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Abstract

Sudoku graphs have only 5 or 6 distinct eigenvalues and all of them are integers. Moreover,
the associated eigenspaces admit bases with entries from the set {0, 1,−1}.
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1 Introduction

The recreational game of Sudoku has attained quite some popularity in recent years. A
traditional Sudoku puzzle consists of a 3 × 3 arrangement of square blocks consisting of
3 × 3 cells each. Each cell may be empty or contain a number ranging from 1 to 9, see
Figure 1. The aim of the puzzle is to fill the empty cells with numbers from 1 to 9 such that
every row, column and block of the puzzle contains all of the numbers 1, . . . , 9. A properly
set up Sudoku puzzle permits only one unique way of filling the missing numbers. Many
different solution techniques exist for Sudoku puzzles [6]. The game can be generalised to
n4 instead of 34 = 81 cells so that numbers from 1 to n2 need to be filled in. Let us call
these puzzles n-Sudokus.

As a result of Sudoku’s general popularity, there has also been an increasing amount of
mathematical research on it. In particular, the puzzle exhibits a close connection to graph
theory. Given an empty n-Sudoku puzzle, the corresponding Sudoku graph Sud(n) on n4

vertices is derived by establishing a one-to-one mapping between the vertices and the cells
and adding edges between vertices if and only if the corresponding cells are situated in
the same row, column or block. This process is depicted in Figure 2.

Numbers in the cells of an n-Sudoku puzzle can be interpreted as a vertex colouring

the electronic journal of combinatorics 16 (2009), #N25 1



9 2 1 8 5 7

3 1 6 4

6 5 4 7 3 2

5 1 6 7 4 8

6 3 5 1

9 3 5 8 6 2

8 1 9 2

1 7 3

2 3 9 8 7 4 1 6

Figure 1: Example Sudoku puzzle

of the corresponding Sudoku graph. Hence, the task of solving a Sudoku puzzle is the
mathematical task of extending a partial vertex colouring to a valid n2-colouring of the
entire graph (note that the chromatic number of an n-Sudoku puzzle is n2 [11]).

Mathematical research on Sudoku has mainly concentrated on aspects of colouring and
isomorphism [7], [8], [9], [11], [15].

So far, it appears that no results have been published on the spectral properties of Sudoku
graphs. Given a graph G = (V, E) with vertex set V = {x1, . . . , xn} and edge set E we
define the n × n adjacency matrix A(G) of G (with respect to the given vertex order)
with entries aij = 1 if xixj ∈ E and aij = 0 otherwise. Since the eigenvalues of A(G) are
independent of vertex order we call them the eigenvalues of the graph G.

We explicitly determine the eigenvalues of Sudoku graphs, which turn out to be integers.
Hence, Soduku graphs belong to the important class of integral graphs. Other examples
of integral graphs are the complete graphs Kn [2], certain trees [3] and certain circulant
graphs [20] (like the unitary Cayley graphs).

Moreover, we show that the associated eigenspaces admit particularly structured bases,
containing only vectors with entries from the set {0, 1,−1}. Such bases we call simply
structured. There has been some research interest in them lately [1], [10], [13], [17], [18]. It
is interesting to note that for certain molecular graphs {0, 1,−1}-eigenvectors are related
to equidistributivity of electron charges in non-bonding molecular orbits [19].
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Figure 2: Deriving the graph Sud(2) from a 2-Sudoku puzzle

2 NEPS

Most of the common graph product operations can be classified as NEPS (acronym for
“non-complete extended p-sum”) operations. Given a set B ⊆ {0, 1}n \ {(0, . . . , 0)}
and graphs G1, . . . , Gn, the NEPS of these graphs with respect to “basis” B is the
graph G with vertex set V (G) = V (G1) × . . . × V (Gn) and edge set E(G) such that
(x1, . . . , xn), (y1 . . . , yn) ∈ V (G) are adjacent if and only if there exists some n-tuple
(β1, . . . , βn) ∈ B such that xi = yi whenever βi = 0 and xi, yi are adjacent in Gi whenever
βi = 1.

For n = 2, commonly used products are the direct sum G1 + G2 with B = {(0, 1), (1, 0)},
the direct product G1 × G2 with B = {(1, 1)}, and the strong product G1 ∗ G2 with
B = {(0, 1), (1, 0), (1, 1)}.

Let A ⊗ B denote the Kronecker product of the matrices A, B. According to [5], the
adjacency matrix of a NEPS G of graphs G1, . . . , Gn with basis B is

A(G) =
∑

β∈B

A(G1)
β1 ⊗ . . . ⊗ A(Gn)βn.

We now cite a well-known result on the eigenvalues of NEPS graphs. The expression x⊗y

denotes the Kronecker product of the vectors x, y. It is formed by replacing each entry xi

of x with the block xiy.

Theorem 2.1. [5] For i = 1, . . . , n, let λi1, . . . , λini
be the eigenvalues of the graph Gi

with ni vertices with respective linearly independent eigenvectors xi1, . . . , xini
.

Then the eigenvalues of the NEPS G of G1, . . . , Gn with basis B are exactly

Λi1,...,in =
∑

β∈B

λ
β1

1i1
· . . . · λβn

nin

with ik = 1, . . . , nk for k = 1, . . . , n.

the electronic journal of combinatorics 16 (2009), #N25 3



With each Λi1,...,in associate a vector xi1,...,in = x1i1 ⊗ . . . ⊗ xnin. Then, xi1,...,in is an
eigenvector of G for eigenvalue Λi1,...,in. Together, these vectors form a complete set of
linearly independent eigenvectors of G.

