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Abstract

In this note we show how to extend Mathon’s cyclotomic colorings of the edges
of some complete graphs without increasing the maximum order of monochromatic
complete subgraphs. This improves the well known lower bound construction for
multicolor Ramsey numbers, in particular we obtain R3(7) ≥ 3214.

1 Introduction and Notation

A (k1, k2, . . . , km)-coloring, for integers m, ki ≥ 1, is an assignment of one of m colors to
each edge in a complete graph, such that it does not contain any monochromatic com-
plete subgraph Kki

in color i, for 1 ≤ i ≤ m. Similarly, a (k1, k2, . . . , km; n)-coloring is
a (k1, . . . , km)-coloring of the complete graph on n vertices Kn. Let R(k1, . . . , km) and
R(k1, . . . , km; n) denote the set of all (k1, . . . , km)- and (k1, . . . , km; n)-colorings, respec-
tively. The Ramsey number R(k1, . . . , km) is defined to be the least n > 0 such that
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R(k1, . . . , km; n) is empty. In the diagonal case, where k1 = . . . = km = k, we will use
simpler notation Rm(k) and Rm(k; n) for sets of colorings, and Rm(k) for the Ramsey
numbers.

In the case of 2 colors (m = 2) we deal with classical graph Ramsey numbers, which
have been studied extensively for 50 years. Much less has been done for multicolor num-
bers (m ≥ 3). A related area of interest has been the study of generalized Ramsey
colorings, wherein the forbidden monochromatic subgraphs are not restricted to complete
graphs. The second author maintains a regularly updated survey [2] of the most recent
results on the best known bounds on various types of Ramsey numbers.

The next section shows how to improve on the well known construction by Mathon
[1] for establishing lower bounds for Rm(k).

2 Extending Mathon’s Construction

In 1987, Mathon [1] gave a very elegant algebraical construction of certain m-class cyclo-
tomic association schemes over finite field Fp, which when interpreted as m-colorings of
the edges of Kp and Km(p+1) give constructive lower bounds for the corresponding classical
diagonal Ramsey numbers. Specifically, for a prime power p = mt + 1 with even t, one
considers the basic m-th residue graph Hm

p with vertices in Fp and {x, y} an edge if for
some 0 6= z ∈ Fp, x − y = zm, Then, if α is the order of the maximum clique in Hm

p ,
the construction gives m-colorings of the edges of Kp and Km(p+1) with the orders of the
maximum monochromatic cliques equal to α and α + 1, respectively.

In the case of quadratic (m = 2) cyclotomic relations Mathon’s construction is equiv-
alent to the “doubling” of Paley graph described independently by Shearer [3], which,
directly and indirectly, led to several best known lower bounds for Ramsey numbers (cf.
[4]).

Higher order (m ≥ 3) cyclotomic relations beyond the basic Hm
p so far seem to be

not much exploited in the context of Ramsey constructions. Here, our main interest is
in the Mathon’s cubic association scheme (also pointed to, but not analyzed, by Shearer
[3]). We show how to improve on Mathon’s scheme in the case of cubic residues in Zp for
K3p+3, though as remarked at the end, a similar improvement holds for all Fp and m ≥ 2.
In the following we show how to include three additional vertices and obtain a 3-coloring
of the edges of K3p+6 without increasing the order of monochromatic complete subgraphs.

We begin with a description of Mathon’s construction instantiated for 3 colors over
Zp. Let p be a prime of the form p = 3t + 1 with even t, and let β be a primitive element
(generator) of Z∗

p . The condition p ≡ 1 (mod 6) implies that −1 ≡ (βq/2)3 (mod p) is
a cubic residue, which is needed for the associated coloring to be well defined. Consider 3-
coloring H3

p with the vertex set Zp, where the edge {x, y} has color of the cubic character
of x − y in Z∗

p , i.e. {x, y} has color i ∈ {0, 1, 2} if and only if x − y ≡ β3s+i (mod p),
for some integer s. It is well known that the subgraphs induced in H3

p by the three colors
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are isomorphic to each other [1]. Let αp denote the order of the largest monochromatic
clique in H3

p .
Next, we “triple” the coloring H3

p to the coloring Mp on the vertex set X = U ∪ V of
3p + 3 vertices, where U, V ⊂ Zp ×Zp, |U | = 3, |V | = 3p, and U and V are defined by

U = {u0, u1, u2} = {(0, 1), (0, β), (0, β2)},
V = V0 ∪ V1 ∪ V2, where Vi = {(βi, a)|a ∈ Zp}, for i ∈ {0, 1, 2}.

