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Abstract

Using Rado’s theorem for the existence of an independent transversal of family
of subsets of a set on which a matroid is defined, we give a proof of Landau’s
theorem for the existence of a tournament with a prescribed degree sequence. A
similar approach is used to determine when a partial tournament can be extended
to a tournament with a prescribed degree sequence.

Mathematics Subject Classifications: 05C07,05C20,05C50.

1 Introduction

A tournament of order n is a digraph obtained from the complete graph K, of order
n by giving a direction to each of its edges. Thus, a tournament T of order n has (3)
(directed) edges. The sequence (rq,7g,- - ,r,) of outdegrees of the vertices {1,2,...,n}
of T', ordered so that vy < ry < --- < r,,is called the score sequence of T'. The sequence of
indegrees of the vertices of T'is given by (s; = n—1—ry,80 =n—1-—7r9,..., 8, =n—1-—7,)
and satisfies s; > sy > --- > s,,. In the tournament 7" obtained from T by reversing the
direction of each edge, the indegree sequence and outdegree sequence are interchanged:;

the score vector of T equals (s1, S2, ..., s,) with the s; in nonincreasing order.

2 Landau’s theorem from Rado’s theorem

Landau’s theorem characterizes score vectors of tournaments.
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Theorem 2.1 (Landau’s theorem) The sequence r1 <1y < --- <1, of integers is the
score sequence of a tournament of order n if and only if

irz@) (k=1,2,...,n) (1)

=1

with equality for k = n.

Note that (1) is equivalent to

e ('f') (K C{1.2,....n}). (2)

€K

There are several known short proofs of Landau’s theorem (see [2, 3, 4, 7, 8]). In this
section we give a short proof of Landau’s theorem using Rado’s theorem (see [5, 6]) for
the existence of an independent transversal of a finite family of subsets of a set X on
which a matroid is defined.

Let M be a matroid on X with rank function denoted by p(-). (We assume that the
reader is familiar with the very basics of matroid theory, which can be found e.g. in [6].)
Let A= (A1, A, ..., A,) be a family of n subsets of X. A transversal of A is a set S of
n elements of X which can be ordered as x1, s, ..., x, so that z; € A; fori =1,2,...,n.
The transversal S is an independent transversal of A provided that S is an independent
set of the matroid M.

Theorem 2.2 (Rado’s theorem) The family A = (Ay, As, ..., A,) of subsets of the set
X on which a matroid M s defined has an independent transversal if and only if

p(Uier A > |K| (K C{1,2,....n}).

Proof of Landau’s theorem using Rado’s theorem. The necessity of (1) is obvious.
Now assume that (1) holds. Let X = {(i,7);1 < 4,57 < n,i # j}. Consider the matroid
M on X whose circuits are the (}) disjoint sets {(¢,), (4, i)} of two pairs in X with ¢ # j.
Thus, a subset E of X is independent if and only if it does not contain a symmetric pair
(,7), (4, i) with i # j. We have p(X) = (}). Let A = (A1, Ay, ..., A,) be the family of

subsets of X where

A={(.j):1<j<nj#i} (i=12....n) (3)
Let ri,7o,...,7, be a sequence of nonnegative integers with r; +ro + -+ +1r, = (g)
There exists a tournament with score sequence rq,7s,...,7r, if and only if there exists

Pl,PQ,...,Pn, WlthRgAZ and |R‘ =T (1 SZSH),SUChth&tpzplLJPQUUPn
is an independent set of M, equivalently, if and only if the family
A = (Ay, .. AL Ag Ay AL LAY

~~ ~~ ~~
T1 T2 Tn
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has an independent transversal: The desired tournament has vertices 1,2,...,n and an
edge from ¢ to j if and only (7, j) is in P;. The independence of P then implies that there
is no edge from j to .

It follows from Rado’s theorem that A" has an independent transversal provided that

p(Uick A;) > Zr (K C{1,2,...,n}). (4)

From the definition of M we see that
k
) = (5) + o = ) )

where k = |K|. By (5), the rank of U;c g A; depends only on k£ = |K|. By the monotonicity
assumption on the r;, > . .7 is largest when K = {n — k +1,...,n}. Thus, (4) is

equivalent to
n

<§) +h(n—k) > > (6)

i=n—k+1

Since Y1, ;= (3), (6) becomes

It follows that (4) is equivalent to

imZ(Z)—(n;p)—p(n—p) (p=1,2,...,n). (8)

i=1

A simple calculation shows that

(5)- (") o= )

and Landau’s theorem follows from (8). O

3 Completions of partial tournaments

Let G C K, be a graph on n vertices. A digraph obtained from G by giving a direction to
each of its edges is called an oriented graph or a partial tournament of order n. Given a
partial tournament 7" and a sequence of nonnegative integers r1, 7o, . .., 'y, it is possible to
use Rado’s theorem to establish necessary and sufficient conditions for 7’ to be extendable
to a tournament 71" with score sequence 1,79, ...,7,. Thus we seek to complete the partial
tournament 7" to a tournament 7" with a prescribed score sequence. Rado’s theorem can
also be used to characterize when such a completion is possible.
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Let 7" be a partial tournament of order n with outdegree sequence s1, so, ..., s,. Let
T1,T2,. .., s, be a sequence of nonnegative integers with » " | r; = (g) (Now we make
no monotone assumption on the r; or the s;.) An obvious necessary condtion for T”
to be completed to a tournament with score sequence ri,79,...,7, is that s; < r; for
1=1,2,...,n, and we assume these inequalities hold. There are two ways to determine
when a completion of 7" to a tournament with score sequence rq,7s,...,r, is possible.

