⊕ w(bm)xo(b̂m)

w(b1)xo(b1) ⊕ · · · ⊕ w(bm)xo(bm) 0

]
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and
T = B − J.

Then we have
LtH = tTtJ0 + (w(b1)xo(b1) ⊕ · · · ⊕ w(b̂m)xo(b̂m)). (10)

We introduce two (2m+ n) × (2m+ n) matrices as follows:

P =

[

(1 − u2)In −tK + u tH
0 I2m

]

,Q =

[

In
tK − u tH

uL (1 − u2)I2m

]

By (8) and (9), we have

PQ =

[

(1 − u2)In − u tKL + u2 tHL 0
uL (1 − u2)I2m

]

=

[

(1 − u2)In − u tWx(G) + u2Dx

uL (1 − u2)I2m

]

.

By (5) and (10),

QP =

[

(1 − u2)In 0
u(1 − u2)L −uLtK + u2LtH + (1 − u2)I2m

]

.

Since
w(b1)xo(b1) ⊕ · · · ⊕ w(b̂m)xo(b̂m) = tJtJ0

and (tJ0)
2 = I2m, we have

−uLtK + u2LtH + (1 − u2)I2m

= I2m − u(tT + tJ) + u2(tTtJ0 + tJtJ0 − tJ0
tJ0)

= (I2m − u(tT + tJ − tJ0))(I2m − utJ0).

Thus,

QP =

[

(1 − u2)In 0
u(1 − u2)L (I2m − u(tT + tJ − tJ0))(I2m − utJ0)

]

.

Since det(PQ) = det(QP), we have

(1 − u2)2m det(In − u tWx(G) + (Dx − In)u2)

= (1 − u2)n det(I2m − u(tT + tJ − tJ0)) det(I2m − u tJ0).

But,

det(I2m − u tJ0) = det

([

Im uIm

0 Im

])

det

([

Im −uIm

−uIm Im

])

= det

([

(1 − u2)Im 0
∗ Im

])

= (1 − u2)m.
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Therefore it follows that

(1− u2)2m det(In − u tWx(G) + (Dx − In)u2) = (1− u2)(m+n) det(I2m − u(tT + tJ− tJ0)).

Hence

det(I2m − u(tB − tJ0)) = (1 − u2)(m−n) det(In − uWx(G) + (Dx − In))u2). (11)

But, since
iU(λ) + J0 = tB,

we have
tB − tJ0 = iU(λ).

Substituting u = −i in (11), we obtain

det(I2m − U(λ)) = 2m−n det(In + iWx(G) − (Dx − In)). (12)

By (4), (6) and (8), we have

Wx(G) = tLK = tXtHK = XC̃(G).

Furthermore, by (4), (7) and (9), we have

Dx = tLH = tXtHH = XD̃.

Thus, we have
det(I2m − U(λ)) = 2m−n det(2In + XC̃(G) + iXD̃)

= 2m−nin detX det(−2iX−1 + C̃(G) + iD̃) =
2min det(2X−1 + iC̃(G) − D̃)

∏n
j=1(vj − ivj + λi)

.

Since 2x−1
j = vj − ivj + λi, we have

−2iX−1 = −i(1 − i)D̃ + λIn

and so
−2iX−1 + C̃(G) + iD̃ = λIn + C̃(G) − D̃.

Hence

det(I2m − U(λ)) =
2min det(λIn + C̃(G) − D̃)

∏n
j=1(dj − idj + λi)

.

Q.E.D.
Let G be a connected graph and C̃ = C̃(G) a weighted matrix of G. Then G is called

a r-regular weighted graph if
∑

o(b)=u w(b) = r for each u ∈ V (G).
By Theorem 7, the following result holds.
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Corollary 2 Let G be an r-reguar weighted graph with n vertices and m edges, and C̃(G)
a non-negative symmetric weighted matrix of G. Then

det(I2m − U(λ)) = 2min(r − ir + λi)−n det(λIn + C̃(G) − rIn).

Let G = (V1, V2) be a bipartite graph. Then G is called a (q1 + 1, q2 + 1)-semiregular
weighted bipartite graph if

∑

o(e)=v w(e) = qi + 1 for each v ∈ Vi(i = 1, 2).
Similarly to the proof of Theorem 6, the following result holds.

Corollary 3 Let G = (V1, V2) be a connected (q1+1, q2+1)-semiregular weighted bipartite
graph with ν vertices and ε edges, and C̃ = C̃(G) a real symmetric weighted matrix of G.
Set | V1 |= n, | V2 |= m(n ≤ m). Then

det(I2ε −U(λ)) = 2min(λ− q2 − 1)m−n

∏n
j=1(λ

2 − (q1 + q2 − 2)λ+ (q1 + 1)(q2 + 1) − λ2
j)

((q1 + 1)(1 − i) + λi)n((q2 + 1)(1 − i) + λi)m
.

where Spec(C̃(G)) = {±λ1, · · · ,±λn, 0, · · · , 0}.

5 The Euler product for a new zeta function

We present the Euler product for a new zeta function of a graph.
Foata and Zeilberger [4] gave a new proof of Bass’s Theorem by using the algebra of

Lyndon words. Let X be a finite nonempty set, < a total order in X, and X∗ the free
monoid generated by X. Then the total order < on X derive the lexicographic order <
on X∗. A Lyndon word in X is defined to a nonempty word in X∗ which is prime, i.e.,
not the power lr of any other word l for any r ≥ 2, and which is also minimal in the class
of its cyclic rearrangements under <(see [9]). Let L denote the set of all Lyndon words
in X.

Let F be a square matrix whose entries b(x, x′)(x, x′ ∈ X) form a set of commuting
variables. If w = x1x2 · · ·xm is a word in X∗, define

β(w) = b(x1, x2)b(x2, x3) · · · b(xm−1, xm)b(xm, x1).

Furthermore, let

β(L) =
∏

l∈L

(1 − β(l)).

The following theorem played a central role in [4].

Theorem 8 (Foata and Zeilbereger) β(L) = det(I − F).

Let G be a connected graph and C̃(G) a weighted matrix of G. Then, let w(e, f) be
the (e, f)-array of the matrix B − J0.
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Theorem 9 Let G be a connected graph, and let C̃ = C̃(G) be a weighted matrix of G.
Then the reciprocal of the zeta function of G is given by

Z1(G,w, t) =
∏

[p]

(1 − wpt
|p|)−1,

where [p] runs over all primitive periodic orbits of G, and

wp = w(b1, b2)w(b2, b3) · · ·w(bn−1, bn), p = (b1, b2, . . . , bn)

Proof. Let R(G) = {b1, · · · , b2m} such that bm+j = b̂j(1 ≤ j ≤ m), and b1 < b2 <
· · · < b2m a total order of R(G). We consider the free monid R(G)∗ generated by R(G),
and the lexicographic order on R(G)∗ derived from <. If a cycle p is primitive, then there
exists a unique cycle in [p] which is a Lyndon word in R(G).

For z ∈ R(G)∗, let

β(z) =

{

wzt
|z| if z is a primitive cycle,

0 otherwise.

Then we have
β(L) =

∏

l∈L

(1 − β(l)) =
∏

[p]

(1 − wpt
|p|),

where [p] runs over all primitive periodic orbits of G. Furthermore, we define variables
b(x, x′)(x, x′ ∈ R(G)) as follows:

b(x, x′) =

{

w(x, x′) if t(x) = o(x′),
0 otherwise.

Theorem 8 implies that

∏

[p]

(1 − wpt
|p|) = det(I − tF) = det(I− t(B − J0)).

Q.E.D.
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