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Abstract

In this note we make explicit a stability property for Kronecker coefficients that

is implicit in a theorem of Y. Dvir. Even in the simplest nontrivial case this property

was overlooked despite of the work of several authors. As applications we give a

new vanishing result and a new formula for some Kronecker coefficients.

1 Introduction

Let λ, µ, ν be partitions of a positive integer m and let χλ, χµ, χν be their corresponding
complex irreducible characters of the symmetric group Sm. It is a long standing problem
to give a satisfactory method for computing the multiplicity

k(λ, µ, ν) := 〈χλ ⊗ χµ, χν〉 (1)

of χν in the Kronecker product χλ⊗χµ of χλ and χµ (here 〈·, ·〉 denotes the inner product
of complex characters). Via the Frobenius map, k(λ, µ, ν) is equal to the multiplicity of
the Schur function sν in the internal product of Schur functions sλ ∗ sµ, namely

k(λ, µ, ν) = 〈sλ ∗ sµ, sν〉 ,

where 〈·, ·〉 denotes the scalar product of symmetric functions.
The first stability property for Kronecker coefficients was observed by F. Murnaghan

without proof in [8]. This property can be stated in the following way: Let λ, µ, ν
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be partitions of a, b, c, respectively. Define λ(n) := (n − a, λ), µ(n) := (n − b, µ),
ν(n) := (n − c, ν). Then the coefficient k(λ(n), µ(n), ν(n)) is constant for all n bigger
than some integer N(λ, µ, ν). Complete proofs of this property were given by M. Brion [3]
using algebraic geometry and E. Vallejo [13] using combinatorics of Young tableaux. Both
proofs give different lower bounds N(λ, µ, ν) for the stability of k(λ(n), µ(n), ν(n)), for all
partitions λ, µ, ν. C. Ballantine and R. Orellana [1] gave an improvement of one of these
lower bounds for a particular case.

Here we make explicit another stability property for Kronecker coefficients that is
implicit in the work of Y. Dvir (Theorem 2.4′ in [5]). This property can be stated as
follows: Let p, q and r be positive integers such that p = qr. Let λ = (λ1, . . . , λp),
µ = (µ1, . . . , µq), ν = (ν1, . . . , νr) be partitions of some nonnegative integer m satisfying
ℓ(λ) ≤ p, ℓ(µ) ≤ q, ℓ(ν) ≤ r, that is, some parts of λ, µ and ν could be zero. For any
positive integers t and n let (t)n denote the vector (t, . . . , t) ∈ Nn; and for any partition
λ = (λ1, . . . , λp) of length at most p let λ + (t)p denote the partition (λ1 + t, . . . , λp + t).
Then we have

Theorem 3.1. With the above notation

k(λ, µ, ν) = k(λ + (t)p, µ + (rt)q, ν + (qt)r) .

It should be noted that even in the simplest nontrivial case, when q = 2 = r and
p = 4, this property was overlooked despite of the work of several authors [1, 2, 9, 10].
In this situation Remmel and Whitehead noticed (Theorems 3.1 and 3.2 in [9]) that the
coefficient k(λ, µ, ν) has a much simpler formula if λ3 = λ4. The main theorem provides
an explanation for that. We also obtain a new formula for k(λ, µ, ν) in this case.

This note is organized as follows. Section 2 contains the definitions and notation
about partitions needed in this paper. In Section 3 we give the proof of the main theo-
rem. Section 4 deals with the Kronecker coefficient k(λ, µ, ν) when ℓ(λ) = ℓ(µ)ℓ(ν). In
particular, we give, in this case, a new vanishing condition. Finally, in Section 5 we give
an application of the main theorem.

2 Partitions

In this section we recall the notation about partitions needed in this paper. See for
example [6, 7, 11, 12].

For any nonnegative integer n let [n ] := {1, . . . , n}. A partition is a vector λ =
(λ1, . . . , λp) of nonnegative integers arranged in decreasing order λ1 ≥ · · · ≥ λp. We
consider two partitions equal if they differ by a string of zeros at the end. For example
(3, 2, 1) and (3, 2, 1, 0, 0) represent the same partition. The length of λ, denoted by ℓ(λ), is
the number of positive parts of λ. The size of λ, denoted by |λ|, is the sum of its parts; if
|λ| = m, we say that λ is a partition of m and denote it by λ ⊢ m. The partition conjugate
to λ is denoted by λ′. A composition of m is a vector π = (π1, . . . , πr) of positive integers
such that

∑r
i=1 πi = m.
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The diagram of λ = (λ1, . . . , λp), also denoted by λ, is the set of pairs of integers

λ = { (i, j) | i ∈ [ p ], j ∈ [λi ] }.

