A character on the quasi-symmetric functions coming from multiple zeta values

Michael E. Hoffman

Dept. of Mathematics
U. S. Naval Academy, Annapolis, MD 21402 USA
meh@usna.edu

Submitted: May 6, 2008; Accepted: Jul 23, 2008; Published: Jul 28, 2008 Keywords: multiple zeta values, symmetric functions, quasi-symmetric functions, Hopf algebra character, gamma function, Γ-genus, Γ-genus Mathematics Subject Classifications: Primary 05E05; Secondary 11M41, 14J32, 16W30, 57R20

Abstract

We define a homomorphism ζ from the algebra of quasi-symmetric functions to the reals which involves the Euler constant and multiple zeta values. Besides advancing the study of multiple zeta values, the homomorphism ζ appears in connection with two Hirzebruch genera of almost complex manifolds: the Γ -genus (related to mirror symmetry) and the $\hat{\Gamma}$ -genus (related to an S^1 -equivariant Euler class). We decompose ζ into its even and odd factors in the sense of Aguiar, Bergeron, and Sottille, and demonstrate the usefulness of this decomposition in computing ζ on the subalgebra of symmetric functions (which suffices for computations of the Γ -and $\hat{\Gamma}$ -genera).

1 Introduction

Let $x_1, x_2, ...$ be a countably infinite sequence of indeterminates, each having degree 1, and let $\mathfrak{P} \subset \mathbf{R}[[x_1, x_2, ...]]$ be the set of formal power series in the x_i having bounded degree. Then \mathfrak{P} is a graded algebra over the reals. An element $f \in \mathfrak{P}$ is called a symmetric function if

coefficient of
$$x_{n_1}^{i_1} x_{n_2}^{i_2} \cdots x_{n_k}^{i_k}$$
 in $f = \text{coefficient of } x_1^{i_1} x_2^{i_2} \cdots x_k^{i_k}$ in f (1)

for any k-tuple (n_1, \ldots, n_k) of distinct positive integers, and f is called a quasi-symmetric function if equation (1) holds whenever

$$n_1 < n_2 < \cdots < n_k.$$

The vector spaces Sym and QSym of symmetric and quasi-symmetric functions respectively are both subalgebras of \mathfrak{P} , with Sym \subset QSym. Of course Sym is a familiar object,

for which the first chapter of Macdonald [20] is a convenient reference. The algebra QSym was introduced by Gessel [9], and in recent years has become increasingly important in combinatorics; see, e.g., [24].

A vector space basis for QSym is given by the monomial quasi-symmetric functions, which are indexed by compositions (ordered partitions). The monomial quasi-symmetric function M_I corresponding to the composition $I = (i_1, i_2, \ldots, i_k)$ is

$$M_I = \sum_{n_1 < n_2 < \dots < n_k} x_{n_1}^{i_1} x_{n_2}^{i_2} \cdots x_{n_k}^{i_k}. \tag{2}$$

For a composition $I = (i_1, ..., i_k)$ we write $\ell(I) = k$ for the number of parts of I, and $|I| = i_1 + \cdots + i_k$ for the sum of the parts of I. If |I| = n, we say I is a composition of n and write $I \models n$. If I is a composition, there is a partition $\pi(I)$ given by forgetting the ordering: the monomial symmetric function m_{λ} corresponding to a partition λ is given by

$$m_{\lambda} = \sum_{\pi(I)=\lambda} M_I,$$

and the monomial symmetric functions generate Sym as a vector space. For a partition λ , we use the notations $\ell(\lambda)$ and $|\lambda|$ in the same way as for compositions; if $|\lambda| = n$ we say λ is a partition of n and write $\lambda \vdash n$.

For a composition $(i_1, i_2, ..., i_k)$ with $i_1 > 1$, the corresponding multiple zeta value is the k-fold infinite series

$$\zeta(i_1, i_2, \dots, i_k) = \sum_{\substack{n_1 > n_2 > \dots > n_k > 1}} \frac{1}{n_1^{i_1} n_2^{i_2} \cdots n_k^{i_k}}.$$
 (3)

Multiple zeta values were introduced in [12] and [25], but the case k = 2 actually goes back to Euler [7]. They have been studied extensively in recent decades, and have appeared in a surprising number of contexts, including knot theory and particle physics. Surveys include [4, 5, 15].

The multiple zeta value (3) can be obtained from the monomial quasi-symmetric function $M_{(i_k,i_{k-1},...,i_1)}$ by sending x_n to $\frac{1}{n}$, but the series won't converge unless $i_1 > 1$. If we let QSym^0 be the subspace of QSym generated by the monomial quasi-symmetric functions M_I with the last part of I greater than 1, then it turns out that QSym^0 is a subalgebra of QSym , and we have a homomorphism $\zeta: \operatorname{QSym}^0 \to \mathbf{R}$ whose images are the multiple zeta values.

In fact (as we explain in the next section) QSym = QSym⁰[$M_{(1)}$], so to extend ζ to a homomorphism defined on all of QSym it suffices to define $\zeta(M_{(1)})$. As the author noted in [13], setting $\zeta(M_{(1)}) = \gamma$ (the Euler-Mascheroni constant) is a fruitful choice. If

$$H(t) = 1 + h_1 t + h_2 t^2 + \dots \in \text{Sym}[[t]]$$

is the generating function for the complete symmetric functions

$$h_n = \sum_{I \models n} M_I = \sum_{\lambda \vdash n} m_\lambda,$$

then setting $\zeta(M_{(1)}) = \gamma$ implies [13, Theorem 5.1]

$$\zeta(H(t)) = \Gamma(1-t),\tag{4}$$

where Γ is the usual gamma function. This is equivalent to

$$\zeta(E(t)) = \frac{1}{\Gamma(1+t)},\tag{5}$$

where

$$E(t) = 1 + e_1 t + e_2 t^2 + \cdots$$

is the generating function of the elementary symmetric functions $e_j = M_{(1^j)}$ (we write 1^j for a string of j 1's). The identity (4) was a key step in the proof in [13] that

$$\sum_{n,m\geq 1} \zeta(n+1,1^{m-1})s^n t^m = 1 - \exp\left(\sum_{i\geq 2} \zeta(i) \frac{t^i + s^i - (t+s)^i}{i}\right).$$

This latter identity (proved by a different method in [3]) is interesting since it shows that any multiple zeta value of the form $\zeta(n+1,1,\ldots,1)$ can be expressed as a polynomial with rational coefficients in the ordinary zeta values $\zeta(i)$.

