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Abstract

Using Rado’s theorem for the existence of an independent transversal of family

of subsets of a set on which a matroid is defined, we give a proof of Landau’s

theorem for the existence of a tournament with a prescribed degree sequence. A

similar approach is used to determine when a partial tournament can be extended

to a tournament with a prescribed degree sequence.

Mathematics Subject Classifications: 05C07,05C20,05C50.

1 Introduction

A tournament of order n is a digraph obtained from the complete graph Kn of order

n by giving a direction to each of its edges. Thus, a tournament T of order n has
(

n

2

)

(directed) edges. The sequence (r1, r2, · · · , rn) of outdegrees of the vertices {1, 2, . . . , n}

of T , ordered so that r1 ≤ r2 ≤ · · · ≤ rn, is called the score sequence of T . The sequence of

indegrees of the vertices of T is given by (s1 = n−1−r1, s2 = n−1−r2, . . . , sn = n−1−rn)

and satisfies s1 ≥ s2 ≥ · · · ≥ sn. In the tournament T ′ obtained from T by reversing the

direction of each edge, the indegree sequence and outdegree sequence are interchanged;

the score vector of T ′ equals (s1, s2, . . . , sn) with the si in nonincreasing order.

2 Landau’s theorem from Rado’s theorem

Landau’s theorem characterizes score vectors of tournaments.
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Theorem 2.1 (Landau’s theorem) The sequence r1 ≤ r2 ≤ · · · ≤ rn of integers is the

score sequence of a tournament of order n if and only if

k∑

i=1

ri ≥

(
k

2

)

(k = 1, 2, . . . , n) (1)

with equality for k = n.

Note that (1) is equivalent to

∑

i∈K

ri ≥

(
|K|

2

)

(K ⊆ {1, 2, . . . , n}). (2)

There are several known short proofs of Landau’s theorem (see [2, 3, 4, 7, 8]). In this

section we give a short proof of Landau’s theorem using Rado’s theorem (see [5, 6]) for

the existence of an independent transversal of a finite family of subsets of a set X on

which a matroid is defined.

Let M be a matroid on X with rank function denoted by ρ(·). (We assume that the

reader is familiar with the very basics of matroid theory, which can be found e.g. in [6].)

Let A = (A1, A2, . . . , An) be a family of n subsets of X. A transversal of A is a set S of

n elements of X which can be ordered as x1, x2, . . . , xn so that xi ∈ Ai for i = 1, 2, . . . , n.

The transversal S is an independent transversal of A provided that S is an independent

set of the matroid M.

Theorem 2.2 (Rado’s theorem) The family A = (A1, A2, . . . , An) of subsets of the set

X on which a matroid M is defined has an independent transversal if and only if

ρ(∪i∈KAi) ≥ |K| (K ⊆ {1, 2, . . . , n}).

Proof of Landau’s theorem using Rado’s theorem. The necessity of (1) is obvious.

Now assume that (1) holds. Let X = {(i, j); 1 ≤ i, j ≤ n, i 6= j}. Consider the matroid

M on X whose circuits are the
(

n

2

)
disjoint sets {(i, j), (j, i)} of two pairs in X with i 6= j.

Thus, a subset E of X is independent if and only if it does not contain a symmetric pair

(i, j), (j, i) with i 6= j. We have ρ(X) =
(

n

2

)
. Let A = (A1, A2, . . . , An) be the family of

subsets of X where

Ai = {(i, j) : 1 ≤ j ≤ n, j 6= i} (i = 1, 2, . . . , n). (3)

Let r1, r2, . . . , rn be a sequence of nonnegative integers with r1 + r2 + · · · + rn =
(

n

2

)
.

There exists a tournament with score sequence r1, r2, . . . , rn if and only if there exists

P1, P2, . . . , Pn, with Pi ⊆ Ai and |Pi| = ri (1 ≤ i ≤ n), such that P = P1 ∪ P2 ∪ · · · ∪ Pn

is an independent set of M, equivalently, if and only if the family

A′ = (A1, . . . , A1
︸ ︷︷ ︸

r1

, A2, . . . , A2
︸ ︷︷ ︸

r2

, . . . , An, . . . , An
︸ ︷︷ ︸

rn

)
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has an independent transversal: The desired tournament has vertices 1, 2, . . . , n and an

edge from i to j if and only (i, j) is in Pi. The independence of P then implies that there

is no edge from j to i.

