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Abstract

We call a family G C P[n] a k-generator of P[n] if every x C [n] can be expressed
as a union of at most k disjoint sets in G. Frein, Lévéque and Sebé [1] conjectured
that for any n > k, such a family must be at least as large as the k-generator
obtained by taking a partition of [n] into classes of sizes as equal as possible, and
taking the union of the power-sets of the classes. We generalize a theorem of Alon
and Frankl [2] in order to show that for fixed k, any k-generator of P[n] must have
size at least k2"/F(1 — o(1)), thereby verifying the conjecture asymptotically for
multiples of k.

1 Introduction

We call a family G C P[n] a k-generator of P[n| if every  C [n] can be expressed as a
union of at most k disjoint sets in G. Frein, Lévéque and Sebé [1] conjectured that for
any n > k, such a family must be at least as large as the k-generator

Fok = UW \ {0} (1)

where (V) is a partition of [n] into k classes of sizes as equal as possible. For k = 2,
removing the disjointness condition yields the stronger conjecture of Erdés — namely, if
G C P[n] is a family such that any subset of [n] is a union (not necessarily disjoint) of at
most two sets in G, then G is at least as large as

Fn2=PViUPV;\ {0} (2)

where (V1,V5) is a partition of [n] into two classes of sizes |n/2]| and [n/2]|. We refer the
reader to for example Fiiredi and Katona [5] for some results around the Erdds conjecture.
In fact, Frein, Lévéque and Sebd [1] made the analagous conjecture for all k. (We call a
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family G C P[n| a k-base of P[n| if every & C [n] can be expressed as a union of at most
k sets in G; they conjectured that for any k < n, any k-base of P[n| is at least as large as
Fok-)

In this paper, we show that for k fixed, a k-generator must have size at least k2"/*(1 —
0(1)); when n is a multiple of k, this is asymptotic to f(n, k) = |Fnx| = k(2"/* —1). Our
main tool is a generalization of a theorem of Alon and Frankl, proved via an Erdds-Stone
type result.

As observed in [1], for a k-generator G, we have the following trivial bound on |G| = m.
The number of ways of choosing at most k sets in G must be at least the number of subsets

of [n], i.e.: k
(7)==

=0

For fixed k, the number of subsets of [n] of size at most k — 1 is Zf:_ol (™) =01/m)(}),

SO
k

> (1) = aremy() = 0+ et/mymt/u
Hence,
m > (k!)/*2mk (1 — o(1))

Notice that this ignores disjointness, and is therefore also a lower bound on the size of a
k-base; it also ignores the fact that some unions may occur several times. We will improve
the constant from (k!)'/* ~ k/e to k by taking into account disjointness. Namely, we will
show that for any fixed k € N and § > 0, if m > 2(/-+D+9n then any family G C P[n]

of size m contains at most
k! m

unordered k-tuples {4y, ..., Ay} of pairwise disjoint sets, where the o(1) = oy s(1) term
tends to 0 as m — oo for fixed k,d. In other words, if we consider the ‘Kneser graph’ on
P[n], with edge set consisting of the disjoint pairs of subsets, the density of K}’s in any
sufficiently large G C P[n] is at most k!/k* + o(1). The proof uses an Erdés-Stone type
result (Theorem 1) together with a result of Alon and Frankl (Lemma 4, which is Lemma
4.3 in [2]).

The k = 2 case of this was proved by Alon and Frankl (Theorem 1.3 of [2]): for any
fixed § > 0, if m > 2(1/3+97 then any family G C P[n] of size m contains at most

(3+o) ()

disjoint pairs, where the o(1) term tends to 0 as m — oo for fixed 0. In other words, the

edge-density in any sufficiently large subset of the Kneser graph is at most % + o(1).
Our result will follow quickly from this. From the trivial bound above, any k-generator

G C P[n] has size m > 2"/%  so putting § = 1/k(k + 1), we will see that the number of
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unordered k-tuples of pairwise disjoint sets in G is at most
k! m
(eeom) (7)

2" < (:—; +o(1) +@(1/m)) (’:) - (%)ku +o(1))

SO

and therefore
m > k2"k(1 — o(1))

where the o(1) term tends to 0 as n — oo for fixed k& € N.

For k = 2, this improves the estimate m > /222 — 1 in [1] (Theorem 5.3) by a
factor of /2. For m even, it is asymptotically tight, but for n odd, the conjectured
smallest 2-generator (2) has size (3/4/2)2"2 — 1, so our constant is ‘out’ by a factor of
3/(2v2) = 1.061 (to 3 d.p.)

For general k and n = gk + r, the conjectured smallest k-generator (1) has size

(k — )29 + 729 — k= (k4 r)27"/kon/k _

so our constant is out by a factor of (14 7/k)27"/% < 21=1/m2/1n2 = 1.061 (to 3 d.p.).

It seems that different arguments will be required to improve the constant for k { n,
or to prove the exact result. Further, it seems likely that proving the same bounds for k-
bases (i.e. without the assumption of disjoint unions) would be much harder, and require
different techniques altogether.

2 A preliminary Erdos-Stone type result

We will need the following generalization of the Erdos-Stone theorem:

Theorem 1 Given r < s € N and € > 0, if n is sufficiently large depending on r,s and
€, then any graph G on n vertices with at least

<s(s—1)(s—2$)r...(s—7°—l—1) +€) (:)

K, ’s contains a copy of Kei1(t), where t > C, s logn for some constant C, s . depending
onr,s,e.

