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Abstract

We give a polynomial upper bound on the size of set systems with restricted
t-wise intersections modulo prime powers. Let t ≥ 2. Let p be a prime and q = pα

be a prime power. Let L = {l1, l2, . . . , ls} be a subset of {0, 1, 2, . . . , q − 1}. If F is
a family of subsets of an n element set X such that |F1 ∩ · · · ∩ Ft| (mod q) ∈ L for
any collection of t distinct sets from F and |F | (mod q) /∈ L for every F ∈ F , then

|F| ≤
t(t − 1)

2

2s−1

∑

i=0

(

n

i

)

.

Our result extends a theorem of Babai, Frankl, Kutin, and Štefankovič, who studied
the 2-wise case for prime power moduli, and also complements a result of Grolmusz
that no polynomial upper bound holds for non-prime-power composite moduli.

1 Introduction

We are interested in set systems with restricted t-wise intersections modulo prime powers.
Let X denote a set of n elements and F be a family of subsets of X. Let p be a prime and
q = pα be a prime power. Let L be a subset of {0, 1, 2, . . . , q− 1} of size s. For an integer
t ≥ 2, a family F is called t-wise q-modular L-intersecting if |F1 ∩ · · · ∩Ft| (mod q) ∈ L
for any collection of t distinct sets from F and |F | (mod q) /∈ L for every F ∈ F . It is
called q-modular L-intersecting for simplicity when t = 2. Note that, the same definition
is also used when q is not a prime power.

In 2001, Babai, Frankl, Kutin, and Štefankovič proved the size of a pα-modular L-
intersecting family is polynomial bounded as a function of n.
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Theorem 1 (Babai et al. [1]) If F is a pα-modular L-intersecting family of subsets of

X, then

|F| ≤

(

n

2s−1

)

+

(

n

2s−1 − 1

)

+ · · · +

(

n

0

)

.

When q = p, Grolmusz [5] proved the following result in 2002.

Theorem 2 (Grolmusz [5]) If F is a t-wise p-modular L-intersecting family of subsets

of X, then

|F| ≤ (t − 1)
s

∑

i=0

(

n

i

)

.

When t = 2, it is a modular version of the celebrated Frankl-Wilson Theorem. Grolmusz
and Sudakov [6] gave another proof of this bound using multilinear polynomials. Recently,
Cao, Hwang and West [2] improved the above bound by replacing

(

n

i

)

with
(

n−1

i

)

in the
sum.

In the same paper [5], Grolmusz also showed that Theorem 2 does not generalize to
non-prime-power composite moduli. In particular for any t ≥ 2, q = 6 and L = {1, . . . , 5},
there exists a t-wise 6-modular L-intersecting family of X of superpolynomial size in n,
see Theorem 11 in [5] for detail.

In this paper, we will fill the gap between Theorem 2 (prime moduli) and Grolmusz’s
result (non-prime-power composite moduli, Theorem 11 in [5]) by proving a polynomial
upper bound on the size of the t-wise pα-modular L-intersecting families for any t ≥ 2.

Theorem 3 If F is a t-wise pα-modular L-intersecting family of subsets of X, then

|F| ≤
t(t − 1)

2

2s−1

∑

i=0

(

n

i

)

.

Clearly, the special case t = 2 of Theorem 3 corresponds to Theorem 1.

2 The Proof

In this section, let q = pα be a prime power and we will give a proof of Theorem 3, which
is motivated by the methods used in [1] and [3].

First we need the following Frankl-Wilson-type result for pairs of families of sets with
restricted intersection modulo prime power, which is a slight generalization of Theorem
1.

