A stability property for coefficients in Kronecker products of complex S_n characters

Ernesto Vallejo*

Universidad Nacional Autónoma de México Instituto de Matemáticas, Unidad Morelia Apartado Postal 61-3, Xangari 58089 Morelia, Mich., MEXICO

vallejo@matmor.unam.mx

Submitted: Apr 29, 2009; Accepted: Jun 12, 2009; Published: Jul 2, 2009 Mathematics Subject Classification: 05E10

Abstract

In this note we make explicit a stability property for Kronecker coefficients that is implicit in a theorem of Y. Dvir. Even in the simplest nontrivial case this property was overlooked despite of the work of several authors. As applications we give a new vanishing result and a new formula for some Kronecker coefficients.

1 Introduction

Let λ , μ , ν be partitions of a positive integer m and let χ^{λ} , χ^{μ} , χ^{ν} be their corresponding complex irreducible characters of the symmetric group S_m . It is a long standing problem to give a satisfactory method for computing the multiplicity

$$\mathbf{k}(\lambda,\mu,\nu) := \langle \chi^{\lambda} \otimes \chi^{\mu}, \chi^{\nu} \rangle \tag{1}$$

of χ^{ν} in the Kronecker product $\chi^{\lambda} \otimes \chi^{\mu}$ of χ^{λ} and χ^{μ} (here $\langle \cdot, \cdot \rangle$ denotes the inner product of complex characters). Via the Frobenius map, $\mathbf{k}(\lambda, \mu, \nu)$ is equal to the multiplicity of the Schur function s_{ν} in the internal product of Schur functions $s_{\lambda} * s_{\mu}$, namely

$$\mathsf{k}(\lambda,\mu,\nu) = \langle s_{\lambda} * s_{\mu}, s_{\nu} \rangle \,,$$

where $\langle \cdot, \cdot \rangle$ denotes the scalar product of symmetric functions.

The first stability property for Kronecker coefficients was observed by F. Murnaghan without proof in [8]. This property can be stated in the following way: Let $\overline{\lambda}$, $\overline{\mu}$, $\overline{\nu}$

^{*}Supported by CONACYT-Mexico, 47086-F and UNAM-DGAPA IN103508

be partitions of a, b, c, respectively. Define $\lambda(n) := (n - a, \overline{\lambda}), \mu(n) := (n - b, \overline{\mu}), \nu(n) := (n - c, \overline{\nu})$. Then the coefficient $\mathsf{k}(\lambda(n), \mu(n), \nu(n))$ is constant for all n bigger than some integer $N(\overline{\lambda}, \overline{\mu}, \overline{\nu})$. Complete proofs of this property were given by M. Brion [3] using algebraic geometry and E. Vallejo [13] using combinatorics of Young tableaux. Both proofs give different lower bounds $N(\overline{\lambda}, \overline{\mu}, \overline{\nu})$ for the stability of $\mathsf{k}(\lambda(n), \mu(n), \nu(n))$, for all partitions $\overline{\lambda}, \overline{\mu}, \overline{\nu}$. C. Ballantine and R. Orellana [1] gave an improvement of one of these lower bounds for a particular case.

Here we make explicit another stability property for Kronecker coefficients that is implicit in the work of Y. Dvir (Theorem 2.4' in [5]). This property can be stated as follows: Let p, q and r be positive integers such that p = qr. Let $\lambda = (\lambda_1, \ldots, \lambda_p)$, $\mu = (\mu_1, \ldots, \mu_q), \nu = (\nu_1, \ldots, \nu_r)$ be partitions of some nonnegative integer m satisfying $\ell(\lambda) \leq p, \ \ell(\mu) \leq q, \ \ell(\nu) \leq r$, that is, some parts of λ, μ and ν could be zero. For any positive integers t and n let $(t)^n$ denote the vector $(t, \ldots, t) \in \mathbb{N}^n$; and for any partition $\lambda = (\lambda_1, \ldots, \lambda_p)$ of length at most p let $\lambda + (t)^p$ denote the partition $(\lambda_1 + t, \ldots, \lambda_p + t)$. Then we have

Theorem 3.1. With the above notation

$$\mathbf{k}(\lambda,\mu,\nu) = \mathbf{k}(\lambda+(t)^p,\mu+(rt)^q,\nu+(qt)^r) \,.$$

It should be noted that even in the simplest nontrivial case, when q = 2 = r and p = 4, this property was overlooked despite of the work of several authors [1, 2, 9, 10]. In this situation Remmel and Whitehead noticed (Theorems 3.1 and 3.2 in [9]) that the coefficient $\mathbf{k}(\lambda, \mu, \nu)$ has a much simpler formula if $\lambda_3 = \lambda_4$. The main theorem provides an explanation for that. We also obtain a new formula for $\mathbf{k}(\lambda, \mu, \nu)$ in this case.

