A note on packing graphs without cycles of length up to five

Agnieszka Görlich, Andrzej Żak

University of Science and Technology AGH, Al. Mickiewicza 30, 30-059 Kraków, Poland {forys,zakandrz}@agh.edu.pl

Submitted: Feb 3, 2009; Accepted: Oct 20, 2009; Published: Oct 26, 2009 Mathematics Subject Classification: 05C70

Abstract

The following statement was conjectured by Faudree, Rousseau, Schelp and Schuster:

if a graph G is a non-star graph without cycles of length $m \leq 4$ then G is a subgraph of its complement.

So far the best result concerning this conjecture is that every non-star graph G without cycles of length $m \le 6$ is a subgraph of its complement. In this note we show that $m \le 6$ can be replaced by $m \le 5$.

1 Introduction

We deal with finite, simple graphs without loops and multiple edges. We use standard graph theory notation. Let G be a graph with the vertex set V(G) and the edge set E(G). The order of G is denoted by |G| and the size is denoted by |G|. We say that G is packable in its complement (G is packable, in short) if there is a permutation σ on V(G) such that if xy is an edge in G then $\sigma(x)\sigma(y)$ is not an edge in G. Thus, G is packable if and only if G is a subgraph of its complement. In [2] the authors stated the following conjecture:

Conjecture 1 Every non-star graph G without cycles of length $m \leq 4$ is packable.

In [2] they proved that the above conjecture holds if $||G|| \leq \frac{6}{5}|G| - 2$. Woźniak proved that a graph G without cycles of length $m \leq 7$ is packable [6]. His result was improved by Brandt [1] who showed that a graph G without cycles of length $m \leq 6$ is packable. Another, relatively short proof of Brandt's result was given in [3]. In this note we prove the following statement.

^{*}The research was partially supported by a grant N201 1247/33

Theorem 2 If a graph G is a non-star graph without cycles of length $m \leq 5$ then G is packable.

The basic ingredient for the proof of our theorem is the lemma presented below. This lemma is both a modification and an extension of Lemma 2 in [4].

Lemma 3 Let G be a graph and $k \ge 1$, $l \ge 1$ be any positive integers. If there is a set $U = \{v_1, ..., v_{k+l}\} \subset V(G)$ of k+l independent vertices of G such that

- 1. k vertices of U have degree at most l and l vertices of U have degree at most k;
- 2. vertices of U have mutually disjoint sets of neighbors, i.e. $N(v_i) \cap N(v_j) = \emptyset$ for $i \neq j$;
- 3. G-U is packable

then there exists a packing σ of G such that U is an invariant set of σ , i.e. $\sigma(U) = U$.

Proof. Let G' := G - U and σ' be a packing of G'. Below we show that we can find an appropriate packing σ of G.

For any $v \in V(G')$ we define $\sigma(v) := \sigma'(v)$. Then let us consider a bipartite graph B with partition sets $X := \{v_1, ..., v_{k+l}\} \times \{0\}$ and $Y := \{v_1, ..., v_{k+l}\} \times \{1\}$. For $i, j \in \{1, ..., k+l\}$ the vertices $(v_i, 0), (v_j, 1)$ are joined by an edge in B if and only if $\sigma'(N(v_i)) \cap N(v_j) = \emptyset$. So, if $(v_i, 0), (v_j, 1)$ are joined by an edge in B we can put $\sigma(v_i) = v_j$.

Without loss of generality we can assume that $k \leq l$. Note that if $\deg v_i \leq l$ in G then $\deg(v_i,0) \geqslant k$ in G. Furthermore, if $\deg v_i \leq k$ in G then $\deg(v_i,0) \geqslant l$ in G. Thus G contains G vertices of degree G and G vertices of degree G. In the similar manner we can see that G contains G vertices of degree G and G vertices of degree G. In particular, every vertex in G has degree G and G and G vertices of degree G and G in G then obviously G and G in G then obviously G in G in G thus G in G in G in G in G then G in G

2 Proof of Theorem 2

Proof. Assume that G is a counterexample of Theorem 2 with minimal order. Without loss of generality we may assume that G is connected. We choose an edge $xy \in E(G)$ with the maximal sum $\deg x + \deg y$ of degrees of its endvertices among all edges of G. Since G is not a star $\deg x \geqslant 2$ and $\deg y \geqslant 2$. Let U be the union of the sets of neighbors of x and y different from x, y. Define $k := \deg x - 1$, $l := \deg y - 1$. We may assume that $k \leqslant l$. Consider graph $G' := G - \{x, y\}$. Note that because of the choice of the edge xy, U contains k vertices of degree k and k vertices of degree k in k. Moreover, since k

has no cycles of length ≤ 5 , the vertices of U are independent in G' and have mutually disjoint sets of neighbors in G'. By our assumption G' - U is packable or it is a star.

Assume that G'-U is packable. Thus, by Lemma 3, there is a packing σ' of G' such that $\sigma'(U)=U$. This packing can be easily modified in order to obtain a packing of G. Namely, note that there are vertices $v,w\in U$ where v is a neighbor of x and y is a neighbor of y such that $\sigma'(v)$ is a neighbor of x and x is a neighbor of y and y is a neighbor of y and y is a neighbor of y and y is a neighbor of y and in the latter case $(x\sigma'(v))(y\sigma'(w))\sigma'$ is a packing of y. Thus we get a contradiction.

Assume now that G'-U is a star (with at least one edge). Note that since G has no cycles of lengths up to five, every vertex from U has degree ≤ 2 in G. Moreover, G has a vertex which is at distance at least 3 from y. Let z denote a vertex which is not in U and is at distance 2 from x, or if such a vertex does not exist let z be any vertex which is at distance at least 3 from y. Furthermore, let W denote the set of neighbours of y. Consider a graph $G'' := G - \{y, z\}$. Thus W consists of l vertices of degree l in l and one vertex of degree l in l in

References

- [1] S. Brandt, Embedding graphs without short cycles in their complements, in: Y. Alavi, A. Schwenk (Eds.), Graph Theory, Combinatorics, and Application of Graphs, 1 (1995) 115–121
- [2] R. J. Faudree, C. C. Rousseau, R. H. Schelp, S. Schuster, Embedding graphs in their complements, Czechoslovak Math. J. 31 (106) (1981) 53–62
- [3] A. Görlich, M. Pilśniak, M. Woźniak, I. A. Zioło, A note on embedding graphs without short cycles, Discrete Math. 286 (2004) 75–77.
- [4] A. Görlich, M. Pilśniak, M. Woźniak, I. A. Zioło, Fixed-point-free embeddings of digraphs with small size, Discrete Math. 307 (2007) 1332–1340.
- [5] P. Hall, On representatives of subsets, J. London Math. Soc. 10 (1935) 26–30.
- [6] M. Woźniak, A note on embedding graphs without short cycles, Colloq. Math. Soc. Janos Bolyai 60 (1991) 727–732.