Lemma 1 Let A1, . . . , Am and B1, . . . , Bm be two families of subsets of X such that

|Ai ∩ Bi| (mod q) /∈ L for all 1 ≤ i ≤ m and |Ai ∩ Bj | (mod q) ∈ L for i 6= j. Then

m ≤

(

n

2s−1

)

+

(

n

2s−1 − 1

)

+ · · ·+

(

n

0

)

.
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Note that Theorem 1 is a special case of Lemma 1 when Ai = Bi for 1 ≤ i ≤ m. The
proof of this lemma follows from the proof of Lemma 3.1 in [1], and we refer the reader
there for details.
Proof of Theorem 3 Let us apply induction on t. When t = 2, it has been proved by
Theorem 1. Now assume that t > 2 and the assertion is true for t = k, we will prove that
it also holds for t = k + 1.

Let F = {F1, . . . , Fm} be a (k + 1)-wise q-modular L-intersecting family of subsets of
X. To prove the statement, we partition F into three families of sets A, F1 and F2 with
the following properties: there exists a family of sets B such that the pair (A,B) satisfies
the condition of Lemma 1, |F1| = (k − 1)|A| and the family F2 is k-wise q-modular L-
intersecting. To do this we repeat the following procedure. For every 0 ≤ r ≤ |F| − 1,
suppose that after step r we have already constructed families of sets A = {A1, . . . , Ai},
B = {B1, . . . , Bi}, F1 and F2 = {D1, . . . , Dj} such that |F1| = (k − 1)i. Consider three
possible cases.

Case 1: If Fr+1 ∈ F1, then proceed to the next step.
Case 2: If there are indices r + 1 < r1 < · · · < rk−1 such that Fri

/∈ F1 for all
1 ≤ i ≤ k − 1 and |Fr+1 ∩ Fr1

∩ · · · ∩ Frk−1
| (mod q) /∈ L, then define Ai+1 = Fr+1,

Bi+1 = Fr+1 ∩ Fr1
∩ · · · ∩ Frk−1

. Let F1 = F1 ∪ {Fr1
, · · · , Frk−1

} and proceed to the next
step.

Case 3: Suppose that |Fr+1 ∩ Fr1
∩ · · · ∩ Frk−1

| (mod q) ∈ L for every set of indices
r+1 < r1 < · · · < rk−1 with Fri

/∈ F1 for all 1 ≤ i ≤ k−1. In this case define Dj+1 = Fr+1

and continue. Clearly, by construction, F2 is a k-wise q-modular L-intersecting family.
Let A = {A1, . . . , Ah}, B = {B1, . . . , Bh}, F1 and F2 be the set systems obtained in

the end of our procedure. Note that, by definition, |Ai ∩ Bi| (mod q) /∈ L for 1 ≤ i ≤ h
but |Ai ∩ Bj| (mod q) ∈ L for i 6= j, since this is a size of intersection of k + 1 distinct
members of F .

Now we can apply Lemma 1 to bound the size of A. Since F = A ∪ F1 ∪ F2 and
|F1| = (k − 1)|A|, by the induction hypothesis we obtain that

|F| ≤ |A| + |F1| + |F2| = k|A| + |F2|

≤ k
2s−1

∑

i=0

(

n

i

)

+
k(k − 1)

2

2s−1

∑

i=0

(

n

i

)

=
k(k + 1)

2

2s−1

∑

i=0

(

n

i

)

.

This completes the proof of the theorem. �

3 Concluding Remarks

The main point we make is that our bound in Theorem 3 implies a polynomial upper
bound in n for the t-wise pα-modular L-intersecting families with t ≥ 3. For the special
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case of prime power moduli q and s = q − 1, the bound in Theorem 3 can be improved.

Theorem 4 (Grolmusz and Sudakov [6]) Let t ≥ 2 and r be integers. If F is a family

of subsets of X such that |F | (mod q) = r for each F ∈ F and |F1∩· · ·∩Ft| (mod q) 6= r
for any collection of t distinct sets from F , then

|F| ≤ (t − 1)

q−1
∑

i=0

(

n

i

)

.

Still it would be interesting to obtain improved upper bound for our results.
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