The first way is to take X = {(7,7) : 1 < 14,5 < n,i # j} as before, and to consider
the matroid M’ whose circuits are the singleton pairs {(i,7)} and {(j,7)} if there is an
edge from i to j in 7" (thus an edge in 7' determines two loops of M'), and the pairs
{(4,7), (j,7)} for all distinct i and j such that there is no edge in 7" between i and j (in
either of the two possible directions). We note that in this matroid M’,

P(X) = <Z) - és

Define the family A = (A;, As, ..., A,) as in (3) and the family
A//: (141,...,AL,AQ,...,A%,---,An,---,An)-

-

~ N ~
r1—s1 T2—S82 Tn—358n

i(m—si) - (;’) oy

i=1 i=1

We have

The partial tournament 7" can be completed to a tournament with score sequence

r1,Tg,...,T, if and only if the family A” has an independent transversal. It follows from
Rado’s theorem that A” has an independent transversal if and only if
ZEKA >Z '_Sz Kg{17277n}) (9)
ieK

For K C {1,2,...,n}, let y(K) equal the number of edges of T" at least one of whose
vertices belongs to K. We easily calculate that

peca) = (15) + 1K1~ 18D = ~(50),

We thus obtain the following generalization of Landau’s theorem.!

Theorem 3.1 Let T' be a partial tournament with outdegree sequence sy, Sa, ..., S,. Let
r1,79,...,T, be a sequence of nonnegative integers with s; < r; fori=1,2,...,n. Then
T’ can be completed to a tournament with score sequence r1,7s,...,7, if and only if
I K| (n— |K[) = y(K) =) (ri—s;) (K C{1,2,...,n}. (10)
2 €K -

Landau’s theorem is the special case where T" has no edges.
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As a referee observed, because of the presence of the quantity v(K'), whether or not
the inequalities (10) in Theorem 3.1 are satisfied depends on the initial labeling of the
vertices of T”. These conditions may not be satisfied according to one labeling but satisfied
according to another.

A second, but basically equivalent, way to approach the proof of Theorem 3.1 is to
start with the set

Y =X \{(,J): (i,7) or (j,4) is an edge of T"},

and the matroid M|y on Y obtained by restricting M to Y. If we define the family
B = (By,Bs,...,B,) of subsets of Y by B; = A;,NY fori=1,2,...,n, and then apply
Rado’s theorem to

B/:(51’...,BL,BQ,...,B%,...,Bn,...,Bn),

N ~ N
r1—s1 r2—s2 Tn—Sn

we again obtain a proof of Theorem 3.1.
As a corollary of Theorem 3.1 we obtain the main results in [1]. If n is an odd integer,
a reqular tournament of order n is a tournament with score sequence

n—1n-1 n—1
5 g g

-

S 4

If n is an even integer, a nearly reqular tournament of order n is a tournament with score
sequence

nn_ ]

535 g .

N s \a ~~ >

Bl ]
Corollary 3.2 Let T' be a partial tournament with outdegree sequence sy, So, . . ., Sy, where
S1 > 89 > -+ >8,. Ifn is odd, thenT" can be completed to a reqular tournament provided
that ) .
sign; —4, <i:1,2,...,"; ) (11)

If n is even, then T" can be completed to a nearly reqular tournament of order n provided
that n n
s<T—itl, (i:1,2,...,§>. (12)
Proof. First suppose that n is odd and that (11) holds. Then s; = 0 for ¢ = (n +
1)/2,(n+3)/2,...,n. Hence, there are no edges in 7" from a vertex in {(n + 1)/2, (n +
3)/2,...,n}to{1,2,...,(n—1)/2}. Tt follows from Theorem 3.1 that 7" can be completed
to a regular tournament provided that

(5) + i = 1D =2 (8) 2 51 ("5 ) = T 8 € {12000,

€K
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that is, provided that

<|[2(|) +|K]|(n—|K|) — (W(K) —ZSZ) > |K] (”gl) (K C{L,2,....n}). (13)

€K

The quantity v*(K) := v(K) — >_,cx i equals the number of edges of 7" with initial
vertex in the complement K of K and terminal vertex in K. Simplifying (13), we get

KK
2

> 7 (K). (14)

Since the lefthand side of (14) is symmetric in K and K, we need only verify it for
|K| < (n+1)/2. It follows from (11) that for |K| < (n+1)/2,

(n—H—i):w

Hence, T" can be completed to a regular tournament.
A similar proof works when n is even. 0
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