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Abstract

We prove that in every finite Hermitian polar space of odd dimension and even
maximal dimension ρ of the totally isotropic subspaces, a partial spread has size
at most qρ+1 + 1, where GF (q2) is the defining field. This bound is tight and is a
generalisation of the result of De Beule and Metsch for the case ρ = 2.

1 Introduction

A partial spread of a polar space is a set of pairwise disjoint generators. If these generators
form a partition of the points of the polar space, it is said to be a spread. Thas [10] proved
that in the Hermitian polar space H(2n+1, q2) spreads cannot exist, which has made the
question on the size of a partial spread in such a space, an intriguing question. A partial
spread is said to be maximal if it cannot be extended to a larger partial spread.

In [1], partial spreads of size qn+1 + 1 in H(2n + 1, q2) are constructed by use of a
symplectic polarity of the projective space PG(2n+1, q2), commuting with the associated
Hermitian polarity. In the Baer subgeometry of points on which the two polarities coin-
cide, a (regular) spread of the induced symplectic polar space W (2n+1, q) can always be
found, and these qn+1+1 generators extend to pairwise disjoint generators of H(2n+1, q2).
They also prove maximality of this construction for H(5, q2). Luyckx [9] generalises this
result by showing that this construction does in fact yield a maximal partial spread of
size q2n+1 + 1 in all spaces H(4n + 1, q2), and she also improves the upper bound on the
size of partial spreads in H(5, q2). De Beule and Metsch [5] prove that the size of a partial
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spread in H(5, q2) can never exceed q3 + 1. Their proof relies on counting methods, and
they also obtain additional information on the structure of partial spreads which meet
this bound q3 + 1.

In this note, we will generalise the result of [5] by proving that in all H(4n+1, q2), the
number q2n+1+1 is an upper bound on the cardinality of partial spreads, hence establishing
tightness of the bound. Our technique will be somewhat different from what was used in
previous work. We will consider partial spreads in polar spaces as cliques with respect to
the oppositeness relation on generators, and then use inequalities involving eigenvalues
to obtain an upper bound. In general, the calculation of eigenvalues for this relation on
m-spaces in a polar space is much more complex, but for our purposes these calculations
are considerably shorter as the oppositeness relation can be directly associated with the
dual polar graph. The dual polar graph is distance-regular and hence we readily have the
required information about its eigenvalues and intersection numbers.

2 Background theory and notation

2.1 Polar spaces

We refer to [8] for definitions and properties of polar spaces. If P is a polar space, we will
denote by d the dimension of its generators. The parameter ǫ is defined as: 0 if P is a
symplectic or parabolic space, −1 if P is a hyperbolic space, 1 if P is an elliptic space, 1/2
if P is a Hermitian variety in even dimension, and −1/2 if P is a Hermitian variety in odd
dimension. The number of points in the polar space P is (qd+1+ǫ + 1)(qd+1 − 1)/(q − 1).
The size of a spread in P is equal to qd+1+ǫ + 1, which is of course, also an upper bound
on the size of a partial spread.

The Hermitian variety, embedded in the projective space PG(n, q2), consists of those
subspaces of PG(n, q2), the points (X0, . . . , Xn) of which all satisfy the homogeneous
equation: Xq+1

0 + . . . + Xq+1
n = 0.

The number of m-spaces in a projective space PG(n, q) is
[

n+1
m+1

]

q
, where

[

a
b

]

q
is the

Gaussian coefficient, which is defined as follows if a ≥ b:

[a

b

]

q
=

b
∏

i=1

qa+1−i − 1

qi − 1
,

and defined to be zero if a < b.

2.2 Association schemes

Bose and Shimamoto [3] introduced the notion of a D-class association scheme on a finite
set Ω as a set of symmetric relations R = {R0, R1, . . . , RD} on Ω such that the following
axioms hold:

(i) R0 is the identity relation,
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(ii) R is a partition of Ω2,

(iii) there are intersection numbers pk
ij such that for (x, y) ∈ Rk, the number of elements

z in Ω for which (x, z) ∈ Ri and (z, y) ∈ Rj equals pk
ij.

The relations Ri are all symmetric regular relations with valency p0
ii, and hence define

regular graphs on Ω.
It can be shown (see for instance [2]) that the real algebra RΩ has an orthogonal

decomposition into D + 1 subspaces Vi, all of them eigenspaces of the relations Rj of the
association scheme. The (D + 1) × (D + 1)-matrix P , where Pij is the eigenvalue of the
relation Rj for the eigenspace Vi, is the matrix of eigenvalues of the association scheme.
If ∆m is the diagonal matrix with (∆m)ii the dimension of the eigenspace Vi, and if ∆n is
the diagonal matrix with (∆n)jj the valency of the relation Rj , then the dual matrix of
eigenvalues Q = |Ω|P−1 can be obtained by calculating ∆−1

n P T∆m.
In [6], the inner distribution vector a := (a0, . . . , aD) of a non-empty subset X of Ω is

defined as follows:

ai =
1

|X|
|{(X × X) ∩ Ri}|, for all i ∈ {0, . . . , D}.

