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Abstract

First László Székely and more recently Saharon Shelah and Alexander Soifer

have presented examples of infinite graphs whose chromatic numbers depend on the

axioms chosen for set theory. The existence of such graphs may be relevant to the

Chromatic Number of the Plane problem. In this paper we construct a new class

of graphs with ambiguous chromatic number. They are unit distance graphs with

vertex set Rn, and hence may be seen as further evidence that the chromatic number

of the plane might depend on set theory.

1 Introduction

The Chromatic Number of the Plane problem asks how many colours are required to colour
the Euclidean plane if points that are distance 1 apart must receive different colours. The
number is known to be between 4 and 7 inclusive. For a comprehensive history see [15].
We may view the problem as that of colouring an infinite graph lying in the plane. This
graph, which by abuse of notation we denote R2, has all points of the plane as its vertices
and edges between points that are distance 1 apart. Any graph in the plane with straight
unit length edges is therefore a subgraph of R2.

In 1984 László Székely investigated the difference between the usual chromatic number
(χ) and the measurable chromatic number (χm) for geometric graphs, the latter being the
chromatic number when only Lebesgue measurable colour sets are allowed [17]. He gave
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an example of a graph which could be 2-coloured in general, but which needed 3 colours
in the measurable case. It consisted of the points on the unit circle with two points
joined by an edge if the arc length between them was some fixed irrational multiple
of π. Székely concluded that (assuming the Axiom of Choice) chromatic number and
measurable chromatic number were not in general the same.

In a recent series of papers Saharon Shelah and Alexander Soifer presented some more
graphs with χ 6= χm [13, 16, 14]. They made the dependence on set theory more explicit
by considering two systems of axioms in particular. Firstly, under the system consisting of
the Zermelo-Fraenkel axioms along with the full Axiom of Choice the graphs were found
to have a finite chromatic number. In each case a colouring was given that relied on
the Axiom of Choice. The second system of axioms limited the Axiom of Choice to a
weaker form, the Principle of Dependent Choices, and introduced an Axiom of Lebesgue
Measurability. This axiom states that every subset of the real numbers is Lebesgue
measurable. Under this new system the chromatic numbers of the graphs were found to
be uncountable.

The two different viewpoints, one contrasting normal with measurable chromatic num-
ber, and the other considering chromatic number under two different systems of axioms,
are essentially equivalent for our present purposes. Here we will follow the terminology of
Székely and use χ and χm to distinguish between the two situations. We say that a graph
has ambiguous chromatic number when χ 6= χm. Unless otherwise indicated, in what
follows all references to ‘measure’ and ‘measurability’ refer to n-dimensional Lebesgue
measure which we will denote by µ.

The purpose of this paper is to present a new family of graphs with ambiguous chro-
matic number. Unlike Székely’s example, the new examples have all of Rn as their vertex
set, and unlike Shelah and Soifer’s graphs, they have unit length edges and finite chromatic
number in both situations.

2 The construction

Throughout the following K will always be a field with Q ⊆ K ⊆ R. The Euclidean
metric on Kn induces a unit distance graph which we again denote Kn (we also suppose
n > 2 throughout). Now we construct the graph TKn by translating the graph Kn to all
points in Rn. Hence the vertex set becomes Rn and two vertices are joined by an edge
if their difference is a unit vector in Kn. There are several values of K and n for which
χ(Kn) is known. These will become important later when we discuss χ(TKn), but first
let us consider the case of measurable colourings.

2.1 Measurable Colourings

We begin with a few measure theoretic definitions. For a point x ∈ Rn and a measurable
set S ⊂ Rn the Lebesgue density of S at x is

dS(x) := lim
ǫ→0

µ(Bǫ(x) ∩ S)

µ(Bǫ)
.
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We define the essential part S̃ of S to be the set of points where S has Lebesgue density
1.

The graph TKn has two important properties. Firstly, since rational points are dense
on the unit n-sphere (see for example [12]), each vertex is connected to a dense set on the
unit sphere around it. Secondly, the edge set of TKn is invariant under real translations,
that is, if there is an edge at one point then parallel copies exist at all other points. These
properties allow us to prove the following useful lemma.

