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Abstract

An oriented graph Gσ is a simple undirected graph G with an orientation σ,
which assigns to each edge a direction so that Gσ becomes a directed graph. G is
called the underlying graph of Gσ, and we denote by Sp(G) the adjacency spectrum
of G. Skew-adjacency matrix S(Gσ) of Gσ is introduced, and its spectrum SpS(Gσ)
is called the skew-spectrum of Gσ . The relationship between SpS(Gσ) and Sp(G)
is studied. In particular, we prove that (i) SpS(Gσ) = iSp(G) for some orientation
σ if and only if G is bipartite, (ii) SpS(Gσ) = iSp(G) for any orientation σ if and
only if G is a forest, where i =

√
−1.

1 Introduction

Let G be a simple graph. With respect to a labeling, the adjacency matrix A(G) is
the symmetric matrix [aij ] where aij = aji = 1 if {i, j} is an edge of G, otherwise
aij = aji = 0. The spectrum Sp(G) of G is defined as the spectrum of A(G). Note
that the definition is well defined because symmetric matrices with respect to different
labelings are permutationally similar, and so have same spectra. Also note that Sp(G)
consists of only real eigenvalues because A(G) is real symmetric.

Example 1.1. Consider the path graph P4 on 4 vertices. With respect to two different
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labelings, A(P4) takes the form








0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0









or









0 0 1 0
0 0 1 1
1 1 0 0
0 1 0 0









.

And the spectrum Sp(P4) is {±
√

5+1
2

,±
√

5−1
2

}.

Example 1.2. Consider the star graph ST5 on 5 vertices. With respect to two different
labelings, A(ST5) takes the form













0 1 1 1 1
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0













or













0 0 1 0 0
0 0 1 0 0
1 1 0 1 1
0 0 1 0 0
0 0 1 0 0













.

And the spectrum Sp(ST5) is {−2, 0(3), 2}.

Example 1.3. Consider the cycle graph C4 on 4 vertices. With respect to two different
labelings, A(C4) takes the form









0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0









or









0 0 1 1
0 0 1 1
1 1 0 0
1 1 0 0









.

And the spectrum Sp(C4) is {−2, 0(2), 2}.
Let Gσ be a simple graph with an orientation σ, which assigns to each edge a direction

so that Gσ becomes a directed graph. With respect to a labeling, the skew-adjacency

matrix S(Gσ) is the real skew symmetric matrix [sij ] where sij = 1 and sji = −1 if i → j

is an arc of Gσ, otherwise sij = sji = 0. The skew spectrum SpS(Gσ) of Gσ is defined
as the spectrum of S(Gσ). Note that the definition is well defined because real skew
symmetric matrices with respect to different labelings are permutationally similar, and so
have same spectra. Also note that SpS(Gσ) consists of only purely imaginary eigenvalues
because S(Gσ) is real skew symmetric.

Example 1.4. Consider the directed path graph P σ
4 on 4 vertices. With respect to two

different labelings, S(P σ
4 ) takes the form









0 1 0 0
−1 0 1 0
0 −1 0 1
0 0 −1 0









or









0 0 1 0
0 0 −1 1
−1 1 0 0
0 −1 0 0









.

And the skew spectrum SpS(P σ
4 ) is {±

√

5+1
2

i,±
√

5−1
2

i}.
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Example 1.5. Consider the oriented star graph ST σ
5 on 5 vertices with the center as a

sink. With respect to two different labelings, S(ST σ
5 ) takes the form













0 −1 −1 −1 −1
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0













or













0 0 1 0 0
0 0 1 0 0
−1 −1 0 −1 −1
0 0 1 0 0
0 0 1 0 0













.

And the skew spectrum SpS(ST σ
5 ) is {−2i, 0(3), 2i}.

Example 1.6. Consider two different orientations on the cycle graph C4 (with the same
labeling) such that their skew adjacency matrices are:

S(Cσ1

4 ) =









0 1 0 −1
−1 0 1 0
0 −1 0 1
1 0 −1 0









, S(Cσ2

4 ) =









0 1 0 1
−1 0 −1 0
0 1 0 −1
−1 0 1 0









respectively. And the skew spectra are

SpS(Cσ1

4 ) = {−2i, 0(2), 2i}, SpS(Cσ2

4 ) = {−
√

2i(2),
√

2i(2)}

respectively.

