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Abstract

Positively weighted graphs have a natural intrinsic metric. We consider finite,

positively weighted graphs with a positive lower bound for their minimal weights

and show that any two such graphs, which are close enough with respect to the

Gromov-Hausdorff metric, are equivalent as graphs.

1 Introduction

We consider finite, connected graphs with positive weights assigned to edges. We allow
loops and multiple edges, but we exclude vertices of degree 2. (The meaning of this
restriction will be clear in the sequel.) We will call such graphs admissible weighted
graphs. One can define a natural metric on an admissible weighted graph [4] and then the
Gromov-Hausdorff distance between such graphs makes sense. We will prove the following
theorem, which could be interpreted as a stability property for graphs:

Theorem 1. Let G be an admissible weighted graph with minimal weight ≥ r > 0. If H

is any other admissible weighted graph with minimal weight ≥ r, which is close enough
(in the Gromov-Hausdorff metric) to G, then H is equivalent to G as a graph. (i.e. there
are bijections between vertices and between edges respecting the incidence relations.)

2 Metric Geometry for Graphs

For the general theory of length spaces, intrinsic metrics and Gromov-Hausdorff metric
we refer to [4], and we only briefly define the relevant notions so far as we need them for
graphs.

If (X, d) is a complete metric space, then the metric is said to be strictly intrinsic
iff for any two points x, y ∈ X there exists a midpoint z ∈ X (i.e. a point z with
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d(x, z) = d(z, y) = 1

2
d(x, y)). Equivalently, for any two points x, y ∈ X and ε > 0 there

must exist a finite sequence of points x = x0, x1, x2, . . . , xk = y such that consecutive

points are ε-close (i.e. d(xi, xi+1) ≤ ε for i = 0, 1, . . . , k− 1 ) and
k−1∑

i=0

d(xi, xi+1) = d(x, y).

Now let us given an admissible weighted graph G = (V, E, I, ω) where V is the set of
vertices, E is the set of edges, I : ∂E → V is the identification map (∂E is the set of
end-points of the edges) and ω : E → R+ a positive-valued weight map. We can consider
G as a compact, connected topological space by making the appropriate identifications
on the disjoint union of the edges.

On any edge e ∈ E of a graph G = (V, E, I, ω), the weight ω(e) defines a natural
metric, making the (unglued) edge isometric with the interval [0, ω(e)] ⊂ R and we denote
this metric by de. Now, given any pair of points x, y ∈ G, consider the sequences x0 =
x, x1, x2, . . . , xn = y such that the consecutive points xi, xi+1 lie on the same edge, say ei,
and define

d(x, y) = inf

{
n−1∑

i=0

dei
(xi, xi+1)

}
.

(For simplicity we abuse notation by denoting identified points with the same symbol.
Loops do not do any harm as the infimum is taken, but for definiteness one could also
take as dei

(xi, xi+1) the “length” of the shorter subsegment if xi, xi+1 lie on a loop and
one of them is the vertex.) It can be shown that d is a complete metric (inducing the
right topology on G) which is strictly intrinsic.

Given two compact subspaces X, Y of a metric space Z, the Hausdorff distance
dH(X, Y ) is the infimum of ε, for which X lies in the ε-neighborhood of Y and Y lies in
the ε-neighborhood of X. If X and Y are any compact metric spaces, we can consider
possible isometric copies X ′, Y ′ lying in a metric space Z ′ and compute dH(X ′, Y ′) inside
Z ′. The Gromov-Hausdorff distance dGH(X, Y ) is the infimum of all such dH(X ′, Y ′). The
Gromov-Hausdorff distance defines a metric on the space of isometry classes of compact
metric spaces.

A useful notion is that of an ε-isometry between metric spaces. For metric spaces
(X, dX), (Y, dY ) and ε > 0, a function f : X → Y is called an ε-isometry if distortion(f ) ≤
ε and f(X) is an ε-net in Y , whereby

distortion(f ) = sup
x1 ,x2∈X

| dY (f (x1 ), f (x2 )) − dX (x1 , x2 ) | .

(ε-net condition means that, for any y ∈ Y there exists x ∈ X with dY (f(x), y) ≤ ε.) The
following proposition relates Gromov-Hausdorff distance to ε-isometry [4].

Proposition 1. Let X and Y be two metric spaces and ε > 0. Then,

1. If dGH(X, Y ) < ε, then there exists a 2ε-isometry from X to Y .

2. If there exists an ε-isometry from X to Y , then dGH(X, Y ) < 2ε.
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Because of this proposition, being close enough in the Gromov-Hausdorff metric is the
same as the existence of an ε-isometry for ε small enough.