Libgober [17] showed that the Γ -genus appears in formulas that relate Chern classes of certain manifolds to the periods of their mirrors. The Γ -genus is the Hirzebruch [11] genus associated with the power series $Q(x) = \Gamma(1+x)^{-1}$, i.e., the genus coming from the multiplicative sequence of polynomials $\{Q_i(c_1,\ldots,c_i)\}$ in Chern classes, where

$$\sum_{i=0}^{\infty} Q_i(e_1, \dots, e_i) = \prod_{i=1}^{\infty} \frac{1}{\Gamma(1+x_i)}.$$

As shown in [14], the coefficient of the monomial $c_{\lambda} = c_{\lambda_1} c_{\lambda_2} \cdots$ in $Q_i(c_1, \ldots, c_i)$ is $\zeta(m_{\lambda})$, for any partition λ . For example, using the tables in the Appendix, we have

$$Q_3(c_1, c_2, c_3) = \zeta(3)c_3 + (\gamma\zeta(2) - \zeta(3))c_1c_2 + \frac{1}{6}(\gamma^3 - 3\gamma\zeta(2) + 2\zeta(3))c_1^3.$$

More recently Lu [19] defined a similar $\hat{\Gamma}$ -genus $\{P_i\}$ by using the generating function $P(x) = e^{-\gamma x} \Gamma(1+x)^{-1}$ in place of $Q(x) = \Gamma(1+x)^{-1}$, and related this new genus to an S^1 -equivariant Euler class. The coefficient of c_{λ} in $P_i(c_1,\ldots,c_i)$ can be obtained by setting $\gamma = 0$ in $\zeta(m_{\lambda})$. Thus

$$P_3(c_1, c_2, c_3) = \zeta(3)c_3 - \zeta(3)c_1c_2 + \frac{1}{3}\zeta(3)c_1^3$$

(cf. Table 1 of [19]). If we write $\hat{\zeta}$ for the function on QSym that sends $M_{(1)}$ to zero and agrees with ζ on QSym⁰, then

$$\hat{\zeta}(E(t)) = \frac{1}{e^{\gamma t} \Gamma(1+t)}.$$

Following the proof of the result of [14], we then have

$$\sum_{i=0}^{\infty} P_i(e_1, \dots, e_i) t^i = \prod_{i=1}^{\infty} \frac{1}{e^{\gamma x_i t} \Gamma(1 + x_i t)} = \sum_{\lambda} \hat{\zeta}(e_{\lambda}) m_{\lambda} t^{|\lambda|} = \sum_{\lambda} \hat{\zeta}(m_{\lambda}) e_{\lambda} t^{|\lambda|}.$$
 (6)

While equation (6) appears in [19] (see Prop. 4.3), it has a nice corollary that doesn't. Recall [11, Theorem 4.10.2] that the Chern classes of the tangent bundle of projective space \mathbb{CP}^n are given by

$$c_i = \binom{n+1}{i} a^i$$

with $a \in H^2(\mathbb{CP}^n; \mathbb{Z})$ such that $\langle a^n, [\mathbb{CP}^n] \rangle = 1$, where $[\mathbb{CP}^n] \in H_{2n}(\mathbb{CP}^n; \mathbb{Z})$ is the fundamental class. Now by [20, p. 26] the specialization

$$x_i = \begin{cases} 1, & i = 1, 2, \dots, n+1 \\ 0, & i > n+1 \end{cases}$$

sends e_i to $\binom{n+1}{i}$. It then follows from equation (6) that

$$\hat{\Gamma}(\mathbf{CP}^n) = \langle P_n(c_1, \dots, c_n), [\mathbf{CP}^n] \rangle = \text{coefficient of } t^n \text{ in } \frac{1}{(e^{\gamma t}\Gamma(1+t))^{n+1}}$$

(cf. Table 2 of [19]).

As another occurrence of ζ , we cite the following result about values of the derivatives of the gamma function at positive integers from [22]: if n and k are positive integers, then

$$\frac{\Gamma^{(k)}(n)}{k!} = \sum_{j=0}^{k} {n \brack k+1-j} (-1)^{j} \zeta(h_{j}),$$

where $\binom{n}{j}$ is the number of permutations of degree n with exactly j cycles (Stirling number of the first kind). Cf. [23, pp. 40-44].

These examples suggest that the homomorphism $\zeta: \operatorname{QSym} \to \mathbf{R}$ may be useful to calculate. Now QSym is actually a Hopf algebra, as we discuss in the next section. Aguiar, Bergeron and Sottille [1] develop a theory of graded connected Hopf algebras endowed with characters (scalar-valued homomorphisms), in which "even" and "odd" characters are defined. A key result is that any such character χ is uniquely expressible as the convolution product $\chi_{+}\chi_{-}$ of an even character χ_{+} times an odd one χ_{-} . In this paper we discuss some results on the character $\zeta: \operatorname{QSym} \to \mathbf{R}$ and its factors ζ_{+} and ζ_{-} , and particularly on the restrictions of these characters to $\operatorname{Sym} \subset \operatorname{QSym}$. (Note that for the computation of the Γ - and $\hat{\Gamma}$ -genera, the restriction of ζ to Sym suffices.)

After developing some properties of the Hopf algebras QSym and Sym in §2, we discuss the factorization $\zeta = \zeta_+\zeta_-$ on the full algebra QSym in §3. In §4 we consider the restriction of ζ , ζ_+ and ζ_- to Sym. First we show how to use the character table of the symmetric

group to compute ζ on Schur functions. Then we consider the effect of ζ on the elementary and complete symmetric functions. We show equation (4) splits as

$$\zeta_{+}(H(t)) = \sqrt{\frac{\pi t}{\sin \pi t}}$$
 and $\zeta_{-}(H(t)) = \Gamma(1-t)\sqrt{\frac{\sin \pi t}{\pi t}}$,

which makes it easier to compute ζ on elementary and complete symmetric functions by computing ζ_+ and ζ_- separately. Next we consider the values of the three characters on the monomial symmetric functions m_{λ} . While there is an explicit formula for m_{λ} in terms of the p_{λ} (Theorem 7 below), it is somewhat ineffective computationally since it involves a sum over set partitions. We develop some further methods by which the values of ζ , ζ_+ , and ζ_- can computed on m_{λ} , including an efficient algorithm for the case where λ is a hook partition, i.e., λ has at most one part greater than 1 (see equations (33) and (34) below). Finally, we discuss a family of symmetric functions in the kernel of ζ_- . Values of ζ , ζ_+ , and ζ_- on m_{λ} for $|\lambda| \leq 7$ are listed in the Appendix.

2 The Hopf Algebras QSym and Sym

As noted above, the monomial quasi-symmetric functions M_I generate QSym as a vector space. The multiplication of the M_I is given by a "quasi-shuffle" product, which involves combining parts of the associated compositions as well as shuffling them. For example,

$$M_{(1)}M_{(i_1,i_2,\dots,i_l)} = M_{(1,i_1,\dots,i_l)} + M_{(i_1+1,i_2,\dots,i_l)} + M_{(i_1,1,i_2,\dots,i_l)} + \dots + M_{(i_1,i_2,\dots,i_{l-1},i_l+1)} + M_{(i_1,i_2,\dots,i_l,1)}.$$
(7)

In fact, QSym is a polynomial algebra, as shown by by Malvenuto and Reutenauer [21]. To state their result, we first define what it means for a composition I to be Lyndon. If we order the compositions lexicographically, i.e.,

$$(1) < (1,1) < (1,1,1) < \dots < (1,2) < \dots < (2) < (2,1) < \dots < (3) < \dots$$

then a composition I is called Lyndon if I < K for any nontrivial decomposition I = JK of I as a juxtaposition of shorter compositions. For example, (1) and (1, 2, 2) are Lyndon, but (2, 1) is not. Then the result of [21] as follows.