The identification of λ with its diagram permits us to use set theoretic notation for
partitions. If δ is another partition and δ ⊆ λ, we denote by λ/δ the skew diagram
consisting of the pairs in λ that are not in δ, and by |λ/δ| its cardinality. If µ is another
partition, then λ ∩ µ denotes the set theoretic intersection of λ and µ.

3 Main theorem

3.1 Theorem. Let λ, µ, ν be partitions of some integer m. Let p, q, r be integers such
that p ≥ ℓ(λ), q ≥ ℓ(µ), r ≥ ℓ(ν) and p = qr. Then for any positive integer t we have

k(λ, µ, ν) = k(λ + (t)p, µ + (rt)q, ν + (qt)r) .

The proof of the main theorem will follow from Dvir’s theorem

3.2 Theorem. [5, Theorem 2.4′] Let λ, µ, ν be partitions of n such that ℓ(ν) = |λ ∩ µ′|.
Let l = ℓ(ν) and ρ = ν − (1l). Then

k(λ, µ, ν) = 〈χλ/λ∩µ′

⊗ χµ/λ′
∩µ, χρ〉 .

Proof of theorem 3.1. It is enough to prove the theorem for t = 1. The general case
follows by repeated application of the particular case. Let α = λ + (1)p, β = µ + (r)q

and γ = ν + (q)r. Then β ∩ γ′ = (r)q. In particular, |β ∩ γ′| = p = ℓ(α). So, we have
β/β ∩ γ′ = µ and γ/β ′ ∩ γ = ν. Thus, by Dvir’s theorem, we have

k(β, γ, α) = k(µ, ν, λ) .

The claim follows from the symmetry k(λ, µ, ν) = k(µ, ν, λ) of Kronecker coefficients.

3.3 Example. To illustrate how Dvir’s theorem applies, let λ = (8, 4), µ = (6, 6) and
ν = (5, 3, 2, 2). Then λ ∩ µ′ = (2, 2) = λ′ ∩ µ, λ/λ ∩ µ′ = (6, 2), µ/λ′ ∩ µ = (4, 4) and
ν − (14) = (4, 2, 1, 1). After two applications of Dvir’s theorem we get

k((8, 4), (6, 6), (5, 3, 2, 2)) = k((6, 2), (4, 4), (4, 2, 1, 1))

= k((4), (2, 2), (3, 1)) = 0 .

4 The case ℓ(λ) = ℓ(µ)ℓ(ν)

In this section we give a general result for the Kronecker coefficient k(λ, µ, ν) when ℓ(λ) =
ℓ(µ)ℓ(ν). On the one hand it gives a new vanishing condition. On the other hand, when
this vanishing condition does not hold, it reduces the computation of k(λ, µ, ν) to the
computation of a simpler Kronecker coefficient.
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Let m be a positive integer, λ, µ be partitions of m and π = (π1, . . . , πr) be a compo-
sition of m. Let ρ(i) ⊢ πi for i ∈ [ r ]. A sequence T = (T1, . . . , Tr) of tableaux is called a
Littlewood-Richardson multitableau of shape λ, content (ρ(1), . . . , ρ(r)) and type π if

(1) there exists a sequence of partitions

∅ = λ(0) ⊂ λ(1) ⊂ · · · ⊂ λ(r) = λ

such that |λ(i)/λ(i − 1)| = πi for all i ∈ [ r ], and
(2) Ti is Littlewood-Richardson tableau of shape λ(i)/λ(i − 1) and content ρ(i), for

all i ∈ [ r ].
For example,

1 1 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2

3 3 2 2 3

3 3

is a Littlewood-Richardson multitableau of shape (10, 8, 5, 2), type (10, 8, 7) and content
((4, 4, 2), (3, 3, 2), (3, 3, 1)).

Let LR(λ, µ; π) denote the set of pairs (S, T ) of Littlewood-Richardson multitableaux of
shape (λ, µ), same content and type π. This means that S = (S1, . . . , Sr) is a Littlewood-
Richardson multitableau of shape λ, T = (T1, . . . , Tr) is a Littlewood-Richardson multi-
tableau of shape µ and both Si and Ti have the same content ρ(i) for some partition ρ(i)
of πi, for all i ∈ [ r ]. Let cλ

(ρ(1),...,ρ(r)) denote the number of Littlewood-Richardson multi-

tableaux of shape λ and content (ρ(1), . . . , ρ(r)) and let lr(λ, µ; π) denote the cardinality
of LR(λ, µ; π). Then

lr(λ, µ; π) =
∑

ρ(1)⊢π1,...,ρ(r)⊢πr

cλ
(ρ(1),...,ρ(r))c

µ
(ρ(1),...,ρ(r)) .

