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Abstract

In this note we obtain the energy of unitary Cayley graph Xn which extends a

result of R. Balakrishnan for power of a prime and also determine when they are

hyperenergetic. We also prove that
E(Xn)
2(n−1) ≥ 2k

4k
, where k is the number of distinct

prime divisors of n. Thus the ratio
E(Xn)
2(n−1) , measuring the degree of hyperenergeticity

of Xn, grows exponentially with k.

Keywords: Spectrum of a graph; Energy of a graph; Unitary Cayley graphs;

Hyperenergetic graphs.

1 Introduction

Let G be a simple finite undirected graph with n vertices and m edges and let A = (aij)
be the adjacency matrix of graph G. The eigenvalues λ1, λ2, . . . , λn of A, assumed in non-
increasing order, are the eigenvalues of the graph G called the Spectrum of G denoted by
Spec G. If the distinct eigenvalues of G are µ1 > µ2 > · · · > µs, and their multiplicities
are m(µ1), m(µ2), . . . , m(µs), then we write

Spec G =

(

µ1 µ2 . . . µs

m(µ1) m(µ2) . . . m(µs)

)

.

Spec G is independent of labelling of the vertices of G. As A is a real symmetric matrix
with zero trace, these eigenvalues are real with sum equal to zero.

The energy E(G) of G was defined by I. Gutman [6] in 1978 as the sum of the
absolute values of its eigenvalues.
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Since the energy of a graph is not affected by isolated vertices, we assume throughout

that graphs have no isolated vertices implying, in particular, that m ≥
n

2
. If a graph is

not connected, its energy is the sum of the energies of its connected components. Thus
there is no loss in generality in assuming that graphs are connected.

The complete graph Kn has simple eigenvalue n− 1 and eigenvalue −1 of multiplicity
n−1. Thus its energy is given by E(Kn) = 2(n−1). The graph G of order n whose energy
satisfies E(G) > 2(n−1) is called hyperenergetic and graph with energy E(G) ≤ 2(n−1)
is called non-hyperenergetic.

The Line graph L(G) of a graph G is constructed by taking the edges of G as vertices
of L(G), and joining two vertices in L(G) whenever the corresponding edges in G have a
common vertex. It is proved in [11] that the line graph of all k-regular graphs, for k ≥ 4,
are hyperenegetic.

Let Γ be a finite multiplicative group with identity 1. For S ⊆ Γ, 1 /∈ S and
S−1 = {s−1 : s ∈ S} = S, the Cayley graph X = Cay (Γ, S) is the undirected graph
having vertex set V (X) = Γ and edge set {(a, b) : ab−1 ∈ S}. By the right multiplication
Γ may be considered as a group of automorphisms of X acting transitively on V (X). The
Cayley graph X is a regular graph of degree |S|. Its connected components are the right
cosets of the subgroup generated by S. So X is connected, if S generates Γ.

For a positive integer n > 1 the unitary Cayley graph Xn = Cay (Zn, Un) is defined
by the additive group of the ring Zn of integers modulo n and the multiplicative group
Un of its units. If we represent the elements of Zn by the integers 0, 1, . . . , n − 1, then
Un = {a ∈ Zn : gcd (a, n) = 1}. So, Xn has the vertex set V (Xn) = Zn = {0, 1, . . . , n− 1}
and the edge set {(a, b) : a, b ∈ Zn,
gcd (a − b, n) = 1}.

The concept of graph energy arose in theoretical chemistry. The total π-electron energy
of some conjugated carbon molecule, computed using Hückel theory, coincides with the
energy of its “molecular” graph. Recently there has been a tremendous research activity
in the areas like hyperenergetic graphs, maximum energy graphs, equienergetic graphs.
We refer to the survey papers by Gutman [7] and by Brualdi [3] for details. The study
of the energy of circulant graphs is also of number theoretic interest as it is related to
the Gauss sum (see for instance [2], [9] and [10]). Cayley graphs are important class of
circulant graphs defined through finite groups. The unitary Cayley graphs have number
theoretic aspects as illustrated by Klotz and Sander [8] and Fuchs [5], wherein, the basic
invariants, the eigenvalues and the largest induced cycles were determined.