This note is organized as follows. Section 2 contains the definitions and notation about partitions needed in this paper. In Section 3 we give the proof of the main theorem. Section 4 deals with the Kronecker coefficient $k(\lambda, \mu, \nu)$ when $\ell(\lambda) = \ell(\mu)\ell(\nu)$. In particular, we give, in this case, a new vanishing condition. Finally, in Section 5 we give an application of the main theorem.

2 Partitions

In this section we recall the notation about partitions needed in this paper. See for example [6, 7, 11, 12].

For any nonnegative integer n let $[n] := \{1, \ldots, n\}$. A partition is a vector $\lambda = (\lambda_1, \ldots, \lambda_p)$ of nonnegative integers arranged in decreasing order $\lambda_1 \geq \cdots \geq \lambda_p$. We consider two partitions equal if they differ by a string of zeros at the end. For example (3, 2, 1) and (3, 2, 1, 0, 0) represent the same partition. The *length* of λ , denoted by $\ell(\lambda)$, is the number of positive parts of λ . The *size* of λ , denoted by $|\lambda|$, is the sum of its parts; if $|\lambda| = m$, we say that λ is a partition of m and denote it by $\lambda \vdash m$. The partition conjugate to λ is denoted by λ' . A composition of m is a vector $\pi = (\pi_1, \ldots, \pi_r)$ of positive integers such that $\sum_{i=1}^r \pi_i = m$.

The diagram of $\lambda = (\lambda_1, \ldots, \lambda_p)$, also denoted by λ , is the set of pairs of integers

$$\lambda = \{ (i,j) \mid i \in [p], j \in [\lambda_i] \}.$$

The identification of λ with its diagram permits us to use set theoretic notation for partitions. If δ is another partition and $\delta \subseteq \lambda$, we denote by λ/δ the *skew diagram* consisting of the pairs in λ that are not in δ , and by $|\lambda/\delta|$ its cardinality. If μ is another partition, then $\lambda \cap \mu$ denotes the set theoretic intersection of λ and μ .

3 Main theorem

3.1 Theorem. Let λ , μ , ν be partitions of some integer m. Let p, q, r be integers such that $p \ge \ell(\lambda), q \ge \ell(\mu), r \ge \ell(\nu)$ and p = qr. Then for any positive integer t we have

$$\mathsf{k}(\lambda,\mu,
u) = \mathsf{k}(\lambda+(t)^p,\mu+(rt)^q,
u+(qt)^r)$$
 .

The proof of the main theorem will follow from Dvir's theorem

3.2 Theorem. [5, Theorem 2.4'] Let λ , μ , ν be partitions of n such that $\ell(\nu) = |\lambda \cap \mu'|$. Let $l = \ell(\nu)$ and $\rho = \nu - (1^l)$. Then

$$\mathsf{k}(\lambda,\mu,\nu) = \langle \chi^{\lambda/\lambda\cap\mu'} \otimes \chi^{\mu/\lambda'\cap\mu}, \chi^{\rho} \rangle \,.$$

Proof of theorem 3.1. It is enough to prove the theorem for t = 1. The general case follows by repeated application of the particular case. Let $\alpha = \lambda + (1)^p$, $\beta = \mu + (r)^q$ and $\gamma = \nu + (q)^r$. Then $\beta \cap \gamma' = (r)^q$. In particular, $|\beta \cap \gamma'| = p = \ell(\alpha)$. So, we have $\beta/\beta \cap \gamma' = \mu$ and $\gamma/\beta' \cap \gamma = \nu$. Thus, by Dvir's theorem, we have

$$\mathsf{k}(\beta,\gamma,\alpha) = \mathsf{k}(\mu,\nu,\lambda) \,.$$

The claim follows from the symmetry $\mathbf{k}(\lambda, \mu, \nu) = \mathbf{k}(\mu, \nu, \lambda)$ of Kronecker coefficients. \Box