Similar numbers have already proved to be useful in the study of minimal components,
in the dominance order of partitions, of Kronecker products [14].

The number lr(λ, µ; π) can be described as an inner product of characters. For this
description we need the permutation character φπ := IndSm

Sπ

(1π), namely, the induced
character from the trivial character of Sπ = Sπ1

× · · · × Sπr
. It follows from Frobenius

reciprocity and the Littlewood-Richardson rule that (see also [6, 2.9.17])

4.1 Lemma. Let λ, µ, π be as above. Then

lr(λ, µ; π) = 〈χλ ⊗ χµ, φπ〉.

Since Young’s rule and Lemma 4.1 imply that lr(λ, µ; ν) ≥ k(λ, µ, ν), then we have

4.2 Corollary. Let λ, µ, ν be partitions of m. If lr(λ, µ; ν) = 0, then k(λ, µ, ν) = 0.
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4.3 Lemma. Let λ, µ, ν be partitions of m of lengths p, q, r, respectively. If p = qr, and
µq < rλp or νr < qλp, then lr(λ, µ; ν) = 0.

Proof. We assume that lr(λ, µ; ν) > 0 and show that µq ≥ rλp and νr ≥ qλp. Let (S, T ) be
an element in LR(λ, µ; ν) having content (ρ(1), . . . , ρ(r)). Since Ti is contained in µ, one
has, by elementary properties of Littlewood-Richardson tableaux, that ℓ(ρ(i)) ≤ ℓ(µ) = q.
For any i, let ni be the number of squares of Si that are in column λp of λ, then ni ≤ q.
We conclude that p = n1 + · · · + nr ≤ rq = p. Therefore ni = q = ℓ(ρ(i)) for all i. This
forces that each Si contains a j in the squares (j + (i− 1)q, 1), . . . , (j + (i− 1)q, λp) of λ,
for all j ∈ [ q ]. So, ρ(i)j ≥ λp for all j. In particular, for i = r, since Sr has νr squares,
one has νr ≥ qλp. Now, since ℓ(µ) = q, all entries of Ti equal to q must be in row q of µ.
Then µq ≥ ρ(1)q + · · · + ρ(r)q ≥ rλp. The claim follows.

4.4 Example. To illustrate the idea in the proof of the previous lemma let λ = (8, 5, 4, 3)
and let µ and ν be partitions of 20 length 2. Let (S, T ) be any multitableau in LR(λ, µ; ν).
Then, elementary properties of Littlewood-Richardson tableaux force S to have the form

1 1 1 · · · · ·

2 2 2 · ·

1 1 1 ·

2 2 2

Here S = (S1, S2), S1 is formed by italic numerals and S2 by boldface numerals. The
dots indicate entries that can be either in S1 or S2. This partial information on S forces
µ2 ≥ 6 and ν2 ≥ 6.

4.5 Corollary. Let λ, µ, ν be partitions of m of length p, q, r, respectively. If p = qr,
and µq < rλp or νr < qλp, then k(λ, µ, ν) = 0.

Proof. This follows from Lemma 4.3 and Corollary 4.2.

Corollary 4.5 and Theorem 3.1 imply the following

4.6 Theorem. Let λ, µ, ν be partitions of m of length p, q, r, respectively. Let t = λp

and assume p = qr, then we have
(1) If µq < rt or νr < qt, then k(λ, µ, ν) = 0.

(2) If µq ≥ rt and νr ≥ qt, let λ̃ = λ − (t)p, µ̃ = µ − (rt)q and ν̃ = ν − (qt)r. Then,

k(λ, µ, ν) = k(λ̃, µ̃, ν̃).

5 Applications

We conclude this paper with an application to the expansion of χµ ⊗ χν when ℓ(µ) =
2 = ℓ(ν). It is well known that any component of χµ ⊗ χν corresponds to a partition of
length at most |µ ∩ ν ′| ≤ 4, see Satz 1 in [4], Theorem 1.6 in [5] or Theorem 2.1 in [9].
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Even in this simple case a nice closed formula seems unlikely to exist. J. Remmel and
T. Whitehead (Theorem 2.1 in [9]) gave a close, though intricate, formula for k(λ, µ, ν)
valid for any λ of length at most 4; M. Rosas (Theorem 1 in [10]) gave a formula of
combinatorial nature for k(λ, µ, ν), which requires taking subtractions, also valid for any
λ of length at most 4; C. Ballantine and R. Orellana (Proposition 4.12 in [2]) gave a
simpler formula for k(λ, µ, ν), at the cost of assuming an extra condition on λ.