It follows from Theorem 2.1 that the eigenvalues of the direct sum G+H add up (as already
shown in 1947 by Rutherford [16]) whereas for the direct product they are multiplied
(hence justifying the names of these operations).

Corollary 2.2. If the eigenvalues of G1 and G2 are integer, then also the eigenvalues of
every NEPS of G1 and G2 are integer. If for every eigenvalue of G1 and G2 there exists
a simply structured eigenspace basis, then this property also holds for every NEPS of G1

and G2.

Corollary 2.2 generalises a number of previously known results on graph products with
integer eigenvalues. The special case that cube-like graphs have only integer eigenvalues
dates back to 1975, cf. [12].

More information on NEPS and further generalisations can be found in [4], [5], [14].

3 Main results

The key to the determination of the eigenvalues of the Sudoku graphs is the observation
that Sudoku graph are actually NEPS:

Lemma 3.1. Let n ∈ N and G1, . . . , G4 = Kn. If G is the NEPS of the Gi for ba-
sis B = {(0, 1, 0, 1), (1, 1, 0, 0), (0, 0, 1, 1), (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)}, then
G ≃ Sud(n).

Proof. We may assume that V (Gi) = {1, . . . , n}. Construct a one-to-one mapping
between the 4-tuples in V (G) = {1, . . . , n}4 and the cells of the Sudoku grid as follows.
For every vertex v = (a, b, c, d) ∈ V (G), associate with v the cell Γv that lies in row
number (a−1)n+ b and column number (c−1)n+d of the Sudoku grid. Thus, a, c index
the vertical and horizontal block number, respectively, whereas b, d index the positions
inside the block. So the mapping is clearly one-to-one.

Now, fix a vertex v ∈ V (G) and some q ∈ B and consider how q selects certain vertices
of G as the neighbours of v. We express this in terms of the associated grid cells:

• For q = (0, 1, 0, 1), select all cells in the block of Γv that do not lie in the same row
or column as Γv.

• For q = (1, 1, 0, 0), select all cells in the same column as Γv that do not lie in the
same block nor at the same relative position inside the block as Γv.
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• For q = (1, 0, 0, 0), select all cells in the same column as Γv that do not lie in the
same block but at the same relative position inside the block as Γv.

• For q = (0, 1, 0, 0), select all cells in the same column as Γv that lie in the same
block but not at the same relative position inside the block as Γv.

The remaining cases can be resolved in the same manner. Combining the cases, we find
that (cf. Figure 3)

• subset S1 = {(1, 1, 0, 0), (1, 0, 0, 0), (0, 1, 0, 0)} selects all cells in the same column as
Γv except Γv itself,

• subset S2 = {(0, 0, 1, 1), (0, 0, 1, 0), (0, 0, 0, 1)} selects all cells in the same row as Γv

except Γv itself,

• subset S3 = {(0, 1, 0, 1)} selects all cells of the block of Γv not selected by any of
the two other subsets, with the exception of Γv itself.

But these are exactly the adjacencies of the Sudoku graph. �

Figure 3: Selection of Sudoku cells for basis sets S1, S2, S3, B

Theorem 3.2. All eigenvalues of Sud(n) are integers. All corresponding eigenspaces
admit simply structured bases.

Proof. Observe that Kn has single eigenvalue n − 1 with eigenspace basis {jn} and
eigenvalue −1 of multiplicity n − 1 with eigenspace basis {e1 − e2, e1 − e3, . . . , e1 − en}.
Here, jn denotes the all ones vector of size n. The result now follows directly from Lemma
3.1 and Corollary 2.2. �

To complete our analysis of the spectrum of Sudoku graphs, let us determine their exact
eigenvalues and eigenvalue multiplicities.
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Theorem 3.3. Let n ≥ 2. Then the spectrum of Sud(n), in increasing order, is

−1 − n (2n3
−4n2+2n),

−1 (n4
−2n3+n2),

n2 − 2n − 1 (n2
−2n+1),

n2 − n − 1 (2n2
−2n),

2n2 − 2n − 1 (2n−2),

3n2 − 2n − 1 (1).

The graph Sud(2) has 5 distinct eigenvalues. For n > 2, the graph Sud(n) has 6 distinct
eigenvalues.

Proof. According to Theorem 2.1 and Lemma 3.1, the eigenvalues of Sud(n) are of the
form

Λλ1,λ2,λ3,λ4
= λ1λ2 + λ2λ4 + λ3λ4 + λ1 + λ2 + λ3 + λ4,

where the λi are eigenvalues of Kn. Since Kn has only eigenvalues −1 and k = n − 1
we only need to check 16 cases so that we can conveniently determine the eigenvalues of
Sud(n):

−2 − k = Λk,−1,−1,k = Λ−1,k,−1,−1 = Λ−1,−1,−1,k = Λ−1,k,k,−1,

−1 = Λk,−1,k,−1 = Λ−1,−1,k,−1 = Λ−1,−1,−1,−1 = Λk,−1,−1,−1,

k2 − 2 = Λ−1,k,−1,k,

k2 + k − 1 = Λk,k,−1,−1 = Λ−1,−1,k,k = Λk,−1,k,k = Λk,k,k,−1,

2k2 + 2k − 1 = Λ−1,k,k,k = Λk,k,−1,k,

3k2 + 4k = Λk,k,k,k.

The respective multiplicities are readily concluded from this analysis and the multiplicities
of the eigenvalues of Kn. It is easy to check that for n ≥ 2 the eigenvalues can be ordered
as follows:

−1 − n < −1 ≤ n2 − 2n − 1 < n2 − n − 1 < 2n2 − 2n − 1 < 3n2 − 2n − 1.

For n > 2 this chain of inequalities is strict. �
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