We note that an ε-isometry need not be continuous.
We will define a kind of inverse for an ε-isometry and give a few lemmas whose proofs

we omit (as they are straightforward). For an ε-isometry f : X → Y , we call a function
f−1 : Y → X an inverse of f if dY (y, f(f−1(y))) ≤ ε for y ∈ Y . Such functions obviously
exist since f(X) is an ε-net in Y .

Lemma 1. If f : X → Y is an ε-isometry, then an inverse f−1 : Y → X of f is a
3ε-isometry.

Lemma 2. If f : X → Y is an ε-isometry and g : Y → Z is a δ-isometry, then
g ◦ f : X → Z is an ε + 2δ-isometry.

Corollary 1. Let f : X → Y be an ε-isometry and f−1 be an inverse of f . Then,
f−1 ◦ f : X → X is a 7ε-isometry and f ◦ f−1 : Y → Y is a 5ε-isometry.

3 The Stability Theorem

First we want to motivate our exclusion of vertices of degree 2. Consider the graphs in
Figure 1:

Figure 1: Isometric but non-equivalent graphs

G has two vertices and an edge with weight 2 and H has three vertices and two edges
with weights 1. These graphs are obviously isometric with respect to the induced intrinsic
metrics, but they are not equivalent as graphs. This is due to the presence of the middle
vertex of H which has degree two. Another approach to circumvent this difficulty could be
to allow only constant weights (say, 1, for each edge) and indeed, that would be preferable
for some purposes. But we feel that the choice we made is somewhat more flexible.

Lemma 3. Let G and H be admissible weighted graphs with minimal weights ≥ r > 0
and f : G → H be an ε-isometry with ε � r. (This means that ε is small enough with
respect to r and can be further precised to make the following proof work.) Let a ∈ V (G)
be a vertex of G. Then, f(a) is in the 6ε-neighborhood of a unique vertex of H. (We use
closed neighborhoods.)

Proof. We distinguish two cases: degree(a) = 1 and degree(a) ≥ 3 . First we consider
the case degree(a) ≥ 3 . In fact, we can be stiffer in this case and show that f(a) is in
the 3ε-neighborhood of a vertex of H. Assume to the contrary that f(a) is in the 3ε-
neighborhood of no vertex of H. This means that there is no vertex in the 3ε-neighborhood
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of f(a) and thus the 3ε-neighborhood of f(a) is a simple arc (lying in the interior of some
edge) in H.

Consider the points a1, a2, . . . , an of G having (exact) distance 2ε to the vertex a (n
being the degree of a). Then, by ε-isometry, ε ≤ dH(f(a), f(ai)) ≤ 3ε (i = 1, 2, . . . , n). On
the other hand, dG(ai, aj) = 4ε for i 6= j and by ε-isometry, 3ε ≤ dH(f(ai), f(aj)) ≤ 5ε.

Thus, one has to place into an arc of length 6ε centered around f(a) at least three
points, any two of which is at least 3ε apart and each of which is at least ε apart from
f(a). This is obviously not possible.

Now we consider the case degree(a) = 1 .
Assume that f(a) does not lie in the 6ε-neighborhood of any vertex of H. Then the

6ε-neighborhood of f(a) is a simple arc in H. Let us denote the endpoints of this arc
by b and c and let b′ and c′ be the points in distances 7

2
ε from f(a) lying in (unoriented)

segments [b, f(a)], [c, f(a)] as shown in Figure 2.

Figure 2: 6ε-neighborhood of f(a)

Now consider in G the segment [a, a′] lying in the edge emanating from a of length 7ε.
We claim that one of the segments [b, b′] and [c, c′] does not contain any point in f(G).

Assume to the contrary that there are points x1, x2 ∈ G such that f(x1) ∈ [b, b′] and
f(x2) ∈ [c, c′]. Both of these points x1 and x2 must belong to [a, a′], because for a point
x outside [a, a′] we have dG(x, a) > 7ε and hence dH(f(x), f(a)) > 6ε.

Now, as dH(f(x1), f(a)) ≥ 7

2
ε and dH(f(x2), f(a)) ≥ 7

2
ε, it must hold dG(x1, a) ≥ 5

2
ε

and dG(x2, a) ≥ 5

2
ε. But then dG(x1, x2) ≤

9

2
ε, hence dH(f(x1), f(x2)) ≤

11

2
ε, contradict-

ing dH(f(x1), f(x2)) ≥ 7ε. Thus one of [b, b′] and [c, c′] does not intersect f(G) ⊂ H.
But then the midpoint of that segment would not lie in the ε-neighborhood of any point
f(x) (x ∈ G), contradicting the assumption that f is an ε-isometry.

