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Abstract

R. Pemantle conjectured, and T.M. Liggett proved in 1997, that the convolution

of two ultra-logconcave is ultra-logconcave. Liggett’s proof is elementary but long.

We present here a short proof, based on the mixed volume of convex sets.

1 Introduction

Let a = (a0, ..., am) and b = (b0, ..., bn) be two real sequences. Their convolution c = a?b
is defined as ck =

∑

i+j=k aibj, 0 ≤ k ≤ n + m. A nonnegative sequence a = (a0, ..., am) is
said to be logconcave if

a2
i ≥ ai−1ai+1, 1 ≤ i ≤ m − 1. (1)

Following Permantle and [5], we say that a nonnegative sequence a = (a0, ..., am) is
ultra-logconcave of order d ≥ m (ULC(d)) if the sequence ai

(d

i
)
, 0 ≤ i ≤ m is logconcave,

i.e.




ai
(

d

i

)





2

≥
ai−1
(

d

i−1

)

ai+1
(

d

i+1

) , 1 ≤ i ≤ m − 1. (2)

The next result was conjectured by R. Pemantle and proved by T.M. Liggett in 1997 [5].

Theorem 1.1: The convolution of a ULC(l) sequence a and a ULC(d) sequence b is
ULC(l + d).

Remark 1.2: It is easy to see, by a standard perturbation argument, that it is sufficient
to consider a positive case:

a = (a0, ..., al); ai > 0, 0 ≤ i ≤ l and b = (b0, ..., bd); bi > 0, 0 ≤ i ≤ d.
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The (relatively simple) fact that the convolution of logconcave sequences is also logconcave
was proved in [3] in 1949.

We present in this paper a short proof of Theorem(1.1).

2 The Minkowski sum and the mixed volume

2.1 The Minkowski sum

Definition 2.1:

1. Let K1, K2 ⊂ Rn be two subsets of the Euclidean space Rn. Their Minkowski sum
is defined as

K1 + K2 = {X + Y : X ∈ K1, Y ∈ K2}.

The Minkowski sum is obviously commutative, i.e K1 + K2 = K2 + K1, and asso-
ciative, i.e

K1 + K2 + K3 = K1 + (K2 + K3).

2. Let A ⊂ Rl, B ⊂ Rd. Their cartesian product is defined as

A × B := {(X, Y ) ∈ Rl+d : X ∈ A, Y ∈ B}.

Define the next two subsets of Rl+d:

Lift1(A) = {(X, 0) ∈ Rl+d : X ∈ A}, Lift2(B) = {(0, Y ) ∈ Rl+d : Y ∈ B}. (3)

Then the next set equalities holds:

A × B = Lift1(A) + Lift2(B). (4)

The next simple fact will be used below.

Fact 2.2: Let K1, K2 ⊂ Rl and C1, C2 ⊂ Rd.
Define the next two subsets of Rl+d:

P = K1 × C1, Q = K2 × C2.

Then the following set equality holds:

tP + Q = (tK1 + K2) × (tC1 + C2), t ∈ R. (5)

Proof: Using (4), we get that

(tK1 + K2) × (tC1 + C2) = Lift1(tK1 + K2) + Lift2(tC1 + C2).

It follows from the definition (3) that

Lift1(tK1 + K2) = tLift1(K1) + Lift1(K2); Lift2(tC1 + C2) = tLift2(C1) + Lift2(C2).

Therefore, we get by the associativity and commutativity of the Minkowski sum that

(tK1 +K2)× (tC1 +C2) = t(Lift1(K1)+Lift2(C1))+(Lift1(K2)+Lift2(C2)) = tP +Q.
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2.2 The mixed volume

Let K = (K1, ..., Kn) be a n-tuple of convex compact subsets in the Euclidean space
Rn, and let Vn(·) be the Euclidean volume in Rn. It is a well-known result of Herman
Minkowski (see for instance [2]), that the functional Vn(λ1K1 + · · · + λnKn) is a ho-
mogeneous polynomial of degree n with nonnegative coefficients, called the Minkowski
polynomial. Here ′′+′′ denotes Minkowski sum, and λK denotes the dilatation of K with
coefficient λ ≥ 0. The coefficient V (K) =: (V (K1, ..., Kn) of λ1 · λ2 . . . · λn is called the
mixed volume of K1, ..., Kn. Alternatively,

V (K1, ..., Kn) =
∂n

∂λ1...∂λn

Vn(λ1K1 + · · ·+ λnKn),

and

Vn(λ1K1 + · · · + λnKn) =
∑

r1+···+rn=n

V (K
r1,...,rn)

∏

1≤i≤n ri!
(

∏

1≤i≤n

λri

i ), (6)

where the n-tuple K
r1,...,rn consists of ri copies of Ki, 1 ≤ i ≤ n.