It follows from Rado’s theorem that A′ has an independent transversal provided that

ρ(∪i∈KAi) ≥
∑

i∈K

ri (K ⊆ {1, 2, . . . , n}). (4)

From the definition of M we see that

ρ(∪i∈KAi) =

(
k

2

)

+ k(n − k), (5)

where k = |K|. By (5), the rank of ∪i∈KAi depends only on k = |K|. By the monotonicity

assumption on the ri,
∑

i∈K ri is largest when K = {n − k + 1, . . . , n}. Thus, (4) is

equivalent to
(

k

2

)

+ k(n − k) ≥
n∑

i=n−k+1

ri. (6)

Since
∑n

i=1
ri =

(
n

2

)
, (6) becomes

n−k∑

i=1

ri ≥

(
n

2

)

−

(
k

2

)

− k(n − k). (7)

It follows that (4) is equivalent to

p
∑

i=1

ri ≥

(
n

2

)

−

(
n − p

2

)

− p(n − p) (p = 1, 2, . . . , n). (8)

A simple calculation shows that
(

n

2

)

−

(
n − p

2

)

− p(n − p) =

(
p

2

)

,

and Landau’s theorem follows from (8). �

3 Completions of partial tournaments

Let G ⊆ Kn be a graph on n vertices. A digraph obtained from G by giving a direction to

each of its edges is called an oriented graph or a partial tournament of order n. Given a

partial tournament T ′ and a sequence of nonnegative integers r1, r2, . . . , rn, it is possible to

use Rado’s theorem to establish necessary and sufficient conditions for T ′ to be extendable

to a tournament T with score sequence r1, r2, . . . , rn. Thus we seek to complete the partial

tournament T ′ to a tournament T with a prescribed score sequence. Rado’s theorem can

also be used to characterize when such a completion is possible.
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Let T ′ be a partial tournament of order n with outdegree sequence s1, s2, . . . , sn. Let

r1, r2, . . . , rn be a sequence of nonnegative integers with
∑n

i=1
ri =

(
n

2

)
. (Now we make

no monotone assumption on the ri or the si.) An obvious necessary condtion for T ′

to be completed to a tournament with score sequence r1, r2, . . . , rn is that si ≤ ri for

i = 1, 2, . . . , n, and we assume these inequalities hold. There are two ways to determine

when a completion of T ′ to a tournament with score sequence r1, r2, . . . , rn is possible.

The first way is to take X = {(i, j) : 1 ≤ i, j ≤ n, i 6= j} as before, and to consider

the matroid M′ whose circuits are the singleton pairs {(i, j)} and {(j, i)} if there is an

edge from i to j in T ′ (thus an edge in T determines two loops of M′), and the pairs

{(i, j), (j, i)} for all distinct i and j such that there is no edge in T ′ between i and j (in

either of the two possible directions). We note that in this matroid M′,

ρ′(X) =

(
n

2

)

−
n∑

i=1

si.

Define the family A = (A1, A2, . . . , An) as in (3) and the family

A′′ = (A1, . . . , A1
︸ ︷︷ ︸

r1−s1

, A2, . . . , A2
︸ ︷︷ ︸

r2−s2

, . . . , An, . . . , An
︸ ︷︷ ︸

rn−sn

).

We have
n∑

i=1

(ri − si) =

(
n

2

)

−

n∑

i=1

si.

The partial tournament T ′ can be completed to a tournament with score sequence

r1, r2, . . . , rn if and only if the family A′′ has an independent transversal. It follows from

Rado’s theorem that A′′ has an independent transversal if and only if

ρ′(∪i∈KAi) ≥
∑

i∈K

(ri − si) (K ⊆ {1, 2, . . . , n}). (9)

For K ⊆ {1, 2, . . . , n}, let γ(K) equal the number of edges of T ′ at least one of whose

vertices belongs to K. We easily calculate that

ρ′(∪i∈KAi) =

(
|K|

2

)

+ |K|(n − |K|) − γ(K).