Theorem 1. QSym is the polynomial algebra on the set $\{M_I : I \ Lyndon\}$.

The only Lyndon composition ending in 1 is (1) itself, so QSym⁰ is the subalgebra of QSym generated by the set $\{M_I: I \text{ Lyndon}, I \neq (1)\}$. Thus QSym = QSym⁰ $[M_{(1)}]$, and we can be more specific as follows.

Theorem 2. Each monomial quasi-symmetric function M_I can be expressed as a polynomial in $M_{(1)}$ with coefficients in $QSym^0$, of degree equal to the number of trailing 1's in I.

Proof. Let t(I) be the number of trailing 1's in I. Suppose the result holds for M_J with $t(J) \leq n$, and consider M_I with t(I) = n + 1. Writing I as the juxtaposition I'(1), it follows from equation (7) with $(i_1, \ldots, i_l) = I'$ that

$$M_{(1)}M_{I'} = \sum_{k=1}^{2\ell(I')-n} M_{J_k} + (n+1)M_I$$

where each J_k has $t(J_k) \leq n$, so the result follows.

Now QSym is a graded connected Hopf algebra. If we adopt the convention that $M_{\emptyset} = 1$, then the grade-n part of QSym is generated by $\{M_I : |I| = n\}$. The counit ϵ is given by

$$\epsilon(M_I) = \begin{cases} 1, & \text{if } I = \emptyset; \\ 0, & \text{otherwise;} \end{cases}$$

and coproduct Δ by

$$\Delta(M_I) = \sum_{JK=I} M_J \otimes M_K. \tag{8}$$

It follows immediately from equation (8) that the only M_I which are primitives are the power sums $p_n = M_{(n)}$.

The antipode $S: QSym \to QSym$ is given by (see [6, Prop. 3.4])

$$S(M_I) = (-1)^{\ell(I)} \sum_{\bar{I} \succ J} M_J,$$
 (9)

where \bar{I} is the reverse of I and $I \succeq J$ means I is a refinement of J, i.e., J is obtainable by combining some parts of I. Since QSym is commutative, S is an automorphism of QSym with $S^2 = \mathrm{id}$.

The algebra Sym is generated by the elementary symmetric functions e_n , and also by the complete symmetric functions h_n . The generating functions E(t) and H(t) for these symmetric functions are related by $E(t) = H(-t)^{-1}$. The power-sums p_n also generate Sym as an algebra, and have generating function

$$P(t) = p_1 + p_2 t + p_3 t^2 + \dots = \frac{H'(t)}{H(t)}.$$

Now Sym is a sub-Hopf-algebra of QSym, and its structure is described succinctly by Geissinger [8]. As follows from equation (9), $S(e_n) = (-1)^n h_n$. The power-sums p_n are primitive, and both the e_n and h_n are divided powers, i.e.,

$$\Delta(e_n) = \sum_{i+j=n} e_i \otimes e_j$$

and similarly for h_n . Stated in terms of generating functions, we have

$$\Delta(E(t)) = E(t) \otimes E(t)$$
 and $\Delta(H(t)) = H(t) \otimes H(t)$. (10)

as well as

$$\Delta(P(t)) = P(t) \otimes 1 + 1 \otimes P(t).$$

As a vector space, Sym has the basis $\{m_{\lambda} : \lambda \in \Pi\}$, where Π is the set of partitions. We also have bases

$$\{e_{\lambda} : \lambda \in \Pi\}, \{h_{\lambda} : \lambda \in \Pi\}, \text{ and } \{p_{\lambda} : \lambda \in \Pi\},$$

where $e_{\lambda} = e_{\lambda_1} e_{\lambda_2} \cdots e_{\lambda_l}$ for $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_l)$, and similarly for h_{λ} and p_{λ} . Another important basis for Sym is the Schur functions $\{s_{\lambda} : \lambda \in \Pi\}$ (see [20, I,§3]). For $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_l)$ with $\lambda_1 \geq \lambda_2 \geq \cdots$, the corresponding Schur function s_{λ} is the determinant

$$\begin{vmatrix} h_{\lambda_1} & h_{\lambda_1+1} & \cdots & h_{\lambda_1+l-1} \\ h_{\lambda_2-1} & h_{\lambda_2} & \cdots & h_{\lambda_2+l-2} \\ \vdots & \vdots & \ddots & \vdots \\ h_{\lambda_l-l+1} & h_{\lambda_l-l+2} & \cdots & h_{\lambda_l} \end{vmatrix},$$

where h_i is interpreted as 1 if i = 0 and 0 if i < 0. Then $s_{(n)} = h_n$ and $s_{(1^n)} = e_n$. There is an inner product on Sym defined by

$$\langle h_{\mu}, m_{\lambda} \rangle = \delta_{\mu,\lambda} \tag{11}$$

for all $\mu, \lambda \in \Pi$. As shown in [20, I,§4], this inner product is symmetric and positive definite. The Schur functions are an orthonormal basis with respect to it, i.e.,

$$\langle s_{\mu}, s_{\lambda} \rangle = \delta_{\mu,\lambda}.$$

For any symmetric function f we can define its adjoint f^{\perp} by

$$\langle f^{\perp}u, v \rangle = \langle u, fv \rangle.$$

For later use we recall from [20, p. 76] that

$$p_r^{\perp} = r \frac{\partial}{\partial p_r}. (12)$$

3 The character ζ and its factors ζ_+ and ζ_-

Define $\zeta : \operatorname{QSym} \to \mathbf{R}$ by $\zeta(1) = 1$,

$$\zeta(M_{(i_1,\dots,i_k)}) = \zeta(i_k, i_{k-1}, \dots, i_1)$$

for $i_k > 1$, and $\zeta(M_{(1)}) = \gamma$. It follows from Theorem 2 that $\zeta(M_I)$ can be expressed as a polynomial in γ with coefficients in the multiple zeta values, of degree equal to the number of trailing 1's of I.

Following [1], we say a character of QSym (i.e., an algebra homomorphism $\chi : QSym \to \mathbf{R}$) is even if $\chi(u) = (-1)^{|u|}\chi(u)$ for homogeneous elements u, and odd if $\chi(u) = (-1)^{|u|}\chi(S(u))$ for all homogeneous u. From [1] we have the following result.

Theorem 3. For any character χ of QSym, there is a unique even character χ_+ and a unique odd character χ_- so that χ is the convolution product $\chi_+\chi_-$.

From the preceding theorem, there are unique characters ζ_{-} and ζ_{+} of QSym so that ζ_{+} is even, ζ_{-} is odd, and $\zeta = \zeta_{+}\zeta_{-}$, i.e.,

$$\zeta(u) = \sum_{u} \zeta_{+}(u')\zeta_{-}(u'')$$
 (13)

for all elements u of QSym, where

$$\Delta(u) = \sum_{u} u' \otimes u''.$$

Since $M_{(n)} = p_n$ is primitive, we have from equation (13)

$$\zeta(n) = \zeta_{+}(p_n) + \zeta_{-}(p_n). \tag{14}$$

This gives us the following result.

