A duality based proof of the Combinatorial Nullstellensatz ## Omran Kouba Department of Mathematics Higher Institute for Applied Sciences and Technology P.O. Box 31983, Damascus, Syria omran_kouba@hiast.edu.sy Submitted: Dec 21, 2008; Accepted: Mar 5, 2009; Published: Mar 13, 2009 Mathematics Subject Classifications: 05A99, 15A03 ## Abstract In this note we present a proof of the combinatorial nullstellensatz using simple arguments from linear algebra. The combinatorial nullstellensatz [1] is an elegant tool which has many applications in combinatorial number theory, graph theory and combinatorics (see [1] and [2]). In this note we present a proof of this result using simple arguments from linear algebra. In Theorem 1, we recall the statement of the combinatorial nullstellensatz: **Theorem 1.** Let P be a polynomial in m variables X_1, X_2, \ldots, X_m over an arbitrary field \mathbb{K} . Suppose that the coefficient of the monomial $X_1^{n_1}X_2^{n_2}\cdots X_m^{n_m}$ in P is nonzero, and that the total degree of P is $\sum_{j=1}^m n_j$. Then, if S_1, S_2, \ldots, S_m are subsets of \mathbb{K} such that card $(S_j) > n_j$ (for $1 \le j \le n$,) there is some (t_1, t_2, \ldots, t_m) in $S_1 \times S_2 \times \cdots \times S_m$ so that $P(t_1, t_2, \ldots, t_m) \ne 0$. Our proof is based upon a simple lemma concerning linear forms on the vector space $\mathbb{K}[T]$ of polynomials in one variable T over an arbitrary field \mathbb{K} . In the dual space $(\mathbb{K}[T])^*$, we consider the dual basis $(\varphi_m)_{m\geq 0}$ of the canonical basis $(T^m)_{m\geq 0}$ of $\mathbb{K}[T]$, this means that $\varphi_m(P)$ is the coefficient of T^m in P, in other words $\varphi_i(T^j) = \delta_{ij}$ where δ_{ij} is the Kronecker symbol. We also denote by $\mathbb{K}_n[T]$ the subspace of $\mathbb{K}[T]$ formed of polynomials of degree at most n. With the above notation we have the following lemma: **Lemma 2.** Let S be a subset of \mathbb{K} such that card (S) = m + 1. Then there is a family $(\lambda_t^S)_{t \in S}$ of elements in \mathbb{K} such that $$\forall P \in \mathbb{K}_m[T], \quad \varphi_m(P) = \sum_{t \in S} \lambda_t^S P(t).$$ Proof. Consider, for $t \in S$, the linear form $\mu_t : \mathbb{K}_m[T] \longrightarrow \mathbb{K}, \mu_t(P) = P(t)$. The family $(\mu_t)_{t \in S}$ constitutes a basis of the dual space $(\mathbb{K}_m[T])^*$. (To see this, note that if $(\ell_t)_{t \in S}$ denotes the basis of $\mathbb{K}_m[T]$ formed by the Lagrange intepolation polynomials: $\ell_t(T) = \prod_{s \in S \setminus \{t\}} \frac{T-s}{t-s}$, then $\mu_u(\ell_v) = \delta_{uv}$. This proves that $(\mu_t)_{t \in S}$ is the dual basis of $(\ell_t)_{t \in S}$.) Now, the linear form $P \mapsto \varphi_m(P)$ defines an element from $(\mathbb{K}_m[T])^*$ and, consequently, it has a unique expression as a linear combination of the elements of the basis $(\mu_t)_{t \in S}$. This proves the existence of a family of scalars $(\lambda_t^S)_{t \in S}$, such that $\varphi_m(P) = \sum_{t \in S} \lambda_t^S \mu_t(P)$ for any polynomial P in $\mathbb{K}_m[T]$, and achieves the proof of Lemma 2. Before proceeding with the proof of Theorem 1, let us recall that the total degree of a polynomial P from $\mathbb{K}[X_1,\ldots,X_m]$ is the largest value of $d_1+d_2+\cdots+d_m$ taken over all monomials $X_1^{d_1}X_2^{d_2}\cdots X_m^{d_m}$ with nonzero coefficients in P. Proof of Theorem 1. For each j in $\{1, \ldots, m\}$, we may assume that card $(S_j) = n_j + 1$ (by discarding the extra elements if necessary,) then, using Lemma 2, we find a family of scalars $(\lambda_t^{S_j})_{t \in S_j}$ such that $$\forall P \in \mathbb{K}_{n_j}[T], \quad \varphi_{n_j}(P) = \sum_{t \in S_j} \lambda_t^{S_j} P(t). \tag{1}$$ Then, we consider the linear form Φ on $\mathbb{K}[X_1,\ldots,X_m]$ defined by : $$\Phi(Q) = \sum_{(t_1, \dots, t_m) \in S_1 \times \dots \times S_m} \lambda_{t_1}^{S_1} \lambda_{t_2}^{S_2} \cdots \lambda_{t_m}^{S_m} Q(t_1, t_2, \dots, t_m).$$ Clearly, we have $$\Phi(X_1^{d_1} X_2^{d_2} \cdots X_m^{d_m}) = \sum_{t_1 \in S_1} \sum_{t_2 \in S_2} \cdots \sum_{t_m \in S_m} \lambda_{t_1}^{S_1} \lambda_{t_2}^{S_2} \cdots \lambda_{t_m}^{S_m} t_1^{d_1} t_2^{d_2} \dots t_m^{d_m}$$ $$= \prod_{j=1}^m \left(\sum_{t \in S_j} \lambda_t^{S_j} t^{d_j} \right).$$ So we have the following two properties: i. If there is some k in $\{1, \ldots, m\}$ such that $d_k < n_k$, then by (1) we have $$\sum_{t \in S_k} \lambda_t^{S_k} t^{d_k} = \varphi_{n_k}(T^{d_k}) = 0,$$ and therefore, $\Phi(X_1^{d_1}X_2^{d_2}\cdots X_m^{d_m})=0.$ ii. On the other hand, $$\Phi(X_1^{n_1} X_2^{n_2} \cdots X_m^{n_m}) = \prod_{j=1}^m \varphi_{n_j}(T^{n_j}) = 1.$$ Let us suppose that $$P = \sum_{(d_1, d_2, \dots, d_m) \in \mathcal{D}} b_{d_1, d_2, \dots, d_m} X_1^{d_1} X_2^{d_2} \cdots X_m^{d_m},$$ where we collected in \mathcal{D} the multi-indexes (d_1, d_2, \ldots, d_m) satisfying $b_{d_1, d_2, \ldots, d_m} \neq 0$. Now, if (d_1, d_2, \ldots, d_m) is an element from \mathcal{D} which is different from (n_1, n_2, \ldots, n_m) , then there is some k in $\{1, \ldots, m\}$ such that $d_k < n_k$ because $\deg(P) = \sum_{j=1}^m n_j$. Therefore, by (i.), if (d_1, d_2, \ldots, d_m) is an element from \mathcal{D} which is different from (n_1, n_2, \ldots, n_m) , then $\Phi(X_1^{d_1} X_2^{d_2} \cdots X_m^{d_m}) = 0$, and if we use (ii.) we conclude that $$\Phi(P) = \sum_{(d_1, d_2, \dots, d_m) \in \mathcal{D}} b_{d_1, d_2, \dots, d_m} \Phi(X_1^{d_1} X_2^{d_2} \cdots X_m^{d_m}) = b_{n_1, n_2, \dots, n_m} \neq 0.$$ Finally, the conclusion of the theorem follows since $$\sum_{\substack{(t_1, \dots, t_m) \in S_1 \times \dots \times S_m}} \lambda_{t_1}^{S_1} \lambda_{t_2}^{S_2} \cdots \lambda_{t_m}^{S_m} P(t_1, t_2, \dots, t_m) = \Phi(P) \neq 0.$$ This ends the proof of Theorem 1. ## References - [1] Alon, N., Combinatorial Nullstellensatz. Recent trends in combinatorics. (Mátraháza, 1995). Combin. Probab. Comput. 8 (1999), 7–29. - [2] Shirazi, H. and Verstraëte, J., A note on polynomials and f-factors of graphs. Electronic J. of Combinatorics, 15 (2008), #N22.