Note that the density n = 9,5 := 5(5—1)(5—32._.(5—r+1) above is the density of K,’s in the

s-partite Turdn graph with classes of size T', K(T'), when T is large.

Proof:
Let G be a graph with K, density at least n+-¢; let N be the number of [-subsets U C V(G)
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such that G[U] has K,-density at least nn 4+ €/2. Then, double counting the number of
times an [-subset contains a K,

()G ) aran() o) ()

SO rearranging,
€/2 n n
N> —r—— >
- 1—77—6/2(1) B <l)

Hence, there are at least £(7) l-sets U such that G[U] has K,-density at least n + €/2.
But Erdés proved that the number of K,.’s in a K, i-free graph on [ vertices is maximized
by the s-partite Turdn graph on [ vertices (Theorem 3 in [3]), so provided [ is chosen
sufficiently large, each such G[U] contains a K,1. Each K, in G is contained in (7__83__11)
[-sets, and therefore G contains at least

N

Kyi1's, ie. a positive density of K,y1’s. Let a = s+ 1, ¢ = 557 and apply the following
‘blow up’ theorem of Nikiforov (a slight weakening of Theorem 1 in [4]):

Theorem 2 Leta > 2, c*logn > 1. Then any graph on n vertices with at least cn® K, ’s
contains a K,(t) with t = [¢*logn]|.

We see that provided n is sufficiently large depending on r, s and ¢, G must contain a
Ka(t) for t = [ logn| = | (557) 1 logn] > C, 5 logn, proving Theorem 1. O

3 Density of K;’s in large subsets of the Kneser graph

We are now ready for our main result, a generalization of Theorem 1.3 in [2]:

1
Theorem 3 For any fixed k € N and 6 > 0, if m > 2(k+1+5)", then any family G C P[n]

of size |G| = m contains at most
k! m
— 1
() (3)

unordered k-tuples {A1, ..., Ax} of pairwise disjoint sets, where the o(1) term tends to 0
as m — oo for fixed k, 0.

Proof:

L
By increasing 9 if necessary, we may assume m = 2<k+1 +6>". Consider the subgraph G of
the ‘Kneser graph’ on P[n] induced on the set G, i.e. the graph G with vertex set G and
edge set {zy : x Ny = 0}. Let € > 0; we will show that if n is sufficiently large depending
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on k,d and ¢, the density of K;’s in GG is less than ,% + €. Suppose the density of K}’s in

G is at least ,% + ¢; we will obtain a contradiction for n sufficiently large. Let [ = m/ (we

will choose f < m maximal such that m/ is an integer). By the argument above,

there are at least £("7") l-sets U such that G[U] has Kj-density at least £ + £. Provided

m is sufficiently large depending on k,¢ and €, by Theorem 1, each such G[U] contains

a copy of K = Kj11(t) where t > Cj . s2logl = fC} Jlogm = C}; logm. Any copy of

) I-sets, so G must contain at least ;% > £(m/1)E+D
I (k+1)t

m—(k+1)t
1—(k+1)t

K is contained in (
copies of K.

But we also have the following lemma of Alon and Frankl (Lemma 4.3 in [2]), whose
proof we include for completeness:

)k+1 1

Lemma 4 G contains at most (k + 1)2"=00 (7 Ty copies of K ().

t

Proof:
The probability that a t-subset {A,..., A;} chosen uniformly at random from G has

union of size at most kLH is at most

. | (2:I) /CZ) < (/4D )t — gl

SC[n]:|S|<n/(k+1

Choose at random k + 1 such t-sets; the probability that at least one has union of size at
most n/(k + 1) is at most
(k, + 1)21’L(1—5)t

But this condition holds if our k+1 ¢-sets are the vertex classes of a Kj.1(t) in G. Hence,
the number of copies of Kj1(t) in G is at most

k1
1

k 12n(1—5t) m

(k+1) t) T

as required. [

If m is sufficiently large depending on k,d and €, we may certainly choose t > [4/§],
and comparing our two bounds gives

K+l
%(m/l)(k+1)t < (k+ 1>2n(1—5t) (m) < %2n(1—5t)m(k+1)t

t (k+1)! —
Substituting in [ = m/, we get
¢ < on(1=8t)  Fh+1)E

L 5\
Substituting in m = 2(’f+1 +5) , we get

¢ < on(1=tE=f(+(k+1)9) < o—n
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since we chose f < m and t > 4/6. This is a contradiction if n is sufficiently large,

proving Theorem 3. [J

As explained above, our result on k-generators quickly follows:

Theorem 5 For fized k € N, any k-generator G of P[n] must contain at least k2"/*(1 —
o(1)) sets.

Proof:

Let G be a k-generator of P[n], with |G| = m. As observed in the introduction, the trivial
bound gives m > 2"* so applying Theorem 3 with 6 = 1/k(k + 1), we see that the
number of ways of choosing £k pairwise disjoint sets in G is at most

(e ) (3)

The number of ways of choosing less than k pairwise disjoint sets is, very crudely, at most

Zf:_ol (") = ©(1/m)(7}); since every subset of [n] is a disjoint union of at most k sets in

G, we obtain

k! m m\k
n o 2 _ (1
on < (kk +0(1)+@(1/m)) <k> (k) (1+0(1))
(where the o(1) term tends to 0 as m — o), and therefore
m > k2"k(1 — o(1))

(where the o(1) term tends to 0 as n — o0). O

Note: The author wishes to thank Peter Keevash for bringing to his attention the result
of Erdés in [3], after reading a previous draft of this paper in which a weaker, asymptotic
version of Erdos’ result was proved.
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