Theorem 4. If n is even, $\zeta_+(p_n) = \zeta(n)$ and $\zeta_-(p_n) = 0$. If n is odd, $\zeta_+(p_n) = 0$ and $\zeta_-(p_n) = \zeta(n)$ (or γ if n = 1).

Proof. For even n, the oddness of ζ_{-} implies

$$\zeta_{-}(p_n) = \zeta_{-}(S(p_n)) = -\zeta_{-}(p_n),$$

and the first statement follows from equation (14). If n is odd, then $\zeta_+(p_n) = 0$ and the second statement follows from equation (14).

The result that $\zeta_{-}(p_n) = 0$ for n even can be generalized as follows. Call a composition I even if all its parts are even.

Theorem 5. If I is even, then $\zeta_{-}(M_I) = 0$.

Proof. We make use of the universal character $\zeta_Q: \operatorname{QSym} \to \mathbf{R}$ given by

$$\zeta_Q(M_I) = \begin{cases} 1, & \text{if } \ell(I) = 1, \\ 0, & \text{otherwise.} \end{cases}$$

By [1, Theorem 4.1], there is a unique homomorphism $\Psi: \operatorname{QSym} \to \operatorname{QSym}$ such that $\zeta_Q \circ \Psi = \zeta$. Further, Ψ is given by

$$\Psi(M_I) = \sum_{I=I_1 I_2 \cdots I_h} \zeta(M_{I_1}) \zeta(M_{I_2}) \cdots \zeta(M_{I_h}) M_{(|I_1|, \dots, |I_h|)},$$

where the sum is over all decompositions of I into a juxtaposition $I_1I_2\cdots I_h$ of compositions. Lemma 2.2 of [2] implies that $\zeta_{Q-} \circ \Psi = \zeta_-$, so

$$\zeta_{-}(M_{I}) = \sum_{I=I_{1}I_{2}\cdots I_{h}} \zeta(M_{I_{1}})\zeta(M_{I_{2}})\cdots\zeta(M_{I_{h}})\zeta_{Q-}(M_{(|I_{1}|,\ldots,|I_{h}|)}).$$

Now an explicit formula for $\zeta_{Q-}(M_J)$ is given by [2, Theorem 3.2], which implies that $\zeta_{Q-}(M_J) = 0$ whenever the last part of J is even. Since $(|I_1|, |I_2|, \ldots, |I_h|)$ is even whenever I is, the conclusion follows.

It follows from the preceding result and equation (13) that $\zeta_+(M_I) = \zeta(M_I)$ for I even. Nevertheless, for most compositions I with |I| even it is no easier to compute $\zeta_+(M_I)$ or $\zeta_-(M_I)$ than $\zeta(M_I)$. In fact, the bound on the degree of γ in $\zeta(M_I)$ given by Theorem 2 need not hold for $\zeta_+(M_I)$ and $\zeta_-(M_I)$. For example,

$$\zeta(M_{(1,2,3)}) = \zeta(3,2,1) = 3\zeta(3)^2 - \frac{203}{48}\zeta(6),$$

while

$$\zeta_{+}(M_{(1,2,3)}) = -\gamma \zeta(2)\zeta(3) + \frac{11}{4}\gamma \zeta(5) + \frac{5}{2}\zeta(3)^{2} - \frac{203}{48}\zeta(6)$$

and

$$\zeta_{-}(M_{(1,2,3)}) = \gamma \zeta(2)\zeta(3) - \frac{11}{4}\gamma \zeta(5) + \frac{1}{2}\zeta(3)^{2}$$

(note equation (13) gives $\zeta(M_{(1,2,3)}) = \zeta_+(M_{(1,2,3)}) + \zeta_-(M_{(1,2,3)})$ here). As we see in the next section, the situation is dramatically different when these characters are restricted to Sym \subset QSym.

4 The restriction of ζ to Sym

The vector space Sym has the various bases m_{λ} , e_{λ} , h_{λ} , p_{λ} and s_{λ} discussed in §2. We shall consider the last two bases first. We know the values of ζ in the basis elements p_{λ} immediately from the definition, since

$$\zeta(p_i) = \begin{cases} \gamma, & \text{if } i = 1, \\ \zeta(i), & \text{otherwise.} \end{cases}$$

From Theorem 4 and Euler's identity for $\zeta(i)$, i even,

$$\zeta_{+}(p_i) = \begin{cases} \frac{2^{i-1}|B_i|}{i!} \pi^i, & \text{if } i \text{ is even,} \\ 0, & \text{otherwise,} \end{cases}$$

so it follows that $\zeta_+(u)$ for an element $u \in \text{Sym}$ of even degree d is a rational multiple of π^d (or alternatively of $\zeta(d)$). Of course $\zeta_+(u) = 0$ if u has odd degree. Also

$$\zeta_{-}(p_i) = \begin{cases} \gamma, & \text{if } i = 1, \\ \zeta(i), & \text{if } i > 1 \text{ is odd,} \\ 0, & \text{otherwise,} \end{cases}$$

so the value $\zeta_{-}(u)$ on any $u \in \text{Sym}$ is a polynomial in $\gamma, \zeta(3), \zeta(5), \ldots$

Now the transition matrix from the p_{λ} to the Schur functions s_{λ} is provided by the character table of the symmetric group S_n (see [20, I,§7]). The irreducible characters of S_n are indexed by the partitions of n: let χ^{λ} be the character associated with λ . The

value $\chi^{\lambda}(\sigma)$ of the character χ^{λ} on a permutation $\sigma \in S_n$ only depends on the conjugacy class of σ , i.e., its cycle-type: the cycle-type corresponding to the partition $\rho \vdash n$ is

$$\{\sigma \in S_n : \sigma \text{ has } m_i(\rho) \text{ i-cycles for } 1 \leq i \leq n\},\$$

where $m_i(\rho)$ is the number of parts of ρ equal to i. If we let $\chi_{\rho}^{\lambda} = \chi^{\lambda}(\sigma)$ for σ of cycle-type ρ , the numbers χ_{ρ}^{λ} completely determine the character χ^{λ} . From [20] we have the following result.

Proposition. For any partition λ of n,

$$s_{\lambda} = \sum_{\rho \vdash n} \frac{\chi_{\rho}^{\lambda}}{z_{\rho}} p_{\rho},\tag{15}$$

where

$$z_{\rho} = m_1(\rho)! m_2(\rho)! 2^{m_2(\rho)} m_3(\rho)! 3^{m_3(\rho)} \cdots$$

Two special cases are worth noting: $\lambda = (n)$ and $\lambda = (1^n)$. In the first case $\chi^{(n)}$ is the trivial character, and equation (15) is

$$h_n = \sum_{i_1 + 2i_2 + \dots = n} \frac{1}{i_1! 1^{i_1} i_2! 2^{i_2} \dots i_n! n^{i_n}} p_1^{i_1} p_2^{i_2} \dots p_n^{i_n}.$$

$$(16)$$

In the second, $\chi^{(1^n)}$ is the alternating character of S_n , i.e.,

$$\chi^{(1^n)}(\sigma) = \text{sign of } \sigma = (-1)^{m_2(\rho) + m_4(\rho) + \cdots}$$

where ρ is the cycle-type of σ . In this case equation (15) becomes

$$e_n = \sum_{i_1 + 2i_2 + \dots = n} \frac{(-1)^{i_2 + i_4 + \dots}}{i_1! 1^{i_1} i_2! 2^{i_2} \cdots i_n! n^{i_n}} p_1^{i_1} p_2^{i_2} \cdots p_n^{i_n}.$$

$$(17)$$

At this point we could compute ζ on the bases h_{λ} and e_{λ} by applying ζ to equations (16) and (17) respectively (cf. [10, Prop. 2]). But as we shall see shortly, it is much more efficient to split ζ into even and odd parts.