3.3 Example. To illustrate how Dvir's theorem applies, let $\lambda = (8, 4)$, $\mu = (6, 6)$ and $\nu = (5, 3, 2, 2)$. Then $\lambda \cap \mu' = (2, 2) = \lambda' \cap \mu$, $\lambda/\lambda \cap \mu' = (6, 2)$, $\mu/\lambda' \cap \mu = (4, 4)$ and $\nu - (1^4) = (4, 2, 1, 1)$. After two applications of Dvir's theorem we get

$$\begin{aligned} \mathsf{k}((8,4),(6,6),(5,3,2,2)) &= \mathsf{k}((6,2),(4,4),(4,2,1,1)) \\ &= \mathsf{k}((4),(2,2),(3,1)) = 0 \,. \end{aligned}$$

4 The case $\ell(\lambda) = \ell(\mu)\ell(\nu)$

In this section we give a general result for the Kronecker coefficient $k(\lambda, \mu, \nu)$ when $\ell(\lambda) = \ell(\mu)\ell(\nu)$. On the one hand it gives a new vanishing condition. On the other hand, when this vanishing condition does not hold, it reduces the computation of $k(\lambda, \mu, \nu)$ to the computation of a simpler Kronecker coefficient.

Let *m* be a positive integer, λ , μ be partitions of *m* and $\pi = (\pi_1, \ldots, \pi_r)$ be a composition of *m*. Let $\rho(i) \vdash \pi_i$ for $i \in [r]$. A sequence $T = (T_1, \ldots, T_r)$ of tableaux is called a *Littlewood-Richardson multitableau* of shape λ , content $(\rho(1), \ldots, \rho(r))$ and type π if

(1) there exists a sequence of partitions

$$\emptyset = \lambda(0) \subset \lambda(1) \subset \cdots \subset \lambda(r) = \lambda$$

such that $|\lambda(i)/\lambda(i-1)| = \pi_i$ for all $i \in [r]$, and

(2) T_i is Littlewood-Richardson tableau of shape $\lambda(i)/\lambda(i-1)$ and content $\rho(i)$, for all $i \in [r]$.

For example,

1	1	1	1	1	1	1	1	1	1
2	2	2	2	2	2	2	2		
3	3	2	2	3					
3	3								

is a Littlewood-Richardson multitableau of shape (10, 8, 5, 2), type (10, 8, 7) and content ((4, 4, 2), (3, 3, 2), (3, 3, 1)).

Let $\mathsf{LR}(\lambda, \mu; \pi)$ denote the set of pairs (S, T) of Littlewood-Richardson multitableaux of shape (λ, μ) , same content and type π . This means that $S = (S_1, \ldots, S_r)$ is a Littlewood-Richardson multitableau of shape λ , $T = (T_1, \ldots, T_r)$ is a Littlewood-Richardson multitableau of shape μ and both S_i and T_i have the same content $\rho(i)$ for some partition $\rho(i)$ of π_i , for all $i \in [r]$. Let $c^{\lambda}_{(\rho(1),\ldots,\rho(r))}$ denote the number of Littlewood-Richardson multitableaux of shape λ and content $(\rho(1),\ldots,\rho(r))$ and let $\mathsf{Ir}(\lambda,\mu;\pi)$ denote the cardinality of $\mathsf{LR}(\lambda,\mu;\pi)$. Then

$$\operatorname{Ir}(\lambda,\mu;\pi) = \sum_{\rho(1)\vdash \pi_1,\dots,\rho(r)\vdash \pi_r} c^{\lambda}_{(\rho(1),\dots,\rho(r))} c^{\mu}_{(\rho(1),\dots,\rho(r))} \,.$$

Similar numbers have already proved to be useful in the study of minimal components, in the dominance order of partitions, of Kronecker products [14].

The number $\operatorname{lr}(\lambda,\mu;\pi)$ can be described as an inner product of characters. For this description we need the permutation character $\phi^{\pi} := \operatorname{Ind}_{\mathsf{S}_{\pi}}^{\mathsf{S}_m}(1_{\pi})$, namely, the induced character from the trivial character of $\mathsf{S}_{\pi} = \mathsf{S}_{\pi_1} \times \cdots \times \mathsf{S}_{\pi_r}$. It follows from Frobenius reciprocity and the Littlewood-Richardson rule that (see also [6, 2.9.17])

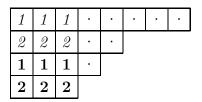
4.1 Lemma. Let λ , μ , π be as above. Then

$$\mathrm{lr}(\lambda,\mu;\pi) = \langle \chi^\lambda \otimes \chi^\mu, \phi^\pi \rangle.$$

Since Young's rule and Lemma 4.1 imply that $lr(\lambda, \mu; \nu) \ge k(\lambda, \mu, \nu)$, then we have 4.2 Corollary. Let λ , μ , ν be partitions of m. If $lr(\lambda, \mu; \nu) = 0$, then $k(\lambda, \mu, \nu) = 0$. **4.3 Lemma.** Let λ , μ , ν be partitions of m of lengths p, q, r, respectively. If p = qr, and $\mu_q < r\lambda_p$ or $\nu_r < q\lambda_p$, then $lr(\lambda, \mu; \nu) = 0$.