This lemma enables us to define for an ε-isometry f : G → H (ε � r) a map

f̃ : V (G) −→ V (H)

a 7−→ f̃(a), dH(f(a), f̃(a)) ≤ 6ε.

Since ε � r, the vertex f̃(a) of H is unique.
If f−1 is an inverse of f , we get a similar map

f̃−1 : V (H) −→ V (G)

and one can show with some simple (but tedious) considerations that

f̃−1 ◦ f̃ = f̃−1 ◦ f = Identity(V (G))
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and
f̃ ◦ f̃−1 = f̃ ◦ f−1 = Identity(V (H )).

As a consequence we obtain:

Lemma 4. For an ε-isometry f : G → H (ε � r) the induced map f̃ : V (G) → V (H)
is a bijection between the set of vertices of G and the set of vertices of H.

We now show that given any pair a, b of vertices of G (which might also coincide), the
set E(a, b) of edges between these vertices is in one-to-one correspondence with the set

E(f̃(a), f̃(b)) of edges between the images of the given vertices under f̃ .
We first prove the following

Lemma 5. Let f : G → H be an ε-isometry (ε � r), a, b ∈ V (G), a 6= b. If p is the
midpoint of an edge e between the vertices a and b, then f(p) lies on an edge ẽ between

f̃(a) and f̃(b).

Proof. First we note that f(p) cannot be closer than 6ε to any vertex of H. If that were the

case, for example dH(f(p), f̃(c)) ≤ 6ε for a vertex c ∈ G, then, since dH(f(c), f̃(c)) ≤ 6ε
by Lemma 3, we would get dH(f(p), f(c)) ≤ 12ε. By ε-isometry of f , dG(p, c) ≤ 13ε. On
the other hand we have dG(p, c) ≥ 1

2
ω(e) ≥ r

2
contradicting ε � r.

This shows that f(p) is an inner point of an arc. This arc must be an arc connecting

f̃(a) and f̃(b). We could do the similar calculations, but we can understand the picture
also qualitatively: a and b are the two vertices closest to p and with the same distance to
p. f̃(a) and f̃(b) must be the two vertices closest to f(p) and with distances equal within

some bounded multiplies of ε. This necessitates that f̃(a) and f̃(b) are the vertices of H

which are the endpoints of the arc on which f(p) lies. At the same time, f(p) is close

enough to the true midpoint of this arc between f̃(a) and f̃(b).

This lemma enables us to define a map

F̃ (a, b) : E(a, b) −→ E(f̃(a), f̃(b))

e 7−→ ẽ.

This map is one-to-one: if we consider the midpoints p1 and p2 of edges e1 6= e2, they
cannot be mapped into the same arc between f̃(a) and f̃(b), because then both had to
lie close enough to the midpoint of that arc, consequently close enough to each other,
whereas they are far apart in G. One can define the inverse of F̃ (a, b) with the help of an

inverse f−1 of f , with the result that F̃ (a, b) is one-to-one and onto.
A similar line of thought shows that

F̃ (a, a) : E(a, a) −→ E(f̃(a), f̃(a))

is one-to-one and onto: The midpoint of an arc around a must lie on an arc around
f̃(a) and close to its midpoint; midpoints of different arcs around a must be mapped to

different arcs around f̃(a). One can consider again f−1 for surjectivity. We have thus
proven the following theorem which is equivalent to Theorem 1:
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Theorem 2. Let G and H be admissible weighted graphs with minimal weights ≥ r > 0
and let f : G → H be an ε-isometry with ε � r. Then G and H are equivalent graphs.

Remark 1. The following property could also be deduced from the above proof: As G

and H become homeomorphic (under the hypotheses of Theorem 2) one can consider the
Lipschitz distance Lip(G ,H ) and estimate it above via r, ε; more precisely, there exists a
function ∆r(ε) such that ∆r(ε) → 0 as ε → 0 and Lip(G ,H ) < ∆r(s).

In this form, the statement resembles a theorem of Gromov for Riemann manifolds
with bounded sectional curvatures and injectivity radius [5, p.384],[6].

Remark 2. Recently, some metric spaces of graphs are being considered by graph theoreti-
cians (see [1],[2],[3]). It would be interesting to consider stability questions with respect
to these metrics also.

Acknowledgements. We are indebted to the referee for Remark 1.
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