Note that when ℓ(λ) = 1 the coefficient k(λ, µ, ν) is trivial to compute. For ℓ(λ) = 2
the Remmel-Whitehead formula for k(λ, µ, ν) reduces to a simpler one (Theorem 3.3 in
[9]). This formula was recovered by Rosas in a different way (Corollary 1 in [10]). So,
the nontrivial cases are those for which ℓ(λ) = 3, 4. Corollary 5.1 deals with the case
of length 4. On the one hand it gives a new vanishing condition. On the other hand,
when this vanishing condition does not hold, it reduces the case of length 4 to the case of
length 3. Thus, this reduction would help to simplify the proofs of the formulas given by
Remmel-Whitehead and Rosas.

The following corollary is a particular case of Theorem 4.6.

5.1 Corollary. Let λ, µ, ν be a partitions of m of length 4, 2, 2, respectively. Let t = λ4,
then we have

(1) If µ2 < 2t or ν2 < 2t, then k(λ, µ, ν) = 0.

(2) If µ2 ≥ 2t and ν2 ≥ 2t, let λ̃ = (λ1 − t, λ2 − t, λ3 − t), µ̃ = (µ1 − 2t, µ2 − 2t) and

ν̃ = (ν1 − 2t, ν2 − 2t). Then, k(λ, µ, ν) = k(λ̃, µ̃, ν̃).

Another observation of Remmel and Whitehead (Theorems 3.1 and 3.2 in [9]) is that
their formula simplifies considerably in the case λ3 = λ4. Corollary 5.1 explains this
phenomenon since, in this case, the computation of k(λ, µ, ν) reduces to the computation
of a Kronecker coefficient involving only three partitions of length at most 2, which have
a simple nice formula (Theorem 3.3 in [9]). In fact, combining our result with this simple
formula we obtain a new one. For completeness we record here the Remmel-Whitehead
formula in the equivalent version of Rosas.

In the next theorems the notation (y ≥ x) means 1 if y ≥ x and 0 if y � x.

5.2 Theorem. [9, Theorem 3.3] Let λ, µ, ν be partitions of m of length 2. Let x =
max

(
0,

⌈
ν2+µ2+λ2−m

2

⌉)
and y =

⌈
ν2+µ2−λ2+1

2

⌉
. Assume ν2 ≤ µ2 ≤ λ2. Then

k(λ, µ, ν) = (y − x)(y ≥ x) .

From Corollary 5.1 and Theorem 5.2 we obtain

5.3 Theorem. Let λ, µ, ν be partitions of m of length 4, 2, 2, respectively. Suppose that
λ3 = λ4 and that 2λ3 ≤ ν2 ≤ µ2. Let x = max

(
0,

⌈
ν2+µ2+λ2−λ3−m

2

⌉)
, y =

⌈
ν2+λ2−µ2−λ3+1

2

⌉

and z =
⌈

ν2+µ2−λ2−3λ3+1
2

⌉
. We have

(1) If λ2 + λ3 ≤ µ2, then k(λ, µ, ν) = (y − x)(y ≥ x).
(2) If λ2 + λ3 > µ2, then k(λ, µ, ν) = (z − x)(z ≥ x).
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Proof. Let λ̃ = (λ1 − λ3, λ2 − λ3), µ̃ = (µ1 − 2λ3, µ2 − 2λ3) and ν̃ = (ν1 − 2λ3, ν2 − 2λ3).

These are partitions of m − 4λ3. Then, by Corollary 5.1, k(λ, µ, ν) = k(λ̃, µ̃, ν̃). Since

ℓ(λ̃) = ℓ(µ̃) = ℓ(ν̃) = 2, we can apply Theorem 5.2. Due to the symmetry of the
Kronecker coefficients we are assuming ν2 ≤ µ2. We have to consider three cases: (a)
λ2 − λ3 ≤ ν2 − 2λ3, (b) ν2 − 2λ3 < λ2 − λ3 ≤ µ2 − 2λ3 and (c) µ2 − 2λ3 < λ2 − λ3. In the

first two cases the Remmel-Whitehead formula yields the same formula for k(λ̃, µ̃, ν̃). So,
we have only two cases to consider: (1) λ2 + λ3 ≤ µ2 and (2) µ2 < λ2 + λ3. In the first
case Theorem 5.2 yields

k(λ̃, µ̃, ν̃) = (y′ − x′)(y′ ≥ x′)

where x′ = max
(
0,

⌈
ν2−2λ3+λ2−λ3+µ2−2λ3−(m−4λ3)

2

⌉)
and y′ =

⌈
ν2−2λ3+λ2−λ3−(µ2−2λ3)+1

2

⌉
. It

is straightforward to check that x′ = x and y′ = y, so the first claim follows.
The second case is similar.
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