Proof. We assume that $\operatorname{Ir}(\lambda, \mu; \nu) > 0$ and show that $\mu_q \ge r\lambda_p$ and $\nu_r \ge q\lambda_p$. Let (S, T) be an element in $\operatorname{LR}(\lambda, \mu; \nu)$ having content $(\rho(1), \ldots, \rho(r))$. Since T_i is contained in μ , one has, by elementary properties of Littlewood-Richardson tableaux, that $\ell(\rho(i)) \le \ell(\mu) = q$. For any i, let n_i be the number of squares of S_i that are in column λ_p of λ , then $n_i \le q$. We conclude that $p = n_1 + \cdots + n_r \le rq = p$. Therefore $n_i = q = \ell(\rho(i))$ for all i. This forces that each S_i contains a j in the squares $(j + (i - 1)q, 1), \ldots, (j + (i - 1)q, \lambda_p)$ of λ , for all $j \in [q]$. So, $\rho(i)_j \ge \lambda_p$ for all j. In particular, for i = r, since S_r has ν_r squares, one has $\nu_r \ge q\lambda_p$. Now, since $\ell(\mu) = q$, all entries of T_i equal to q must be in row q of μ . Then $\mu_q \ge \rho(1)_q + \cdots + \rho(r)_q \ge r\lambda_p$. The claim follows. \Box

4.4 Example. To illustrate the idea in the proof of the previous lemma let $\lambda = (8, 5, 4, 3)$ and let μ and ν be partitions of 20 length 2. Let (S, T) be any multitableau in LR $(\lambda, \mu; \nu)$. Then, elementary properties of Littlewood-Richardson tableaux force S to have the form



Here $S = (S_1, S_2)$, S_1 is formed by *italic* numerals and S_2 by **boldface** numerals. The dots indicate entries that can be either in S_1 or S_2 . This partial information on S forces $\mu_2 \ge 6$ and $\nu_2 \ge 6$.

4.5 Corollary. Let λ , μ , ν be partitions of m of length p, q, r, respectively. If p = qr, and $\mu_q < r\lambda_p$ or $\nu_r < q\lambda_p$, then $k(\lambda, \mu, \nu) = 0$.

Proof. This follows from Lemma 4.3 and Corollary 4.2.

Corollary 4.5 and Theorem 3.1 imply the following

4.6 Theorem. Let λ , μ , ν be partitions of m of length p, q, r, respectively. Let $t = \lambda_p$ and assume p = qr, then we have

(1) If $\mu_q < rt$ or $\nu_r < qt$, then $\mathbf{k}(\lambda, \mu, \nu) = 0$.

(2) If $\mu_q \ge rt$ and $\nu_r \ge qt$, let $\widetilde{\lambda} = \lambda - (t)^p$, $\widetilde{\mu} = \mu - (rt)^q$ and $\widetilde{\nu} = \nu - (qt)^r$. Then, $\mathsf{k}(\lambda,\mu,\nu) = \mathsf{k}(\widetilde{\lambda},\widetilde{\mu},\widetilde{\nu}).$

5 Applications

We conclude this paper with an application to the expansion of $\chi^{\mu} \otimes \chi^{\nu}$ when $\ell(\mu) = 2 = \ell(\nu)$. It is well known that any component of $\chi^{\mu} \otimes \chi^{\nu}$ corresponds to a partition of length at most $|\mu \cap \nu'| \leq 4$, see Satz 1 in [4], Theorem 1.6 in [5] or Theorem 2.1 in [9].

Even in this simple case a *nice* closed formula seems unlikely to exist. J. Remmel and T. Whitehead (Theorem 2.1 in [9]) gave a close, though intricate, formula for $k(\lambda, \mu, \nu)$ valid for any λ of length at most 4; M. Rosas (Theorem 1 in [10]) gave a formula of combinatorial nature for $k(\lambda, \mu, \nu)$, which requires taking subtractions, also valid for any λ of length at most 4; C. Ballantine and R. Orellana (Proposition 4.12 in [2]) gave a simpler formula for $k(\lambda, \mu, \nu)$, at the cost of assuming an extra condition on λ .

