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Abstract

Consider a graph G with chromatic number k and a collection of complete bi-
partite graphs, or bicliques, that cover the edges of G. We prove the following two
results:

• If the bipartite graphs form a partition of the edges of G, then their number is at

least 2
√

log2 k. This is the first improvement of the easy lower bound of log2 k, while
the Alon-Saks-Seymour conjecture states that this can be improved to k − 1.

• The sum of the orders of the bipartite graphs in the cover is at least (1 −
o(1))k log2 k. This generalizes, in asymptotic form, a result of Katona and Sze-
merédi who proved that the minimum is k log2 k when G is a clique.

1 Introduction

It is a well-known fact that the minimum number of bipartite graphs needed to cover the
edges of a graph G is ⌈log χ(G)⌉, where χ(G) is the chromatic number of G (all logs are to
the base 2). Two classical theorems study related questions. One is the Graham-Pollak
theorem [1] which states that the minimum number of complete bipartite graphs needed
to partition E(Kk) is k − 1. Another is the Katona-Szemerédi theorem [4], which states
that the minimum of the sum of the orders of a collection of complete bipartite graphs
that cover E(Kk) is k log k. Both of these results are best possible.

An obvious way to generalize these theorems is to ask whether the same results hold
for any G with chromatic number k.

Conjecture 1 (Alon - Saks - Seymour) The minimum number of complete bipartite

graphs needed to partition the edge set of a graph G with chromatic number k is k − 1.

Note that every graph has a partition of this size, simply by taking a proper coloring
V1, . . . Vk and letting the ith bipartite graph be (Vi,∪j>iVj).
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Another motivation for Conjecture 1 is that the non-bipartite analogue is an old conjec-
ture of Erdős-Faber-Lovász. The Erdős-Faber-Lovász conjecture remains open although
it has been proved asymptotically by Kahn [3]. Conjecture 1 seems much harder than the
Erdős-Faber-Lovász conjecture, indeed, as far as we know there are no nontrivial results
towards it except the folklore lower bound of log2 k which doesn’t even use the fact that
we have a partition. Our first result improves this to a superlogarithmic bound for k
large.

Theorem 2 The number of complete bipartite graphs needed to partition the edge set of

a graph G with chromatic number k is at least 2
√

2 log k(1+o(1)).

Motivated by Conjecture 1, we make the following conjecture that generalizes the
Katona-Szemerédi theorem.

Conjecture 3 Let G be a graph with chromatic number k. The sum of the orders of any

collection of complete bipartite graphs that cover the edge set of G is at least k log k.

We prove Conjecture 3 with k log k replaced by (1 − o(1))k log k.

Theorem 4 Let G be a graph with chromatic number k, where k is sufficiently large. The

sum of the orders of any collection of complete bipartite graphs that cover the edge set of

G is at least

k log k − k log log k − k log log log k.

The next two sections contain the proofs of Theorems 2 and 4.

2 The Alon-Saks-Seymour Conjecture

It is more convenient to phrase and prove our result in inverse form. Let G be a disjoint
union of m complete bipartite graphs (Ai, Bi), 1 6 i 6 m. The Alon-Saks-Seymour
conjecture then states that the chromatic number of G is at most m + 1.

We prove the following theorem which immediately implies Theorem 2.

Theorem 5 Let G be a disjoint union of m complete bipartite graphs. Then χ(G) 6

m
1+log m

2 (1 + o(1)).

Proof. We will begin with a proof of a worse bound. We will first show that χ(G) 6

mlog m(1 + o(1)). A color will be an ordered tuple of length at most log m, with each
element a positive integer of value at most m. We will construct this tuple in stages. In
the ith stage we will fill in the ith co-ordinate. Note that the length of the tuple may
vary with vertices.

With each vertex v, at stage i, we will associate a set S(i, v) ⊂ V (G). The set S(i, v)
will contain all vertices which have the same color sequence, so far, as v (in particular,
v ∈ S(i, v) for all i).
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A bipartite graph (Aj , Bj) is said to cut a subset of vertices S if S ∩ Aj 6= ∅ and
S ∩ Bj 6= ∅.

Consider two bipartite graphs (Ak, Bk) and (Al, Bl) from our collection. Since they
are edge disjoint, (Al, Bl) cuts either Ak or Bk, but not both.

Fix a vertex v. We set S(0, v) := V (G). The assignment for the i + 1st stage is as
follows. Suppose we have defined S(i, v). Let F(i, v) denote the set of all bipartite graphs
that cut S(i, v). For each bipartite graph (Aj , Bj) ∈ F(i, v) for which v ∈ Aj ∪Bj , let Cj

be the set among Aj , Bj that contains v and let Dj be the set among Aj , Bj that omits v.
For a vertex v, check if there is a bipartite graph (Aj , Bj) ∈ F(i, v) such that v ∈ Aj ∪Bj

and one of the following two conditions are satisfied:

• The number of bipartite graphs in F(i, v) that cut Cj is smaller than the number
that cut Dj . OR

• The number of bipartite graphs in F(i, v) that cut Cj is equal to the number that
cut Dj and Cj = Aj .

If there is such a j, then the i + 1st co-ordinate of the color of v is j and S(i + 1, v) =
S(i, v) ∩ Cj. If there are many candidates for j, pick one arbitrarily.

If there is no such (Aj , Bj), then the coloring of v ceases and the vertex will not be
considered in subsequent stages. In other words, the final color of vertex v will be a
sequence of length i.