Applying ζ to equation (15), we obtain

$$\zeta(s_{\lambda}) = \sum_{\rho \vdash n} \frac{\chi_{\rho}^{\lambda}}{z_{\rho}} \gamma^{m_1(\rho)} \zeta(2)^{m_2(\rho)} \zeta(3)^{m_3(\rho)} \cdots,$$

which can be written in the alternative form

$$\zeta(s_{\lambda}) = \sum_{\rho \vdash n} \frac{\chi_{\rho}^{\lambda} N(\rho)}{n!} \gamma^{m_1(\rho)} \zeta(2)^{m_2(\rho)} \zeta(3)^{m_3(\rho)} \cdots, \qquad (18)$$

where $N(\rho)$ is the number of permutations of cycle-type ρ . For example, using the tables of group characters in [18], equation (18) gives

$$\zeta(s_{(3,2,1)}) = \frac{16}{6!} \gamma^6 - \frac{2 \cdot 40}{6!} \gamma^3 \zeta(3) + \frac{144}{6!} \gamma \zeta(5) - \frac{2 \cdot 40}{6!} \zeta(3)^2$$
$$= \frac{1}{45} \gamma^6 - \frac{1}{9} \gamma^3 \zeta(3) + \frac{1}{5} \gamma \zeta(5) - \frac{1}{9} \zeta(3)^2.$$

Now we turn to the values of ζ on the bases e_{λ} and h_{λ} . The two are closely related, because the automorphism ω of Sym defined by $\omega(u) = (-1)^{|u|} S(u)$ simply exchanges the two (see [20, I,§2]). The values of $\zeta_{+}(e_{n})$ and $\zeta_{+}(h_{n})$ are given by the following result.

Theorem 6.

$$\zeta_{+}(H(t)) = \sqrt{\frac{\pi t}{\sin \pi t}}$$
 and $\zeta_{+}(E(t)) = \sqrt{\frac{\sin \pi t}{\pi t}}$.

Proof. The oddness of ζ_{-} means it is ω -invariant, so $\omega(E(t)) = H(t)$ implies

$$\zeta_{-}(H(t)) = \zeta_{-}(E(t)). \tag{19}$$

Since $\zeta_{+}(H(t))$ is an even function of t,

$$\zeta_{+}(H(t)) = \zeta_{+}(H(-t)) = \zeta_{+}(E(t)^{-1}) = \zeta_{+}(E(t))^{-1}. \tag{20}$$

Now using equations (4) and (5) together with (10), we have

$$\Gamma(1-t)\Gamma(1+t) = \zeta(H(t))\zeta(E(t))^{-1}$$

= $\zeta_{+}(H(t))\zeta_{-}(H(t))\zeta_{+}(E(t))^{-1}\zeta_{-}(E(t))^{-1}$,

and from equations (19) and (20) the right-hand side simplifies to $\zeta_+(H(t))^2$. Using the reflection formula for the gamma function and taking square roots, we have

$$\zeta_{+}(H(t)) = \sqrt{\frac{\pi t}{\sin \pi t}}$$

and thus, by equation (20), the conclusion.

From the preceding result, the $\zeta_{-}(e_n)$ are given by

$$\zeta_{-}(E(t)) = \zeta_{-}(H(t)) = \frac{\zeta(H(t))}{\zeta_{+}(H(t))} = \Gamma(1-t)\sqrt{\frac{\sin \pi t}{\pi t}}.$$

We can also apply ζ_{-} to both sides of equation (17) to obtain

$$\zeta_{-}(e_n) = \sum_{\substack{i_1+3i_3+5i_5\dots=n\\i_1!1^{i_1}i_3!3^{i_3}i_5!5^{i_5}\dots}} \frac{\gamma^{i_1}\zeta(3)^{i_3}\zeta(5)^{i_5}\dots}{i_1!1^{i_1}i_3!3^{i_3}i_5!5^{i_5}\dots}$$
(21)

for all positive integers n.

Since the e_n are divided powers,

$$\zeta(e_n) = \sum_{i+j=n} \zeta_+(e_i)\zeta_-(e_j),$$
 (22)

and we need only consider those terms in the sum (22) with i even. So from

$$\sqrt{\frac{\sin \pi t}{\pi t}} = 1 - \frac{\pi^2 t}{12} + \frac{\pi^4 t^4}{1440} - \frac{\pi^6 t^6}{24192} + \cdots$$

we can compute $\zeta(e_6)$ using equations (21) and (22) as

$$\begin{split} \zeta_{-}(e_6) &+ \zeta_{+}(e_2)\zeta_{-}(e_4) + \zeta_{+}(e_4)\zeta_{-}(e_2) + \zeta_{+}(e_6) = \\ &\frac{\gamma^6}{720} + \frac{\gamma^3\zeta(3)}{18} + \frac{\gamma\zeta(5)}{5} + \frac{\zeta(3)^2}{18} - \frac{\pi^2}{12}\left(\frac{\gamma^4}{24} + \frac{\gamma\zeta(3)}{3}\right) + \frac{\pi^4}{1440}\frac{\gamma^2}{2} - \frac{\pi^6}{24192} \\ &= \frac{\gamma^6}{720} - \frac{\gamma^4\pi^2}{288} + \frac{\gamma^3\zeta(3)}{18} + \frac{\gamma^2\pi^4}{2880} + \gamma\left(\frac{\zeta(5)}{5} - \frac{\pi^2\zeta(3)}{36}\right) + \frac{\zeta(3)^2}{18} - \frac{\pi^6}{24192}. \end{split}$$

The h_n are also divided powers, so we can compute $\zeta(h_n)$ similarly, using Theorem 6 and equation (21) (since $\zeta_-(e_n) = \zeta_-(h_n)$).