Note that when $\ell(\lambda) = 1$ the coefficient $k(\lambda, \mu, \nu)$ is trivial to compute. For $\ell(\lambda) = 2$ the Remmel-Whitehead formula for $k(\lambda, \mu, \nu)$ reduces to a simpler one (Theorem 3.3 in [9]). This formula was recovered by Rosas in a different way (Corollary 1 in [10]). So, the nontrivial cases are those for which $\ell(\lambda) = 3, 4$. Corollary 5.1 deals with the case of length 4. On the one hand it gives a new vanishing condition. On the other hand, when this vanishing condition does not hold, it reduces the case of length 4 to the case of length 3. Thus, this reduction would help to simplify the proofs of the formulas given by Remmel-Whitehead and Rosas.

The following corollary is a particular case of Theorem 4.6.

5.1 Corollary. Let λ , μ , ν be a partitions of m of length 4, 2, 2, respectively. Let $t = \lambda_4$, then we have

(1) If $\mu_2 < 2t$ or $\nu_2 < 2t$, then $k(\lambda, \mu, \nu) = 0$.

(2) If $\mu_2 \geq 2t$ and $\nu_2 \geq 2t$, let $\widetilde{\lambda} = (\lambda_1 - t, \lambda_2 - t, \lambda_3 - t)$, $\widetilde{\mu} = (\mu_1 - 2t, \mu_2 - 2t)$ and $\widetilde{\nu} = (\nu_1 - 2t, \nu_2 - 2t)$. Then, $\mathsf{k}(\lambda, \mu, \nu) = \mathsf{k}(\widetilde{\lambda}, \widetilde{\mu}, \widetilde{\nu})$.

Another observation of Remmel and Whitehead (Theorems 3.1 and 3.2 in [9]) is that their formula simplifies considerably in the case $\lambda_3 = \lambda_4$. Corollary 5.1 explains this phenomenon since, in this case, the computation of $k(\lambda, \mu, \nu)$ reduces to the computation of a Kronecker coefficient involving only three partitions of length at most 2, which have a simple nice formula (Theorem 3.3 in [9]). In fact, combining our result with this simple formula we obtain a new one. For completeness we record here the Remmel-Whitehead formula in the equivalent version of Rosas.

In the next theorems the notation $(y \ge x)$ means 1 if $y \ge x$ and 0 if $y \ge x$.

5.2 Theorem. [9, Theorem 3.3] Let λ , μ , ν be partitions of m of length 2. Let $x = \max\left(0, \left\lceil \frac{\nu_2 + \mu_2 + \lambda_2 - m}{2} \right\rceil\right)$ and $y = \left\lceil \frac{\nu_2 + \mu_2 - \lambda_2 + 1}{2} \right\rceil$. Assume $\nu_2 \le \mu_2 \le \lambda_2$. Then

$$\mathsf{k}(\lambda,\mu,\nu) = (y-x)(y \ge x) \,.$$

From Corollary 5.1 and Theorem 5.2 we obtain

5.3 Theorem. Let λ , μ , ν be partitions of m of length 4, 2, 2, respectively. Suppose that $\lambda_3 = \lambda_4$ and that $2\lambda_3 \leq \nu_2 \leq \mu_2$. Let $x = \max\left(0, \left\lceil \frac{\nu_2 + \mu_2 + \lambda_2 - \lambda_3 - m}{2} \right\rceil\right), y = \left\lceil \frac{\nu_2 + \lambda_2 - \mu_2 - \lambda_3 + 1}{2} \right\rceil$ and $z = \left\lceil \frac{\nu_2 + \mu_2 - \lambda_2 - 3\lambda_3 + 1}{2} \right\rceil$. We have (1) If $\lambda_2 + \lambda_3 \leq \mu_2$, then $\mathsf{k}(\lambda, \mu, \nu) = (y - x)(y \geq x)$.

(2) If $\lambda_2 + \lambda_3 > \mu_2$, then $\mathsf{k}(\lambda, \mu, \nu) = (z - x)(z \ge x)$.