The energy of Xn when n is a power of a prime was determined by Balakrishnan
[1] using the computations involving the cyclotonic polynomials φn(x). In this note we
extend the result of Balakrishnan by obtaining the energy of all unitary Cayley graphs Xn
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and determine when they are hyperenergetic. We also obtain a lower bound for the ratio
of the energy of the unitary Cayley graph and the complete graph, thus measuring the
degree of hyperenergeticity. This ratio grows exponentially with the number of distinct
prime factors of n.

2. PRELIMINARIES

We give a brief account of some of the results of Klotz and Sander [8] on the eigenvalues
of unitary Cayley graphs which will be used in this note.

It is well known that Xn is a connected φ(n) - regular graph. If n = p is a prime
number, then Xn is the complete graph on p vertices and if n = pα is a prime power, then
Xn is a complete p - partite graph. The unitary Cayley graph Xn, n ≥ 2, is bipartite
if and only if n is even. Klotz and Sander [8] have determined the chromatic number,
the clique number, the independence number, the diameter and the vertex connectivity
of Xn. They have also shown that all nonzero eigenvalues of Xn are integers dividing φ(n).

The eigenvalues of Xn are given by

λr+1 =
∑

1≤j<n,

gcd (j,n)=1

ωrj, 0 ≤ r ≤ n−1, (2.1)

where ω = exp(2πi
n

). The sum in equation (2.1) is the well known Ramanujan sum c(r, n).
Thus, we have,

λr+1 = c(r, n), 0 ≤ r ≤ n − 1. (2.2)

The value of c(r, n) is an integer and so all the eigenvalues of Xn are integers which are
given by:

c(r, n) = µ(tr)
φ(n)

φ(tr)
, where tr =

n

gcd (r, n)
, 0 ≤ r ≤ n−1, (2.3)

where µ denotes the Möbius function. Klotz and Sander [8] have obtained the following
results:

Theorem 2.1 [8] For n ≥ 2, the following statements hold:

1. Every nonzero eigenvalue of Xn is a divisor of φ(n).

2. Let m be the maximal squarefree divisor of n. Then

λmin = µ(m)
φ(n)

φ(m)

is a nonzero eigenvalue of Xn of minimal absolute value and multiplicity φ(m).
Every eigenvalue of Xn is a multiple of λmin. If n is odd, then λmin is the only
nonzero eigenvalue of Xn with minimal absolute value. If n is even, then −λmin is
also an eigenvalue of Xn with multiplicity φ(m).
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Theorem 2.2 [8] Let m be the maximal squarefree divisor of n and let M be the set
of positive divisors of m. Then the following statements for the unitary Cayley graph
Xn, n ≥ 2, hold:

1. Repeating φ(t)-times every term of the sequence S =
(

µ(t)φ(n)
φ(t)

)

t∈M
results in a

sequence S̃ of length m which consists of all nonzero eigenvalues of Xn such that
the number of appearances of an eigenvalue is its multiplicity.

2. The multiplicity of zero as an eigenvalue of Xn is n − m.

3. If α(λ) is the multiplicity of the eigenvalue λ of Xn, then λα(λ) is a multiple of
φ(n).

3. ENERGY OF UNITARY CAYLEY GRAPHS

We first give a direct proof of the result of Balakrishnan [1] when n is a power of a
prime.

Theorem 3.1. If n = pα is a prime power, then the energy of the unitary Cayley
graph Xn is given by E(Xn) = 2φ(n).
Proof. When α = 1, the graph Xn is the complete graph Kp. Clearly E(Kp) = 2(p−1) =
2φ(p). Hence we can assume α ≥ 2.
The eigenvalues of the unitary Cayley graph Xpα are given by

λr+1 = c(r, pα) = µ(tr)
φ(pα)

φ(tr)
, where tr =

pα

gcd(r, pα)
, 0 ≤ r ≤ pα − 1.

We consider three cases:

Case(1): If gcd(r, pα) = pα then r = 0 and so t0 = 1. Hence λ1 = φ(pα) = pα − pα−1.