Examples 1.1, 1.2, 1.4, and 1.5 suggest that SpS(Gσ) = iSp(G). Indeed, it is proved
in [1] that SpS(T σ) = iSp(T ) for any tree T and any orientation σ. However Examples
1.3 and 1.6 show that it is not true in general because SpS(Cσ1

4 ) 6= SpS(Cσ2

4 ) 6= iSp(C4),
even though SpS(Cσ1

4 ) = iSp(C4). The goal of this short note is to show that trees are
the only connected graphs with such property.

2 Main Results

Throughout this section, notation and terminology are as in [3]. First we need a lemma
which is an extension of Theorem 7.3.7 in [3].

Lemma 2.1. Let A =

[

0 X

XT 0

]

and B =

[

0 X

−XT 0

]

be two real matrices. Then

Sp(B) = iSp(A).

Proof. W.L.O.G. let X be m × n (m 6 n) with the singular value decomposition X =
PΣQT where P and Q are orthogonal matrices, and Σ is diagonal. Then

A =

[

P 0
0 Q

] [

0 Σ
ΣT 0

] [

P T 0
0 QT

]
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and

B =

[

P 0
0 Q

] [

0 Σ
−ΣT 0

] [

P T 0
0 QT

]

.

Write Σ = Diag(a1, a2, . . . , am), and so Sp(A) = {±a1, . . . ,±am, 0(n−m)}, Sp(B) =
{±a1i, . . . ,±ami, 0(n−m)}. Consequently, Sp(B) = iSp(A).

Theorem 2.2. G is a bipartite graph if and only if there is an orientation σ such that
SpS(Gσ) = iSp(G).

Proof. (Necessity) If G is bipartite, then there is a labeling such that the adjacency
matrix of G is of the form

A(G) =

[

0 X

XT 0

]

.

Let σ be the orientation such that the skew-adjacency matrix of Gσ is of the form

S(Gσ) =

[

0 X

−XT 0

]

.

By Lemma 2.1, SpS(Gσ) = iSp(G).

(Sufficiency) Suppose that SpS(Gσ) = iSp(G) for some orientation σ. Since S(Gσ)
is a real skew symmetric matrix, SpS(Gσ) has only pure imaginary eigenvalues and
so is symmetric about the real axis. Then Sp(G) = −iSpS(Gσ) is symmetric about
the imaginary axis. Hence G is bipartite, see Theorem 3.11 in [2].

Let |X| denote the matrix whose entries are the absolute values of the corresponding
entries in X. For real matrices X and Y , X 6 Y means that Y − X has nonnegative
entries. ρ(X) denotes the spectral radius of a square matrix X. The next lemma is a
special case of Theorem 8.4.5 in [3]. We provide here a shorter proof.

Lemma 2.3. Let A be an irreducible nonnegative matrix and B be a real positive semi-
definite matrix such that |B| 6 A (entry-wise) and ρ(A) = ρ(B). Then A = DBD

for some real matrix D such that |D| = I, the identity matrix.

Proof. Since B is real positive semi-definite, there exists a real vector x such that Bx =
ρ(B)x. Write x = D|x| for some real matrix D such that |D| = I. Moreover,
DBD 6 |B| 6 A and ρ(DBD) = ρ(B). Since A is irreducible nonnegative, so is
AT . By Perron-Frobenius theory [3], there is a positive vector y such that AT y =
ρ(AT )y, and so yTA = ρ(AT )yT = ρ(A)y. Now we have yT (A − DBD)|x| =
yTA|x|−yTDBD|x| = ρ(A)yT |x|−yT DBx = ρ(A)yT |x|−yTDρ(B)x = ρ(A)yT |x|−
yTρ(B)|x| = 0 because ρ(A) = ρ(B). Consequently, A|x| = DBD|x| because
A − DBD > 0 and |x| > 0. It follows that A|x| = DBD|x| = ρ(B)|x| = ρ(A)|x|,
which means that |x| is a multiple of the Perron vector of A. In particular, |x| > 0.
Finally we have A = DBD because of A|x| = DBD|x| and A > DBD.
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Theorem 2.4. Let X =

[

C ∗
∗ ∗

]

be a (0,1)-matrix where C is a k × k (k > 2) circulant

matrix with the first row as [1, 0, . . . , 0, 1]. Let Y be obtained from X by changing
the (1,1) entry to −1. If XT X is irreducible then ρ(XT X) > ρ(Y T Y ).