Lemma 1. Let S be a measurable set which is admissible as a colour set for TKn and
suppose that x ∈ Rn is at unit distance from a point in S̃. Then dS(x) = 0.

Proof. Take any δ > 0 and suppose x is at unit distance from y ∈ S̃. Then since dS(y) = 1
we can find ǫ > 0 small enough that

µ(Bǫ(y) ∩ S)

µ(Bǫ)
> 1 − δ.

The density of the neighbours of y allows us to find a neighbour x′ so close to x that

µ(Bǫ(x) \ Bǫ(x
′))

µ(Bǫ)
6 δ.

By considering translations of the edge (x′, y) within these neighbourhoods it is clear that

µ(Bǫ(y) ∩ S)

µ(Bǫ)
+

µ(Bǫ(x
′) ∩ S)

µ(Bǫ)
6 1.

Combining these inequalities gives us

µ(Bǫ(x) ∩ S)

µ(Bǫ)
6

µ(Bǫ(x) \ Bǫ(x
′))

µ(Bǫ)
+

µ(Bǫ(x
′) ∩ S)

µ(Bǫ)
6 2δ.

Since δ can be arbitrarily small the conclusion follows.

In 1981 Falconer showed that χm(Rn) > n + 3 [7]. Our aim is to adapt his proof to
show that the same holds for TKn. We will use the following two lemmas of Falconer
without modification. The first was proved by Croft in [5].

Lemma 2. Let B be a non-empty subset of Rn with µ(B) = 0 and C be a countable
configuration of points in Rn. Then given a point x ∈ C there exists a rigid motion
m such that m(C) ∩ B = {m(x)}. Furthermore, almost all rotations (in the sense of
rotational measure) of m(C) about m(x) have this property.

Lemma 3. Let S be a Lebesgue measurable subset of Rn with µ(S) > 0 and µ(Rn\S) > 0,
then ∂S is non-empty, µ(∂S) = 0 and S̃ is a Borel set.

Hence we see that if we have a covering of the plane by measurable sets S1, . . . , Sk, then
Rn \

⋃

S̃i =
⋃

∂Si and hence has measure 0. We now have enough to prove the following.
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Proposition 1. The measurable chromatic number of TKn is at least the (general) chro-
matic number of Rn. That is, χm(TKn) > χ(Rn).

Proof. A theorem of Erdős and de Bruijn [6] says that χ(Rn) is realised on a finite unit
distance graph, call it G. Suppose we have a measurable colouring of TKn by the sets
S1, . . . , Sk with k < χ(Rn). By Lemma 2 we can place G so that its vertices lie in the
union of the S̃i. Since k < χ(G) there must be an edge of G that has both vertices in S̃j

for some j. This is a contradiction by Lemma 1.

Finally we need a slight modification of Falconer’s fourth lemma and its corollary.

Lemma 4. Let Σ be a circle in R2 of radius r > 1/2 such that θ = 2 arcsin
(

1
2r

)

is an
irrational multiple of π. Suppose almost all the points on Σ (in the sense of circular
measure) lie in S̃1 or S̃2. Then at least one of S̃1 or S̃2 realises distance 1.

Proof. The only difference is that in the conclusion S̃1 or S̃2 realises distance 1 instead of
S1 or S2. This new conclusion is actually an intermediate step in Falconer’s proof [7].

Corollary 1. Let Σ be an (n − 1)-sphere of radius > 1
2

in Rn, where n > 2. Suppose Rn

is divided into measurable sets Si such that almost all points of Σ lie in S̃1 or S̃2. Then
at least one of S̃1 or S̃2 realises distance 1.

Proof. Take a suitable affine plane section.

With all this preparation we can now prove our main theorem. As always, Q ⊆ K ⊆ R.

Theorem 1. Any colouring of the graph TKn by measurable sets requires at least n + 3
colours. That is, χm(TKn) > n + 3.