Each edge e = {(x, y), (s, t)} in Mp is colored according to the cubic character of
xt− ys in Zp. If xt− ys = 0 then e has the special color c 6∈ {0, 1, 2} (which later will be
recolored), otherwise e has color i ∈ {0, 1, 2} if and only if xt − ys ≡ β3s+i (mod p), for
some integer s.

The main result related to this construction obtained by Mathon [1] is that the order
of any monochromatic clique in Mp is at most αp+1. In addition, the coloring Mp satisfies
the following properties:

A. Color c induces p+1 vertex disjoint triangles, U is one of them. For each i, j ∈ {0, 1, 2},
ui’s neighborhood in color j, Nj(ui), is Vj+1 (mod 3).

B. Mp is vertex transitive, and colors {0, 1, 2} induce isomorphic colorings. Thus, each
vertex x ∈ X has degree p in each color i ∈ {0, 1, 2}, and color i neighborhood of x,
Ni(x), induces a coloring isomorphic to H3

p .

C. If the edge {x, y} has the special color c, then Ni(x) ∩ Ni(y) = ∅ for all i in {0, 1, 2}.
Consequently, after an arbitrary recoloring of the edges from color c to colors
{0, 1, 2}, any monochromatic clique in Mp contains at most one vertex from U

if it contains any vertices not in U .

Theorem 1 For prime p ≡ 1 (mod 6), let αp denote the order of the largest monochro-

matic clique in the cubic residues coloring H3
p . If k = αp+2 ≥ 4 then R(k, k, k) > 3(p+2).

Proof. We will extend the coloring Mp described above (isomorphic to the construction
by Mathon [1] for m = 3) by three additional vertices to M ′

p, without incrementing the
order of the largest monochromatic complete subgraph. We define 3-coloring M ′

p of the
edges of the complete graph on the vertex set X∪W = U∪V ∪W , where W = {w0, w1, w2},
and X, U, V are as before. Figure 1 gives the colors of the edges.

The middle 3p × 3p section of the matrix with x’s is defined by the starting coloring
Mp, while other entries in the rows/columns corresponding to Vi mean that all the edges
adjacent to this set have the same color as indicated in the matrix.

Let S be the maximum order clique in M ′

p in color i. If S ∩W = ∅ then S is restricted
to original Mp, so |S| ≤ αp + 1. One can easily check in Fig. 1 that every monochromatic
triangle can have at most one vertex in the set U ∪W , so we can assume that S ∩ U = ∅
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but there exists x ∈ S ∩W . By properties B and C of Mp we have S \ {x} ⊂ Vj, so again
|S| ≤ αp + 1. ♦

U V W

012 012 012

u0 01 120 012

u1 0 2 201 201

u2 12 012 120

V0 120 xxx 102

V1 201 xxx 021

V2 012 xxx 210

w0 021 102 01

w1 102 021 0 2

w2 210 210 12

Figure 1. Extending coloring Mp by vertices {w0, w1, w2} to M ′

p.

The next corollary improves on the old bound 3211 by Mathon [1]. The new bound
was not published, though it was already cited as an unpublished result in the survey [2].

Corollary R(7, 7, 7) ≥ 3214.

Proof. For prime p = 1069, it is known that αp < 6 [1]. The bound 3214 follows from
the Theorem. ♦

One can similarly improve Shearer/Mathon’s construction on Kmp+m for other values
of m, by producing m-colorings of Kmp+m!. Note that for m = 2 there is no improvement,
and the case m = 3 is that of the Theorem. For general m with αp + 1 ≥ m, after chosing
the set U (now of m vertices) we add a new set of vertices W so that |U ∪ W | = m!.
With each x ∈ Y = U ∪ W we associate a permutation (i0, · · · , im−1) and color all the
edges from x to Vij in color j. For x, y ∈ Y the edge {x, y} has color equal to the minimal
index of the position at which the corresponding permutations are different. We omit
the details since we don’t know any specific parameters with m > 3 for which this would
improve on a best known published lower bound as in the Corollary.
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