The i-th entry of a thus equals the average number of elements x′ ∈ X, such that (x, x′) ∈
Ri for some x ∈ X. It follows immediately from the definitions that a0 = 1, and that
the sum of all of its entries must equal |X|. Delsarte proved (see for instance [6]) that
every entry of the row matrix aQ is non-negative, which implies that the same holds for
all entries of a∆−1

n P T .

2.3 Distance-regular graphs

Let Γ be a connected graph with diameter D on a set of vertices V . For every i in
{0, . . . , D}, we let Γi denote the graph on the same set V , with two vertices adjacent if and
only if they are at distance i in Γ, and we write Ri for the corresponding symmetric relation
on V . The graph Γ is said to be distance-regular if the set of relations {R0, R1, . . . , RD}
defines an association scheme on V . It can be shown (see [4]) that this is equivalent
with the existence of parameters bi and ci, such that for every (v, vi) ∈ Ri, there are ci

neighbours vi−1 of vi with (v, vi−1) ∈ Ri−1, for every i ∈ {1, . . . , D}, and bi neighbours
vi+1 with (v, vi+1) ∈ Ri+1, for every i ∈ {0, . . . , D − 1}. These parameters bi and ci are
known as the intersection numbers of the distance-regular graph Γ.

If θ is any eigenvalue of a distance-regular graph Γ, then there is a series of eigenvalues
{vi} of the associated i-distance graphs Γi, recursively defined (see page 128 in [4]) by
v0 = 1, v1 = θ, and:

θvi = ci+1vi+1 + (k − bi − ci)vi + bi−1vi−1, for all i ∈ {1, . . . , D − 1}.
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2.4 The dual polar graph

We will consider the dual polar graph Γ, associated with a polar space P. The vertices
of this graph are the generators (i.e., d-spaces in P), and two vertices are adjacent if and
only if they intersect in a (d − 1)-space. This graph is distance-regular with diameter
d + 1, and two generators are at distance i of each other if and only if they meet in a
(d − i)-space. We refer to [4] for the valency k and the intersection numbers bi and ci of
the dual polar graph:

k = qǫ+1

[

d + 1

1

]

q

, bi = qi+ǫ+1

[

d + 1 − i

1

]

q

, ci =

[

i

1

]

q

.

By Theorem 9.4.3 [4], the eigenvalues of the dual polar graph are given by:

qǫ+1

[

d − r

1

]

q

−

[

r + 1

1

]

q

, for all r with − 1 ≤ r ≤ d,

and especially −
[

d+1
1

]

q
is an eigenvalue (take r = d).

If Γ is the dual polar graph of a polar space P, then Γi consists of those edges con-
necting generators meeting in a (d − i)-space. Hence in Γ0, every vertex is adjacent only
to itself, while Γ1 is just the (distance-regular) dual polar graph Γ. Finally, Γd+1 is the
oppositeness graph in which we are interested. The valencies of these regular graphs Γi

can also be found in [4] (Lemma 9.4.2): qi(i+1+2ǫ)/2
[

d+1
i

]

q
. In particular, the valency of

the oppositeness graph Γd+1 is q(d+1)(d+2+2ǫ)/2.

3 Calculation of a specific subset of eigenvalues of

the association scheme

The eigenvalues of the dual polar graph were already given in Subsection 2.4. We will
now calculate the recursively defined series of associated eigenvalues of the other graphs
Γi in order to obtain an eigenvalue of the oppositeness graph Γd+1.

Lemma 3.1. The eigenvalue θ = −
[

d+1
1

]

q
of the dual polar graph yields the series of

eigenvalues vi of the graphs Γi, with:

vi = (−1)iq(
i

2
)
[

d + 1

i

]

q

, for all i ∈ {0, . . . , d + 1}.

and hence the oppositeness graph Γd+1 has eigenvalue (−1)d+1qd(d+1)/2.

Proof. We will first prove that vi = −qi−1vi−1

[

d+2−i
1

]

q
/
[

i
1

]

q
, for all i ∈ {1, . . . , d + 1}.

This is obvious if i = 1. Now suppose that it holds for i ∈ {1, . . . , d}. By substituting the
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values for bi and ci in the recurrence relation, one obtains:
[

i + 1

1

]

q

vi+1 +

(

qǫ+1

[

d + 1

1

]

q

− qi+ǫ+1

[

d + 1 − i

1

]

q

−

[

i

1

]

q

+

[

d + 1

1

]

q

)

vi

+ qi+ǫ

[

d + 2 − i

1

]

q

vi−1 = 0.