Proof. Note that |Y T Y | 6 XT X (entry-wise), and so ρ(Y T Y ) 6 ρ(XT X) by Perron-
Frobenius theory [3]. Now suppose that ρ(XT X) = ρ(Y T Y ). Since XT X is irre-
ducible, by Lemma 2.3, there exists a signature matrix D = Diag(d1, d2, . . . , dn)
such that XT X = DY T Y D. Therefore [XT X]ij = didj[Y

T Y ]ij for all i, j. Note

that the first k columns of X are









1 0 · · · 1
1 1 · · · 0
0 1 · · · 0
a1 a2 · · · ak









and the first k columns of Y

are









−1 0 · · · 1
1 1 · · · 0
0 1 · · · 0
a1 a2 · · · ak









. Now, for i = 1, . . . , k − 1, [XT X]i,i+1 = 1 + aT
i ai+1 and

[Y T Y ]i,i+1 = 1 + aT
i ai+1. Using didj[Y

T Y ]ij = [XT X]ij, we have didi+1 = 1 for
i = 1, . . . , k − 1. Hence d1dk = 1. On the other hand, −1 + aT

1 ak = d1dk[Y
T Y ]1k =

[XT X]1k = 1 + aT
1 ak, which is impossible.

Theorem 2.5 Let G be a connected graph. Then G is a tree if and only if SpS(Gσ) =
iSp(G) for any orientation σ.

Proof. (Necessity) See the proof of Theorem 3.3 in [1].

(Sufficiency) Suppose SpS(Gσ) = iSp(G) for any orientation σ. By Theorem 2.2, G

is a bipartite graph. And so there is a labeling of G such that

A(G) =

[

0 X

XT 0

]

where X is an m×n (0,1)- matrix with m 6 n. Since G is connected, XT X is indeed
a positive matrix and so irreducible. Now assume that G is NOT a tree. Then G

has at least an even cycle because G is bipartite. W.L.O.G. X has the form

[

C ∗
∗ ∗

]

where C is a k × k (k > 2) circulant matrix with the first row as [1, 0, . . . , 0, 1]. Let
Y be obtained from X by changing the (1,1) entry to −1. Consider the orientation
σ of G such that

S(Gσ) =

[

0 Y

−Y T 0

]

.

By hypothesis, Sp(Gσ) = iSp(G) and hence X and Y have the same singular values.
It follows that ρ(XT X) = ρ(Y T Y ), which contradicts Theorem 2.4.

Corollary 2.6 G is a forest if and only if SpS(Gσ) = iSp(G) for any orientation σ.
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Proof. (Necessity) Let G = G1∪· · ·∪Gr where Gj’s are trees. Then Gσ = Gσ1

1 ∪· · ·∪Gσr
r .

By Theorem 2.5, SpS(G
σj

j ) = iSp(Gj) for all j = 1, 2, . . . , r. Hence SpS(Gσ) =

SpS(Gσ1

1 )∪· · ·∪SpS(G
σj

j ) = iSp(G1)∪· · ·∪ iSp(Gr) = iSp(G1∪· · ·∪Gr) = iSp(G).

(Sufficiency) Suppose that G is NOT a forest. Then G = G1 ∪ · · · ∪ Gr where G1,
. . . , Gt are connected, but not trees, and Gt+1, . . . , Gr are trees. By Theorem 2.2,
G is a bipartite graph. And so there is a labeling of G such that

A(G) =

[

0 X

XT 0

]

where X = X1 ⊕ · · · ⊕ Xr and the (1, 1)-entry of each Xj is 1. Let Yj be obtained
from Xj by changing the (1,1) entry to −1. Consider an orientation σ of G such
that

S(Gσ) =

[

0 Y

−Y T 0

]

.

where Y = Y1⊕· · ·⊕Yr. By Lemma 2.1, SpS(Gσ) = iSp(G) implies that the singular
values of X coincide with the singular values of Y . Since Gt+1, . . . , Gr are trees,
the singular values of Xj coincide with the singular values Yj for j = t + 1, . . . , r.
Hence the singular values of X1 ⊕ · · · ⊕ Xt coincide with the singular values of
Y1 ⊕ · · · ⊕ Yt. Since G1, . . . , Gt are not trees, we have ρ(XT

j Xj) > ρ(Y T
j Yj) for

j = 1, . . . , t. Consequently,

max
16j6n

ρ(XT
j Xj) = max

16j6n
ρ(Y T

j Yj) = ρ(Y T
j0

Yj0) < ρ(XT
j0

Xj0) 6 max
16j6n

ρ(XT
j Xj),

a contradiction.
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