The Alexandrov-Fenchel inequalities [1], [2] state that

V (K1, K2, K3, ..., Kn)
2 ≥ V (K1, K1, K3, ..., Kn)V (K2, K2, K3, ..., Kn). (7)

It follows from (6) that if P, Q ⊂ Rn are convex compact sets then

V oln(tP + Q) =
∑

0≤i≤n

ait
i, t ≥ 0;

where a0 = V oln(Q) = 1
n!

V (Q, · · · , Q), a1 = 1
(n−1)!1!

V (P, Q, · · · , Q), . . ., an = V oln(Q) =
1
n!

V (P, · · · , P ).

Using the Alexandrov-Fenchel inequalities (7) we see that the sequence (a0, ..., an) is
ULC(n).

The next remarkable result was proved by G.S. Shephard in 1960:

Theorem 2.3: A sequence (a0, ..., an) is ULC(n) if and only if there exist two convex
compact sets P, Q ⊂ Rn such that

∑

0≤i≤n

ait
i = V oln(tP + Q), t ≥ 0.

Remark 2.4: The “if” part in Theorem(2.3), which is a particular case of the Alexandrov-
Fenchel inequalities, is not simple, but was proved seventy years ago [1]. The proof of the
“only if” part in Theorem(2.3) is not difficult and short. G.S. Shephard first considers the
case of positive coefficients, which is already sufficient for our application. In this positive

the electronic journal of combinatorics 16 (2009), #N5 3



case one chooses Q = {(x1, ..., xn) :
∑

1≤i≤n xi ≤ 1; xi ≥ 0}. In other words, the set Q is
the standard simplex in Rn. And the convex compact set

P = Diag(λ1, ..., λn)Q = {(x1, ..., xn) :
∑

1≤j≤n

xj

λj

≤ 1; xi ≥ 0}; λ1 ≥ ... ≥ λn > 0.

The general nonnegative case is handled by the topological theory of convex compact
subsets.

3 Our proof of Theorem(1.1)

Proof: Let a = (a0, ..., al) be ULC(l) and b = (b0, ..., bd) be ULC(d). Define two
univariate polynomials R1(t) =

∑

0≤i≤l ait
i and R2(t) =

∑

0≤j≤c ait
j.

Then the polynomial R1(t)R2(t) := R3(t) =
∑

0≤k≤l+d ckt
k, where the sequence

c = (c0, ..., cl+d) is the convolution, c = a ? b.
It follows from the “only if”!p part of Theorem(2.3) that

R1(t) = V oll(tK1 + K2) and R2(t) = V old(tC1 + C2),

where K1, K2, C1, C2 are convex compact sets; K1, K2 ⊂ Rl and C1, C2 ⊂ Rd.
Define the next two convex compact subsets of Rl+d:

P = K1 × C1 and Q = K2 × C2.

Here the cartesian product A × B of two subsets A ⊂ Rl and B ⊂ Rd is defined as

A × B := {(X, Y ) ∈ Rl+d : X ∈ A, Y ∈ B}.

By Fact(2.2), the Minkowski sum tP + Q = (tK1 + K2) × (tC1 + C2), t ≥ 0.
It follows that V oll(tK1 +K2)V old(tC1 +C2) = V oll+d(tP +Q). Therefore the polynomial
R3(t) = V oll+d(tP + Q).
Finally, we get from the Alexandrov-Fenchel inequalities (the “if” part of Theorem(2.3))
that the sequence of its coefficients c = a ? b is ULC(l + d).

4 Final comments

1. Theorem(2.3) and a simple Fact(2.2) allowed us to use very basic (but powerful)
representation of the convolution in terms of the product of the corresponding poly-
nomials. The original Liggett’s proof does not rely on this representation.

2. Let a = (a0, ..., am) be a real sequence, satisfying the Newton inequalities (2) of
order m. I.e. we dropped the condition of nonnegativity from the definition of
ultra-logconcavity. It is not true that c = a ? a satisfies the Newton inequalities of
order 2m.
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Indeed, consider a = (1, a, 0,−b, 1), where a, b > 0 . This real sequence clearly
satisfies the Newton inequalities of order 4.
It follows that c6 = b2, c5 = 2a, c4 = 2(1 − ab) and the number

c2
5

c4c6
= 2

a2

b2(1 − ab)

converges to zero if the positive numbers a, b, a
b

converge to zero.

3. The reader can find further implications (and their generalizations) of Theorem(2.3)
in [4].
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