Finally, we consider the basis m_{λ} . Since the power-sums p_i generate Sym over the rational numbers, there exists for each partition λ a polynomial P_{λ} (with rational coefficients) so that

$$m_{\lambda} = P_{\lambda}(p_1, p_2, \dots).$$

From Theorem 4 we then have

$$\zeta_{+}(m_{\lambda}) = P_{\lambda}(0, \zeta(2), 0, \zeta(4), 0, \dots)$$
 (23)

and

$$\zeta_{-}(m_{\lambda}) = P_{\lambda}(\gamma, 0, \zeta(3), 0, \zeta(5), 0, \dots),$$
(24)

since ζ_+ and ζ_- are homomorphisms. (Of course, $\zeta_+(m_\lambda) = 0$ if $|\lambda|$ is odd.) Once ζ_+ and ζ_- are known on the monomial basis, the values of ζ can be computed using the fact [8] that

$$\Delta(m_{\lambda}) = \sum_{\alpha \cup \beta = \lambda} m_{\alpha} \otimes m_{\beta},$$

where $\alpha \cup \beta$ means the union as multisets. Therefore

$$\zeta(m_{\lambda}) = \sum_{\alpha \cup \beta = \lambda} \zeta_{+}(m_{\alpha})\zeta_{-}(m_{\beta}). \tag{25}$$

Note that we need only consider those terms in (25) with $|\alpha|$ even.

In fact the polynomials P_{λ} have an explicit formula, which follows from [16, Theorem 2.3] (see also [12, Theorem 2.2]). We need some notation. If $\mathcal{B} = \{B_1, \ldots, B_l\}$ is a partition of the set $\{1, 2, \ldots, k\}$, we write

$$c(\mathfrak{B}) = (-1)^{k-l} (\operatorname{card} B_1 - 1)! (\operatorname{card} B_2 - 1)! \cdots (\operatorname{card} B_l - 1)!.$$

Then our formula is as follows.

Theorem 7. For $\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k) \in \Pi$,

$$m_{\lambda} = \frac{1}{m_1(\lambda)! m_2(\lambda)! \cdots} \sum_{partitions \ \mathcal{B} = \{B_1, \dots, B_l\} \ of \{1, \dots, k\}} c(\mathcal{B}) p_{b_1} p_{b_2} \cdots p_{b_l},$$

where $b_i = \sum_{j \in B_i} \lambda_j$.

For example, taking partitions into two parts we have

$$m_{(a,b)} = p_a p_b - p_{a+b} (26)$$

$$m_{(a,a)} = \frac{1}{2}(p_a^2 - p_{2a}) \tag{27}$$

and taking those with three parts gives

$$m_{(a,b,c)} = p_a p_b p_c - p_a p_{b+c} - p_b p_{a+c} - p_c p_{a+b} + 2p_{a+b+c}$$
(28)

$$m_{(a,b,b)} = \frac{1}{2} (p_a p_b^2 - 2p_b p_{a+b} - p_a p_{2b} + 2p_{a+2b})$$
(29)

$$m_{(a,a,a)} = \frac{1}{6}(p_a^3 - 3p_a p_{2a} + 2p_{3a}) \tag{30}$$

for a, b, c distinct.

The characters ζ , ζ_+ , ζ_- can be computed on any m_{λ} by applying them to Theorem 7. But since it involves a sum over set partitions, the theorem is less effective computationally than it appears. Nevertheless, for some partitions λ the sum in Theorem 7 reduces to a sum over integer partitions. With a little work, equation (17) can be derived from Theorem 7 with $\lambda = (1^n)$. We also have the following result on hook partitions $\lambda = (n, 1^t)$.

Corollary. If n > 1, then

$$m_{(n,1^t)} = \sum_{j=0}^t (-1)^j p_{n+j} e_{t-j}.$$

Proof. Let $\lambda = (n, 1^t)$, and consider a partition

$$\mathcal{B} = \{B_1, \dots, B_l\} \text{ of } \{1, 2, \dots, t+1\}.$$

We order the blocks B_i so that B_1 always includes 1. The b_i as in the conclusion of Theorem 7 are $b_1 = n + \operatorname{card} B_1 - 1$, and $b_i = \operatorname{card} B_i$ for i > 1. The sets $B_1 - \{1\}, B_2, \ldots, B_l$ form a partition of $\{2, \ldots, t+1\}$: let c_1, \ldots, c_l be their respective cardinalities. Then

$$c(\mathfrak{B}) = (-1)^{t+1-l} c_1! (c_2 - 1)! \cdots (c_l - 1)!. \tag{31}$$

The number of distinct partitions of $\{2, \ldots, t+1\}$ corresponding to given values of c_1, c_2, \ldots, c_l is

$$\binom{t}{c_1 \ c_2 \ \cdots \ c_l} \frac{1}{i_1! i_2! \cdots}, \tag{32}$$

where $i_j = \operatorname{card}\{m \geq 2 : c_m = j\}$. The factors (31) and (32) have product

$$(-1)^{t-(l-1)}\frac{t!}{c_2c_3\cdots c_l}\frac{1}{i_1!i_2!\cdots}=(-1)^{t+i_1+i_2+\cdots}\frac{t!}{i_1!1^{i_1}i_2!2^{i_2}\cdots},$$

and from Theorem 7 it follows that

$$m_{(n,1^t)} = \sum_{i_1+2i_2+\cdots < t} \frac{(-1)^{t+i_1+i_2+\cdots}}{i_1! 1^{i_1} i_2! 2^{i_2} \cdots} p_{n+t-i_1-2i_2-\cdots} p_1^{i_1} p_2^{i_2} \cdots.$$

Now apply equation (17) to obtain the conclusion.

Applying ζ_+ and ζ_- to both sides of the preceding result,

$$\zeta_{+}(m_{(n,1^{t})}) = (-1)^{t} \sum_{i=0}^{t} \zeta_{+}(p_{n+i})\zeta_{+}(e_{t-i})$$
(33)

and

$$\zeta_{-}(m_{(n,1^{t})}) = (-1)^{n+1} \sum_{i=0}^{t} \zeta_{-}(p_{n+i})\zeta_{-}(e_{t-i}), \tag{34}$$

where in equation (33) we only include terms with n+i even, and in (34) we only take terms with n+i odd. To illustrate these formulas, we compute the values of ζ , ζ_+ and ζ_- on $m_{(5,1^3)}$. Equations (33) and (34) give respectively

$$\zeta_{+}(m_{(5,1^{3})}) = (-1)^{3}(\zeta(6)\zeta_{+}(e_{2}) + \zeta(8)) = -\frac{1}{6}\zeta(8)$$

and

$$\zeta_{-}(m_{(5,1^3)}) = (-1)^6(\zeta(5)\zeta_{-}(e_3) + \zeta(7)\zeta_{-}(e_1)) = \frac{1}{6}\gamma^3\zeta(5) + \gamma\zeta(7) + \frac{1}{3}\zeta(3)\zeta(5)$$

Now apply equation (25) to get

$$\begin{split} \zeta(m_{(5,1^3)}) &= \zeta_-(m_{(5,1^3)}) + \zeta_+(e_2)\zeta_-(m_{(5,1)}) + \zeta_+(m_{(5,1)})\zeta_-(e_2) + \zeta_+(m_{(5,1^3)}) \\ &= \frac{1}{6}\gamma^3\zeta(5) - \frac{1}{2}\gamma^2\zeta(6) + \gamma(\zeta(7) - \frac{1}{2}\zeta(2)\zeta(5)) + \frac{1}{3}\zeta(3)\zeta(5) - \frac{1}{6}\zeta(8). \end{split}$$

A table of the polynomials P_{λ} can also be built up by formal antidifferentiation, as we now explain.