Using the induction hypothesis to substitute for vi−1, this can be rewritten as:
[

i + 1

1

]

q

vi+1 = −(qǫ+1 + 1)

([

d + 1

1

]

q

−

[

i

1

]

q

)

vi + qǫ+1+i

[

d + 1 − i

1

]

q

vi.

As
[

d+1
1

]

q
= qi

[

d+1−i
1

]

q
+

[

i
1

]

q
, this proves the induction hypothesis for i + 1. Using this

relation, as well as the identity
[

d+2−i
1

]

q

[

d+1
i−1

]

q
=

[

i
1

]

q

[

d+1
i

]

q
for all i ∈ {1, . . . , d+1}, one

can now prove by induction that vi = (−1)iq(
i

2
) [

d+1
i

]

q
for every i ∈ {0, . . . , d + 1}.

4 Upper bounds on the sizes of cliques

We first state a general result on the cliques of association schemes which can be found
in [7], but for which we give an alternative proof.

Lemma 4.1. Let Γ be a graph corresponding with one of the relations in an association
scheme, with valency k. If S is a clique in this graph, then for every eigenvalue λ < 0 of
the graph Γ the following inequality holds: |S| ≤ 1 − k

λ
.

Proof. The inner distribution vector a simply has a 1 on the position corresponding with
the identity relation, and |S| − 1 on the position corresponding with the relation defining

the graph Γ. We now consider the vector a∆−1
n P T . Its i-th entry is given by 1 + |S|−1

k
λi,

where λi is the eigenvalue of Γ corresponding with the eigenspace Vi. As this value must
be non-negative (see Subsection 2.2), we obtain the desired inequality for every negative
eigenvalue.

As the cliques of the oppositeness graph on generators of a polar space are precisely
the partial spreads, we can now prove the main result.

Theorem 4.2. A partial spread in H(4n + 1, q2) has at most q2n+1 + 1 elements.

Proof. For this polar space, d = 2n and ǫ = −1/2. The valency k of the oppositeness
graph is in this case equal to q(2n+1)2 . On the other hand, we know from Lemma 3.1 that
λ = −q2n(2n+1) is an eigenvalue. Applying the bound from Lemma 4.1, we obtain the
following upper bound on the size of a partial spread in H(4n + 1, q2):

1 −
k

λ
= 1 + q2n+1.
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5 Concluding remarks

It is in fact possible to calculate in general all eigenvalues of the oppositeness relation
between generators in polar spaces. However, in most cases, the smallest eigenvalue λ is
such that the bound 1− k/λ from Lemma 4.1 is just the upper bound qd+1+ǫ +1; the size
of a spread, if it exists. Only for partial spreads in Q+(4n + 1, q) and in H(4n + 1, q2)
does one actually obtain a sharper bound, where the former is the trivial bound of 2.

As additional information on the structure of partial spreads meeting the bound of
q3 +1 in H(5, q2) is also obtained in [5], the question arises whether this is possible in the
general case as well.

Acknowledgements

I would like to thank my supervisors Frank De Clerck and John Bamberg.

References

[1] A. Aguglia, A. Cossidente, and G. L. Ebert. Complete spans on Hermitian varieties.
In Proceedings of the Conference on Finite Geometries (Oberwolfach, 2001), 29:7–15,
2003.

[2] R. A. Bailey. Association schemes, volume 84 of Cambridge Studies in Advanced
Mathematics. Cambridge University Press, Cambridge, 2004.

[3] R. C. Bose and T. Shimamoto. Classification and analysis of partially balanced
incomplete block designs with two associate classes. J. Amer. Statist. Assoc., 47:151–
184, 1952.

[4] A. E. Brouwer, A. M. Cohen, and A. Neumaier. Distance-regular graphs, volume 18
of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics
and Related Areas (3)]. Springer-Verlag, Berlin, 1989.

[5] J. De Beule and K. Metsch. The maximum size of a partial spread in H(5, q2) is
q3 + 1. J. Combin. Theory Ser. A, 114(4):761–768, 2007.

[6] P. Delsarte. The association schemes of coding theory. In Combinatorics (Proc.
NATO Advanced Study Inst., Breukelen, 1974), Part 1: Theory of designs, finite
geometry and coding theory, pages 139–157. Math. Centre Tracts, No. 55. Math.
Centrum, Amsterdam, 1974.

[7] C. D. Godsil. Association schemes. http://quoll.uwaterloo.ca/pstuff/assoc.

[8] J. W. P. Hirschfeld and J. A. Thas. General Galois geometries. Oxford Mathematical
Monographs. Oxford University Press, New York, 1991.

[9] D. Luyckx. On maximal partial spreads of H(2n+1, q2). Discrete Math., 308:375–379,
2008.

[10] J. A. Thas. Old and new results on spreads and ovoids of finite classical polar spaces.
“Combinatorics ’90”, Ann. Discrete Math. 52:529–544, 1992.

the electronic journal of combinatorics 16 (2009), #N13 6