We thus obtain the following generalization of Landau’s theorem.1

Theorem 3.1 Let T ′ be a partial tournament with outdegree sequence s1, s2, . . . , sn. Let

r1, r2, . . . , rn be a sequence of nonnegative integers with si ≤ ri for i = 1, 2, . . . , n. Then

T ′ can be completed to a tournament with score sequence r1, r2, . . . , rn if and only if
(
|K|

2

)

+ |K|(n − |K|) − γ(K) ≥
∑

i∈K

(ri − si) (K ⊆ {1, 2, . . . , n}. (10)

1Landau’s theorem is the special case where T
′ has no edges.
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As a referee observed, because of the presence of the quantity γ(K), whether or not

the inequalities (10) in Theorem 3.1 are satisfied depends on the initial labeling of the

vertices of T ′. These conditions may not be satisfied according to one labeling but satisfied

according to another.

A second, but basically equivalent, way to approach the proof of Theorem 3.1 is to

start with the set

Y = X \ {(i, j) : (i, j) or (j, i) is an edge of T ′},

and the matroid M|Y on Y obtained by restricting M to Y . If we define the family

B = (B1, B2, . . . , Bn) of subsets of Y by Bi = Ai ∩ Y for i = 1, 2, . . . , n, and then apply

Rado’s theorem to

B′ = (B1, . . . , B1
︸ ︷︷ ︸

r1−s1

, B2, . . . , B2
︸ ︷︷ ︸

r2−s2

, . . . , Bn, . . . , Bn
︸ ︷︷ ︸

rn−sn

),

we again obtain a proof of Theorem 3.1.

As a corollary of Theorem 3.1 we obtain the main results in [1]. If n is an odd integer,

a regular tournament of order n is a tournament with score sequence

n − 1

2
,
n − 1

2
, . . . ,

n − 1

2
︸ ︷︷ ︸

n

.

If n is an even integer, a nearly regular tournament of order n is a tournament with score

sequence
n

2
, . . . ,

n

2
︸ ︷︷ ︸

n

2

,
n

2
− 1, . . . ,

n

2
− 1

︸ ︷︷ ︸
n

2

.

Corollary 3.2 Let T ′ be a partial tournament with outdegree sequence s1, s2, . . . , sn where

s1 ≥ s2 ≥ · · · ≥ sn. If n is odd, then T ′ can be completed to a regular tournament provided

that

si ≤
n + 1

2
− i,

(

i = 1, 2, . . . ,
n + 1

2

)

. (11)

If n is even, then T ′ can be completed to a nearly regular tournament of order n provided

that

si ≤
n

2
− i + 1,

(

i = 1, 2, . . . ,
n

2

)

. (12)

Proof. First suppose that n is odd and that (11) holds. Then si = 0 for i = (n +

1)/2, (n + 3)/2, . . . , n. Hence, there are no edges in T ′ from a vertex in {(n + 1)/2, (n +

3)/2, . . . , n} to {1, 2, . . . , (n−1)/2}. It follows from Theorem 3.1 that T ′ can be completed

to a regular tournament provided that
(
|K|

2

)

+ |K|(n − |K|) − γ(K) ≥ |K|

(
n − 1

2

)

−
∑

i∈K

si (K ⊆ {1, 2, . . . , n},
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that is, provided that

(
|K|

2

)

+ |K|(n − |K|) −

(

γ(K) −
∑

i∈K

si

)

≥ |K|

(
n − 1

2

)

(K ⊆ {1, 2, . . . , n}). (13)

The quantity γ∗(K) := γ(K) −
∑

i∈K si equals the number of edges of T ′ with initial

vertex in the complement K of K and terminal vertex in K. Simplifying (13), we get

|K||K|

2
≥ γ∗(K). (14)

Since the lefthand side of (14) is symmetric in K and K, we need only verify it for

|K| ≤ (n + 1)/2. It follows from (11) that for |K| ≤ (n + 1)/2,

γ∗(K) ≤

|K|
∑

i=1

(
n + 1

2
− i

)

=
|K|(n − |K|)

2
.

Hence, T ′ can be completed to a regular tournament.

A similar proof works when n is even. �
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