Theorem 8. For any partitions λ and μ , define

$$P_{\lambda-\mu} = \begin{cases} P_{\pi}, & \text{if } \lambda = \mu \cup \pi, \\ 0, & \text{otherwise.} \end{cases}$$

Then

$$\frac{\partial P_{\lambda}}{\partial p_r} = \frac{1}{r} \sum_{\mu \vdash r} c_{\mu} P_{\lambda - \mu},$$

where

$$p_r = \sum_{\mu \vdash r} c_\mu h_\mu.$$

Proof. We recall the inner product $\langle \cdot, \cdot \rangle$ defined by (11). For all partitions π we have

$$\langle \frac{\partial P_{\lambda}}{\partial p_{r}}(p_{1}, p_{2}, \dots), h_{\pi} \rangle = \frac{1}{r} \langle p_{r}^{\perp} m_{\lambda}, h_{\pi} \rangle = \frac{1}{r} \langle m_{\lambda}, p_{r} h_{\pi} \rangle = \frac{1}{r} \sum_{\mu \vdash r} c_{\mu} \langle m_{\lambda}, h_{\mu \cup \pi} \rangle = \langle \frac{1}{r} \sum_{\mu \vdash r} c_{\mu} P_{\lambda - \mu}(p_{1}, p_{2}, \dots), h_{\pi} \rangle,$$

where we have used equation (12).

Thus, from

$$p_1 = h_1$$

$$p_3 = h_1^3 - 3h_1h_2 + 3h_3$$

$$p_5 = h_1^5 - 5h_1^3h_2 + 5h_1^2h_3 + 5h_1h_2^2 - 5h_1h_4 - 5h_2h_3 + 5h_5$$

it follows that

$$\begin{split} \frac{\partial P_{\lambda}}{\partial p_{1}} = & P_{\lambda-(1)} \\ \frac{\partial P_{\lambda}}{\partial p_{3}} = & \frac{1}{3} P_{\lambda-(1^{3})} - P_{\lambda-(2,1)} + P_{\lambda-(3)} \\ \frac{\partial P_{\lambda}}{\partial p_{5}} = & \frac{1}{5} P_{\lambda-(1^{5})} - P_{\lambda-(2,1^{3})} + P_{\lambda-(3,1,1)} + P_{\lambda-(2,2,1)} - P_{\lambda-(4,1)} - P_{\lambda-(2,3)} + P_{\lambda-(5)}. \end{split}$$

Now to find, e.g., $\zeta_{-}(m_{(5,3,1,1)})$ we begin with

$$\zeta_{-}(m_{(5,3,1)}) = \gamma \zeta(3)\zeta(5) + 2\zeta(9),$$

obtainable by applying ζ_{-} to equation (28). From the preceding result with r=1,

$$\zeta_{-}(m_{(5,3,1,1)}) = \frac{1}{2}\gamma^{2}\zeta(3)\zeta(5) + 2\gamma\zeta(9) + \alpha\zeta(3)\zeta(7) + \beta\zeta(5)^{2}$$

for some rational numbers α, β . Since

$$\frac{\partial P_{(5,3,1,1)}}{\partial p_3} = P_{(5,1,1)}$$

we have

$$\frac{1}{2}\gamma^2\zeta(5) + \alpha\zeta(7) = \zeta_{-}(m_{(5,1,1)}),$$

and comparing with ζ_{-} applied to equation (29) (with a=5 and b=1) gives $\alpha=1$. But also

$$\frac{\partial P_{(5,3,1,1)}}{\partial p_5} = P_{(3,1,1)} + P_{(5)},$$

SO

$$\frac{1}{2}\gamma^2\zeta(3) + 2\beta\zeta(5) = \zeta_-(m_{(3,1,1)}) + \zeta(5)$$

from which we see that $\beta = 1$. Thus

$$\zeta_{-}(m_{(5,3,1,1)}) = \frac{1}{2}\gamma^{2}\zeta(3)\zeta(5) + 2\gamma\zeta(9) + \zeta(3)\zeta(7) + \zeta(5)^{2}.$$

Another check on tables of $\zeta_{-}(m_{\lambda})$ is provided by a series of identities that show certain symmetric functions are in the kernel of ζ_{-} . For $\pi \in \Pi$, let $L(\pi)$ be the number of parts of π of size greater than 1. Set

$$L_{n,k} = \sum_{|\pi|=n, L(\pi)=k} m_{\pi}.$$

Note that $L_{n,k} = 0$ unless $k \leq \lfloor \frac{n}{2} \rfloor$. We define the "excess" of $L_{n,k}$ by $e(L_{n,k}) = n - 2k$, so the excess of a nonzero $L_{n,k}$ is always nonnegative.

Lemma. For integers $e \ge 1$ and $k \ge 0$,

$$p_1L_{2k+e-1,k} + p_2L_{2k+e-2,k} + \cdots + p_eL_{2k,k} = eL_{2k+e,k} + 2(k+1)L_{2k+e,k+1}.$$

Proof. First note that if we define L(I) for a composition I to be the number of parts of I of size greater than 1, then

$$L_{n,k} = \sum_{|I|=n, L(I)=k} M_I.$$

Consider an individual monomial quasi-symmetric function in $L_{2k+e,k}$, say $M_{(2,1,4,2,1)}$ in the case k=3 and e=4. It can arise in the sum

$$M_{(1)}L_{2k+e-1,k} + M_{(2)}L_{2k+e-2,k} + \dots + M_{(e)}L_{2k,k}$$
 (35)

from $M_{(1)}M_{(2,4,2,1)}$, $M_{(1)}M_{(2,1,4,2)}$, $M_{(1)}M_{(2,1,3,2,1)}$, and $M_{(2)}M_{(2,1,2,2,1)}$. More generally, M_I in $L_{2k+e,k}$ arises in (35) in

$$P_1(I) - P_2(I) + P_3(I) + P_4(I) + \dots = |I| - 2P_2(I)$$
(36)

ways, where $P_r(I)$ is the number of parts of I of size $\geq r$. But in fact (36) is just the excess e of $L_{2k+e,k}$, thus establishing the coefficient e in the lemma. Now consider a monomial quasi-symmetric function in $L_{2k+e,k+1}$, say $M_{(2,3,2,3)}$ in the case k=3, e=4. It can arise in (35) from any of the eight terms

In general, M_I in $L_{2k+e,k+1}$ arises in (35) in 2(k+1) ways, giving the coefficient 2(k+1). \square

Theorem 9. If $k \geq 1$, then $\zeta_{-}(L_{n,k}) = 0$.

Proof. We use induction on the excess of $L_{n,k}$. Since for $k \geq 1$

$$\zeta_{-}(L_{2k,k}) = \zeta_{-}(m_{(2,2,\dots,2)}) = 0,$$

the theorem evidently holds for excess 0. Suppose it holds for excess $\leq n$. From the lemma we have

$$L_{n+2k+1,k} = \frac{1}{n+1} \left[p_1 L_{n+2k,k} + \dots + p_{n+1} L_{2k,k} - 2(k+1) L_{n+2k+1,k+1} \right],$$

and every L on the right-hand side has excess n or less. Applying ζ_{-} to both sides, it follows from the induction hypothesis that the theorem also holds for $L_{n+2k+1,k}$.