Proof. Let $\lambda = (\lambda_1 - \lambda_3, \lambda_2 - \lambda_3)$, $\mu = (\mu_1 - 2\lambda_3, \mu_2 - 2\lambda_3)$ and $\nu = (\nu_1 - 2\lambda_3, \nu_2 - 2\lambda_3)$. These are partitions of $m - 4\lambda_3$. Then, by Corollary 5.1, $\mathbf{k}(\lambda, \mu, \nu) = \mathbf{k}(\lambda, \mu, \tilde{\nu})$. Since $\ell(\lambda) = \ell(\mu) = \ell(\nu) = 2$, we can apply Theorem 5.2. Due to the symmetry of the Kronecker coefficients we are assuming $\nu_2 \leq \mu_2$. We have to consider three cases: (a) $\lambda_2 - \lambda_3 \leq \nu_2 - 2\lambda_3$, (b) $\nu_2 - 2\lambda_3 < \lambda_2 - \lambda_3 \leq \mu_2 - 2\lambda_3$ and (c) $\mu_2 - 2\lambda_3 < \lambda_2 - \lambda_3$. In the first two cases the Remmel-Whitehead formula yields the same formula for $\mathbf{k}(\lambda, \mu, \tilde{\nu})$. So, we have only two cases to consider: (1) $\lambda_2 + \lambda_3 \leq \mu_2$ and (2) $\mu_2 < \lambda_2 + \lambda_3$. In the first case Theorem 5.2 yields

$$\mathsf{k}(\widetilde{\lambda},\widetilde{\mu},\widetilde{\nu})=(y'-x')(y'\geq x')$$

where $x' = \max\left(0, \left\lceil \frac{\nu_2 - 2\lambda_3 + \lambda_2 - \lambda_3 + \mu_2 - 2\lambda_3 - (m - 4\lambda_3)}{2} \right\rceil\right)$ and $y' = \left\lceil \frac{\nu_2 - 2\lambda_3 + \lambda_2 - \lambda_3 - (\mu_2 - 2\lambda_3) + 1}{2} \right\rceil$. It is straightforward to check that x' = x and y' = y, so the first claim follows.

The second case is similar.

References

- [1] C.M. Ballantine and R.C. Orellana, On the Kronecker product $s(n-p,p) * s_{\lambda}$, *Electron. J. Combin.* **12** (2005) Research Paper 28, 26 pp. (electronic).
- [2] C.M. Ballantine and R.C. Orellana, A combinatorial interpretation for the coefficients in the Kronecker product $s(n - p, p) * s_{\lambda}$, Sém. Lotar. Combin. **54A** (2006), Art. B54Af, 29pp. (electronic).
- [3] M. Brion, Stable properties of plethysm: on two conjectures of Foulkes, manuscripta math. 80 (1993), 347–371.
- [4] M. Clausen and H. Meier, Extreme irreduzible Konstituenten in Tensordarstellungen symmetrischer Gruppen, Bayreuther Math. Schriften 45 (1993), 1–17.
- [5] Y. Dvir, On the Kronecker product of S_n characters, J. Algebra 154 (1993), 125–140.
- [6] G.D. James and A. Kerber, "The representation theory of the symmetric group", Encyclopedia of mathematics and its applications, Vol. 16, Addison-Wesley, Reading, Massachusetts, 1981.
- [7] I.G. Macdonald, "Symmetric functions and Hall polynomials," 2nd. edition Oxford Mathematical Monographs Oxford Univ. Press 1995.
- [8] F.D. Murnaghan, The analysis of the Kronecker product of irreducible representations of the symmetric group, Amer. J. Math. 60 (1938), 761–784.
- [9] J.B. Remmel and T. Whitehead, On the Kronecker product of Schur functions of two row shapes, *Bull. Belg. Math. Soc.* 1 (1994), 649–683.
- [10] M.H. Rosas, The Kronecker product of Schur functions indexed by two-row shapes or hook shapes, J. Algebraic Combin. 14 (2001), 153–173.
- [11] B. Sagan, "The symmetric group. Representations, combinatorial algorithms and symmetric functions". Second ed. Graduate Texts in Mathematics 203. Springer Verlag, 2001.

- [12] R.P. Stanley, "Enumerative Combinatorics, Vol. 2", Cambridge Studies in Advanced Mathematics 62. Cambridge Univ. Press, 1999.
- [13] E. Vallejo, Stability of Kronecker product of irreducible characters of the symmetric group, *Electron. J. Combin* 6 (1999) Research Paper 39, 7 pp. (electronic).
- [14] E. Vallejo, Plane partitions and characters of the symmetric group, J. Algebraic Combin. 11 (2000), 79–88.