Note that in this process every vertex is assigned a color except vertices that were not
assigned a color in the very first step. We will show below that no two vertices that are
assigned a color are adjacent. The same argument shows that the vertices that do not get
assigned a color in the first step form an independent set. These vertices are all assigned
a special color which is swallowed up in the o(1) term.

The following technical lemma establishes the statements needed to prove correctness
and a bound on the number of colors used.

Lemma 6 For each vertex v, the set S(i, v) is determined by the color sequence x1, . . . , xi

assigned to the vertex v. It will be independent of the vertex v. Note that if the color

sequence stops before i then S(i, v) is not defined. Also, the number of bipartite graphs

that cut S(i, v) is at most m/2i.

Proof. The proof is by induction on i. Both statements are trivially true for i = 0.
For the inductive step, assume that S(i, v) is determined by x1, . . . , xi and at most m/2i

bipartite graphs cut S(i, v). If v ceases to be colored then we are done. Now suppose
that v is colored with xi+1 = t in step i + 1. Then (At, Bt) ∈ F(i, v) and v ∈ At ∪ Bt.
As before, define Ct and Dt. Because v is colored in this step, the number of bipartite
graphs in F(i, v) that cut Ct is either smaller than the number which cut Dt or they are
equal and Ct = At. Knowing S(i, v) and t we can determine which of the cases we are
in and we can determine S(i + 1, v) = Ct ∩ S(i, v). Notice that Ct can be determined by
looking at S(i, v) and t alone and is independent of the vertex v.
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Also, since the number of bipartite graphs that cut Ct is at most half the number that
cut S(i, v) the second assertion follows.

We argue first that the coloring is proper. Assume for a contradiction that two adjacent
vertices v and w are assigned the same color sequence. Suppose the sequence is of length
i. Then by the previous lemma S(i, v) = S(i, w). There has to be one bipartite graph,
say (Ap, Bp), such that v ∈ Ap and w ∈ Bp. If the number of bipartite graphs in F(i, v)
that cut Ap is less than the number that cut Bp then v will be given color p in the i + 1st
step. If the number of bipartite graphs in F(i, v) that cut Ap is equal to the number that
cut Bp then since Cp = Ap, again v will be given color p in the i+1st step. Consequently,
the number of bipartite graphs in F(i, v) that cut Bp is smaller than the number that
cut Ap and hence w will be given color p. In all three cases, at least one of v or w will
be given a color contradicting our assumption that both sequences are of length i. This
argument also shows that vertices which were not assigned a color in the first step form
an independent set. The coloring stops when F(i, v) is empty for every vertex and that
happens after log m steps from the lemma.

A simple observation helps in reducing this bound by a square-root factor. At each
stage, the colorings of the S(i, v)s are independent. Hence the colors only matter within
the vertices in each of these sets. The number of bipartite graphs that cut S(i, v) is at
most m/2i. We renumber these bipartite graphs from 1 to m/2i. Hence the labels in the
ith stage will be restricted to this set. The total number of colors used, of length i is at
most m · m

2
· · · m

2i . The number for i < m is swallowed up in the o(1) term and the value
for i = m simplifies to the main term in the bound given.

3 Generalizing the Katona-Szemerédi Theorem

In this section we prove Theorem 4. Given a graph G, let b(G) denote the minimum, over
all collections of bipartite graphs that cover the edges of G, of the sum of the orders of
these bipartite graphs.

One proof of the Katona-Szemerédi theorem is due to Hansel [2] and the same proof
yields the following lemma which is part of folklore.

Lemma 7 Let G = (V, E) be an n vertex graph with independence number α. Then

α >
n

2b(G)/n .

The lemma is proved by considering a bipartite covering achieving b(G), deleting at
random one of the parts of each bipartite graph, and computing a lower bound on the
expected number of vertices that remain. It is easy to see that these remaining vertices
form an independent set, and hence one obtains a lower bound on the independence
number.

Let k = χ(G). We may assume that n 6 k log k, since we are done otherwise. Let G =
G0. Starting with G0, repeatedly remove independent sets of size given by Hansel’s lemma
as long as the number of vertices is at least k. Let the graphs we get be G0, G1, . . . , Gt. Let
|V (Gi)| = ni and β = maxi 2

b(Gi)/ni . Let this maximum be achieved for i = p. From the
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definition, we see that ni+1 6 ni(1− 1
2b(Gi)/ni

). Hence nt 6 n(1− 1/β)t < ne−t/β < n2−t/β

and together with nt > k we obtain

t 6 β log(n/k).

There are two cases to consider. First suppose that t > k/ log k. Then from the above
two inequalities we obtain

2b(Gp)/np log(n/k) > k/ log k.

Taking logs and using the facts that n 6 k log k and np > k we get

b(Gp) > k(log k − log log k − log log log k).

We now consider the case that t < k/ log k. Let G′ be the graph obtained after
removing an independent set from Gt. By definition of t we have |V (G′)| < k. Also
χ(G′) > k(1 − 1/ log k). Since the color classes of size one in an optimal coloring form
a clique, this implies that G′ has a clique of size at least k(1 − 2/ log k). Using the fact
that k is sufficiently large, log(1 − x) > −2x for x sufficiently small and applying the
Katona-Szemerédi theorem, we get

b(G′) >

(

k − 2k

log k

)

log

{

k

(

1 − 2

log k

)}

>

(

k − 2k

log k

) (

log k − 4

log k

)

> k log k − 3k > k log k − k log log k − k log log log k.

Since b(G) > b(G′), the proof is complete.

Note that in the proof b(Gi) could use different covers, but with sizes smaller than the
one induced by b(G0). One can get better lower order terms by adjusting the threshold
between the two cases.
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