Case(2): If gcd (r, pα) = 1 then tr = pα and hence we get λr+1 = 0.

Case(3): If 1 < gcd(r, pα) < pα then gcd(r, pα) = pm, where 1 ≤ m ≤ α − 1. When
gcd(r, pα) = pα−1, we get λr+1 = −pα−1. For all other remaining values of m
we get λr+1 = 0.

Therefore the Spectrum of Xpα is

Spec Xpα =

(

pα − pα−1 −pα−1 0
1 p − 1 pα − p

)

.

Thus, E(Xpα) = pα − pα−1 + (p − 1)pα−1 = 2(pα − pα−1) = 2φ(pα).
Hence the proof. �

Let G1 = (V1, E1) and G2 = (V2, E2) be graphs. The direct product of G1 and G2

is the graph G = (V, E) denoted by G1 ⊗ G2 (also by G1 ∧ G2) where V = V1 × V2, the
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cartesian product of V1 and V2, with (v1, v2) and (u1, u2) are adjacent in G if and only if
v1, u1 are adjacent in G1 and v2, u2 are adjacent in G2.

Theorem 3.2. If (m, n) = 1, then the direct product of the unitary Cayley graphs
Xm and Xn is isomorphic to Xmn.
Proof. Since (m, n) = 1, by the Chinese Remainder theorem, there is an isomorphism
φ : Zm × Zn −→ Zmn. This isomorphism induces an isomorphism between their groups
of units Um × Un and Umn. Let ki,j be the element in Zmn corresponding to the element
(i, j) ∈ Zm × Zn. Then (i, m) = 1 = (j, n) if and only if (ki,j, mn) = 1. The vertex
set of Xmn is Zmn and the vertex set of Xm × Xn is Zm × Zn. The isomorphism φ
gives the bijective correspondence between their vertex sets. Let i1 be adjacent to i2
in Xm and let j1 be adjacent to j2 in Xn. Then (i1 − i2, m) = 1 = (j1 − j2, n). Now
consider ki1,j1, ki2,j2 ∈ Zmn. Since φ is an isomorphism, ki1−i2,j1−j2 = ki1,j1 − ki2,j2. Now
(ki1−i2,j1−j2, mn) = 1 and so ki1,j1 and ki2,j2 are adjacent in Xmn.

Conversely, if ki1,j1 is adjacent to ki2,j2 in Xmn, then, ki1−i2,j1−j2 = ki1,j1 − ki2,j2 ∈ Umn

and so i1 − i2 ∈ Um and j1 − j2 ∈ Un. Thus i1 is adjacent to i2 in Xm and j1 is
adjacent to j2 in Xn. Hence Xm⊗Xn and Xmn are isomorphic. This completes the proof.
�

Corollary 3.3. If n = pα1
1 pα2

2 . . . pαk

k , then the direct product of unitary Cayley graphs
Xp

α1
1

⊗ Xp
α2
2

⊗ · · · ⊗ Xp
αk
k

is isomorphic to Xn.

Definition 3.4. The tensor product A ⊗ B of the r × s matrix A = (aij) and the
t × u matrix B = (bij) is defined as the rt × su matrix got by replacing each entry aij of
A by the double array aijB.

It is easy to check that for any two graphs G1 and G2 the adjacency matrix A(G1⊗G2)
of G1 ⊗ G2 is given by

A(G1 ⊗ G2) = A(G1) ⊗ A(G2).

Lemma 3.5. [4] If A is a matrix of order r with Spectrum {λ1, λ2, . . . , λr}, and B,
a matrix of order s with Spectrum {µ1, µ2, . . . , µs}, then the spectrum of A ⊗ B is
{λiµj : 1 ≤ i ≤ r; 1 ≤ j ≤ s}.

Corollary 3.6. If G1 and G2 are any two graphs, then,

E(G1 ⊗ G2) = E(G1)E(G2).

Theorem 3.7. If n > 1 is of the form n = pα1
1 pα2

2 . . . pαk

k where p1, p2, . . . , pk

are distinct primes and α1, α2, . . . , αk are positive integers, then,

E(Xn) = 2kφ(n).