Proof. Suppose we have a colouring of TKn by n + 2 measurable sets S0, . . . , Sn+1. As in
Falconer’s proof we consider a configuration C of n+2 points x1, . . . , xn+2 consisting of a
unit n-simplex formed by the points x1, . . . , xn+1, along with the image xn+2 of the point
x1 reflected in the hyperplane containing x2, . . . , xn+1. Let B = Rn \

⋃

S̃i. By Lemma
2 we can place C with x1 in B, and so that for almost all rotations ρ of C about x1 we
have ρ(C)∩B = {x1}. We can assume that x1 is in the boundary of at least two sets, say
S0 and S1. Then for all such ρ we use Lemma 1 to deduce that the ρ(xi) are in one each
of the S̃i for 2 6 i 6 n + 1, and that ρ(xn+2) is in either S̃0 or S̃1. Hence we know that
the (n − 1)-sphere around x1 of radius |x1 − xn+2| lies almost all in S̃0 ∪ S̃1. We refer to
Falconer’s proof for that fact that this radius satisfies the conditions of Lemma 4 in the
case n = 2, and then apply it and Corollary 1 and also Lemma 1 to get the result.

2.2 General Colourings

For general colourings we have the following result.

Proposition 2. χ(Kn) = χ(TKn).
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Proof. The translates of Kn that make up TKn are disconnected from each other so each
one can be coloured independently.

The obvious way to colour each translate is by translating a fixed colouring of Kn to each
one. For K countable we must apply the Axiom of Choice to an uncountable collection
of sets to select representatives of the translates on which to start the colouring. If we
choose the representatives from inside the unit cube then the set of representatives is a
classic Vitali type non-measurable set, so the colour sets of our colouring are countable
unions of non-measurable sets. It is not surprising then that such colour sets may turn
out to be non-measurable.

3 Ambiguous cases

Returning at last to the the topic of ambiguity, comparing Proposition 2 and Theorem 1
we can now see that if χ(Kn) < n + 3 then TKn has ambiguous chromatic number. We
note that it is clear that χ(TKn) 6 χm(TKn) 6 χm(Rn), and that χm(Rn) is finite for all
n because the tile based colourings that establish upper bounds on χ(Rn) are measurable
colourings. So when ambiguity occurs for TKn the chromatic numbers in both cases will
be finite.

Firstly let us consider the case where K = Q. The chromatic number of Qn has been
studied quite extensively and it is known that χ(Q2) = 2, χ(Q3) = 2 and χ(Q4) = 4 (see
[18] for the first and [1] for the other two claims). Hence the chromatic number of TQn is
ambiguous in each of these cases and the ‘gap’ is actually quite wide. In the most famous
case of the plane we have χ(TQ2) = 2 while χm(TQ2) > 5.

It turns out that in general for higher dimensions Proposition 1 provides a stronger
bound on χm(TKn) than Theorem 1. For n = 5, . . . , 12 the known bounds on χ(Rn) are
better than n + 3 [10]. What’s more, it is known that χ(Rn) grows exponentially with
n [11], so Proposition 1 will be stronger than Theorem 1 for all subsequent n. However,
for n > 5 we know of no colourings of Qn (or Kn) which provide further ambiguous
examples. Raigorodskii’s survey [11, p.111] suggests that it is known that χ(Q5) 6 8,
citing Chilakamarri [3]. However, Chilakamarri only conjectures that χ(Q5) = 8, and we
were unable to find any proof of this proposition elsewhere in the literature. Interestingly,
Cibulka has recently shown that χ(Q5) > 8 [4], so along with Cantwell’s result that
χ(R5) > 9 [2], an 8-colouring of Q5 would prove Chilakamarri’s conjecture and furnish a
further ambiguous example in TQ5 .

Concentrating now on dimension 2, there are some other fields K for which useful
results about χ(K2) are known. The following results concern quadratic extensions Q[

√
n]

where n is a positive square free integer. Johnson [9] showed that χ(Q[
√

n]2) = 2 for
n ≡4 1, 2 and Fischer [8] showed that χ(Q[

√
n]2) 6 3 for n ≡3 0, 1 and that χ(Q[

√
n]2) 6 4

for n ≡8 3, so for all these cases TK2 has ambiguous chromatic number. In particular we
have the example TQ[

√
3]2 which contains all equilateral triangles which have some edge

vector in Q2, and hence many copies of the triangle lattice. In this case we have χ = 3
and χm > 5.
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