Remark. If k = 0, then $\zeta_{-}(L_{n,k}) = \zeta_{-}(e_n)$ is given by equation (21).

References

- [1] M. Aguiar, N. Bergeron, and F. Sottille, Combinatorial Hopf algebras and generalized Dehn-Somerville relations, *Compos. Math.* **142** (2006), 1-30.
- [2] M. Aguiar and S. K. Hsiao, Canonical characters on quasi-symmetric functions and bivariate Catalan numbers, *Electron. J. Combin.* **11(2)** (2004), Res. Art. 15.
- [3] J. M. Borwein, D. M. Bradley, and D. J. Broadhurst, Evaluation of k-fold Euler/Zagier sums: a compendium of results for arbitrary k, Electron. J. Combin. 4(2) (1997), Res. Art. 5.
- [4] J. M. Borwein, D. M. Bradley, D. J. Broadhurst, and P. Lisoněk, Special values of multidimensional polylogarithms, *Trans. Amer. Math. Soc.* **353** (2001), 907-941.
- [5] D. Bowman and D. M. Bradley, Multiple polylogarithms: a brief survey, in q-Series with Applications to Combinatorics, Number Theory, and Physics, Contemp. Math., Vol. 291, American Mathematical Society, Providence, 2001, pp. 71-92.
- [6] R. Ehrenborg, On posets and Hopf algebras, Adv. Math 119 (1996), 1-25.
- [7] L. Euler, Meditationes circa singulare serierum genus, *Novi Comm. Acad. Sci. Petropol.* **20** (1775), 140-186; reprinted in *Opera Omnia*, Ser. I, Vol. 16(2), B. G. Teubner, Leipzig, 1935, pp. 104-116.
- [8] L. Geissinger, Hopf algebras of symmetric functions and class functions, in *Combinatoire et représentation du groupe symétrique (Strasbourg, 1976)*, Springer Lecture Notes in Math. 579, Springer-Verlag, New York, 1977, pp. 168-181.
- [9] I. M. Gessel, Multipartite P-partitions and inner products of skew Schur functions, in *Combinatorics and Algebra*, Contemp. Math., Vol. 34, American Mathematical Society, Providence, 1984, pp. 289-301.
- [10] Hoang Ngoc Minh, Des propriétés structurelles des polylogarithmes aux aspects algorithmiques des sommes harmoniques multiples, preprint.

- [11] F. Hirzebruch, Topological Methods in Algebraic Geometry, 3rd ed., Springer-Verlag, New York, 1966.
- [12] M. E. Hoffman, Multiple harmonic series, Pacific J. Math. 152 (1992), 275-290.
- [13] M. E. Hoffman, The algebra of multiple harmonic series, *J. Algebra* **194** (1997), 477-495.
- [14] M. E. Hoffman, Multiple zeta values and periods of mirrors, *Proc. Amer. Math Soc.* **130** (2002), 971-974.
- [15] M. E. Hoffman, Algebraic aspects of multiple zeta values, in *Zeta Functions, Topology, and Quantum Physics*, Developments in Math., Vol. 14, Springer, New York, 2005, pp. 51-74.
- [16] M. E. Hoffman, Quasi-symmetric functions and mod *p* multiple harmonic sums, preprint arXiv:math.NT/0401319.
- [17] A. Libgober, Chern classes and the periods of mirrors, *Math. Res. Lett.* **62** (1999), 193-206.
- [18] D. E. Littlewood, The Theory of Group Characters and Matrix Representations of Groups, 2nd ed., Oxford University Press, London, 1950.
- [19] R. Lu, The $\hat{\Gamma}$ -genus and a regularization of an S^1 -equivariant Euler class, preprint arXiv:0804.2714.
- [20] I. G. MacDonald, Symmetric Functions and Hall Polynomials, 2nd ed., Oxford University Press, New York, 1995.
- [21] C. Malvenuto and C. Reutenauer, Duality between quasi-symmetric functions and the Solomon descent algebra, *J. Algebra* **177** (1995), 967-982.
- [22] K. McCadden, Analysis of the gamma function, USNA Honors Project, 2007.
- [23] N. Nielsen, Die Gammafunktion, Chelsea, New York, 1965.
- [24] R. P. Stanley, Enumerative Combinatorics, Vol. 2, Cambridge University Press, Cambridge, 1999.
- [25] D. Zagier, Values of zeta function and their applications, in *First European Congress of Mathematics*, Vol. II (Paris, 1992), Birkhäuser, Basel, 1994, pp. 497-512.

Appendix: ζ , ζ_+ and ζ_- on Sym in monomial basis for weight ≤ 7

$$\begin{array}{c} \zeta \\ m_{(6)} & \zeta(6) \\ m_{(5,1)} & \gamma\zeta(5) - \zeta(6) \\ m_{(4,2)} & \frac{3}{4}\zeta(6) \\ m_{(3)} & \frac{1}{2}\zeta(3)^2 - \frac{1}{2}\zeta(6) \\ m_{(4,1^2)} & \frac{1}{2}\gamma^2\zeta(4) - \gamma\zeta(5) + \frac{1}{8}\zeta(6) \\ m_{(3,2,1)} & \gamma\zeta(2)\zeta(3) - \gamma\zeta(5) - \zeta(3)^2 + \frac{1}{4}\zeta(6) \\ m_{(3)} & \frac{3}{16}\zeta(6) \\ m_{(3,1^3)} & \frac{1}{6}\gamma^3\zeta(3) - \frac{1}{2}\gamma^2\zeta(4) - \frac{1}{2}\gamma\zeta(2)\zeta(3) + \gamma\zeta(5) + \frac{1}{3}\zeta(3)^2 - \frac{1}{8}\zeta(6) \\ m_{(2^2,1^2)} & \frac{3}{8}\gamma^2\zeta(4) - \gamma\zeta(2)\zeta(3) + \gamma\zeta(5) + \frac{1}{2}\zeta(3)^2 - \frac{13}{32}\zeta(6) \\ m_{(2,1^4)} & \frac{1}{24}\gamma^4\zeta(2) - \frac{1}{6}\gamma^3\zeta(3) - \frac{1}{8}\gamma^2\zeta(4) + \frac{5}{6}\gamma\zeta(2)\zeta(3) - \gamma\zeta(5) \\ & -\frac{1}{3}\zeta(3)^2 + \frac{15}{64}\zeta(6) \\ m_{(1^6)} & \frac{1}{720}\gamma^6 - \frac{1}{48}\gamma^4\zeta(2) + \frac{1}{18}\gamma^3\zeta(3) + \frac{1}{32}\gamma^2\zeta(4) - \frac{1}{6}\gamma\zeta(2)\zeta(3) \\ & + \frac{1}{5}\gamma\zeta(5) + \frac{1}{18}\zeta(3)^2 - \frac{5}{128}\zeta(6) \\ \end{array}$$