Proof. By Corollary 3.3, Xn is isomorphic to the product Xp
α1
1

⊗ . . . ⊗ Xp
αk
k

. Now by
Corollary 3.6, the energy of the direct product of graphs is the product of their energies.
Hence, it follows that, E(Xn) = E(Xp

α1
1

) . . . E(Xp
αk
k

). Now by Theorem 3.1, E(Xp
αi
i

) =

2φ(pαi

i ) for 1 ≤ i ≤ k and so we have,
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E(Xn) = 2kφ(pα1
1 ) . . . φ(pαk

k )

= 2kφ(pα1
1 . . . pαk

k )

= 2kφ(n), since φ is multiplicative. �

Corollary 3.8.
E(Xn)

2(n − 1)
> 2k−1φ(n)

n
.

We note that if n = pα1
1 pα2

2 . . . pαk

k , then,

φ(n)

n
=

(

1 −
1

p1

) (

1 −
1

p2

)

. . .

(

1 −
1

pk

)

.

This will be used in the characterization of hyperenergetic unitary Cayley graphs. First
we state the following Lemma whose proof follows by induction and is elementary.

Lemma 3.9. For k ≥ 3 and n = pα1
1 pα2

2 . . . pαk

k , we have,

φ(n)

n
>

1

2k−1
.

By making use of the Theorem 3.7, we now characterise the hyperenergetic unitary Cayley
graphs.

Theorem 3.10 Let n = pα1
1 pα2

2 . . . pαk

k where p1, p2, . . . , pk are distinct prime divisors
of n. Then the unitary Cayley graph Xn is hyperenergetic if and only if k ≥ 3 or k = 2
and n is odd.
Proof. We consider three cases:
Case 1: For k = 1, n = pα, if Xn is hyperenergetic then, we have,

2φ(pα) > 2(pα − 1) ⇒ 2(pα − pα−1) > 2(pα − 1)

i.e., 2 > 2pα−1 ⇒ 1 > pα−1

which is impossible.
Therefore Xn is not hyperenergetic.

Case 2: For k = 2, n = pαqβ (p < q).
Here we consider two subcases:

(i) p = 2, n = 2αqβ, 2 < q
Then, we have,
E(Xn) = 4φ(n) = 4 · 2α−1qβ−1(q − 1)

= 2n

(

q − 1

q

)

< 2n

(

n − 1

n

)

= 2(n − 1).

Therefore Xn is non-hyperenergetic.
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(ii) p ≥ 3, q ≥ 3, p < q
Since q ≥ 5, we have, E(Xn) > 2n.

Therefore Xn is hyperenergetic.

Case 3: Let k ≥ 3. If n = pα1
1 pα2

2 . . . pαk

k , then, by Corollary 3.8 and Lemma 3.9, we
have,

E(Xn)

2(n − 1)
> 1,

and so Xn is hyperenergetic.
This completes the proof of the theorem. �

In the next theorem we show that the degree of hyperenergeticity grows at least
exponentially with the number of distinct prime divisors of n by making use of the sharper

lower bound for
φ(n)

n
, namely

φ(n)

n
>

1

2k
.

Theorem 3.11. Let k denote the number of distinct prime divisors of n. Then

E(Xn)

2(n − 1)
>

2k

4k
.

Proof. Let n = qα1
1 . . . qαk

k where q1, . . . , qk are distinct primes such that
q1 < q2 < . . . < qk. When k = 1, we have, n = qα and so

E(Xn)

2(n − 1)
=

2φ(n)

2(n − 1)
>

φ(n)

n
=

(

1 −
1

q

)

≥
1

2
.

Suppose k ≥ 2. Let pj denote the jth prime. Then clearly pj ≥ 2j − 1 for j ≥ 2. Thus

1 −
1

qj

≥ 1 −
1

pj

≥
2j − 2

2j − 1
.

Hence,
φ(n)

n
≥

1

2
·
2

3
·
4

5
·
6

7
· · ·

2k − 2

2k − 1
≥

1

2k − 1
>

1

2k
.

Now the result follows from Corollary 3.8. �
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