
On the Locality of the Prüfer Code

Craig Lennon
Department of Mathematics

United States Military Academy
218 Thayer Hall

West Point, NY 10996
craigtlennon@gmail.com

Submitted: Feb 21, 2008; Accepted: Dec 22, 2008; Published: Jan 23, 2009

Mathematics Subject Classification: 05D40

Abstract

The Prüfer code is a bijection between trees on the vertex set [n] and strings on
the set [n] of length n − 2 (Prüfer strings of order n). In this paper we examine
the ‘locality’ properties of the Prüfer code, i.e. the effect of changing an element
of the Prüfer string on the structure of the corresponding tree. Our measure for
the distance between two trees T, T ∗ is ∆(T, T ∗) = n − 1 − |E(T) ∩ E(T ∗)|. We
randomly mutate the µth element of the Prüfer string of the tree T , changing it to
the tree T ∗, and we asymptotically estimate the probability that this results in a
change of ` edges, i.e. P (∆ = ` |µ). We find that P (∆ = ` |µ) is on the order of
n−1/3+o(1) for any integer ` > 1, and that P (∆ = 1 |µ) = (1 − µ/n)2 + o(1). This
result implies that the probability of a ‘perfect’ mutation in the Prüfer code (one
for which ∆(T, T ∗) = 1) is 1/3.

1 Introduction

The Prüfer code is a bijection between trees on the vertex set [n] := {1, . . . , n} and strings
on the set [n] of length n − 2 (which we will refer to as P -strings). If we are given a tree
T , we encode T as a P -string as follows: at step i (1 ≤ i ≤ n− 2) of the encoding process
the lowest number leaf is removed, and its neighbor is recorded as pi, the ith element of
the P -string

P = (p1, . . . , pn−2), pi ∈ [n], (1 ≤ i ≤ n − 2).

We will describe a decoding algorithm in a moment.
First we observe that the Prüfer code is one of many methods of representing trees as

numeric strings, [4], [7], [8]. A representation with the property that small changes in the
representation lead to small changes in the represented object is said to have high locality,
a desirable property when the representation is used in a genetic algorithm [2], [7]. The

the electronic journal of combinatorics 16 (2009), #R10 1

distance between two numeric string tree representations is the number of elements in the
string which differ, and the distance between two trees T, T ∗ is measured by the number
of edges in one tree which are not in the other:

∆ = ∆(n) = ∆(n)(T, T ∗) := n − 1 − |E(T) ∩ E(T ∗)|,

where E(T) is the edge set of tree T .
By a mutation in the P -string we mean the change of exactly one element of the P -

string. Thus we denote the set of all ordered pairs of P-strings differing in exactly one
coordinate (the mutation space) by M, and by Mµ we mean the subset of the mutation
space in which the P-strings differ in the µ th coordinate:

M =

n−2
⋃

1=µ

Mµ, Mµ :=
{

(P, P ∗) : pi = p∗i for i 6= µ, and pµ 6= p∗µ
}

,

where
P = (p1, . . . , pn−2), P ∗ = (p∗1, . . . , p

∗
n−2),

so |M| = nn−2(n − 2)(n − 1), and |Mµ| = nn−2(n − 1). We choose a pair (P, P ∗) ∈ M
uniformly at random, and the random variable ∆ measures the distance between the trees
corresponding to (P, P ∗). Using P ({event}|◦) to denote conditional probability, we have

P (∆ = `) =

n−2
∑

µ=1

P (∆ = ` | (P, P ∗) ∈ Mµ) P ((P, P ∗) ∈ Mµ)

=

n−2
∑

µ=1

P (∆ = ` | (P, P ∗) ∈ Mµ)
1

n − 2
.

Hereafter we will represent the event (P, P ∗) ∈ Mµ by µ, as in

P ({event} |µ) := P ({event} | (P, P ∗) ∈ Mµ) .

Computer assisted experiments conducted by Thompson (see [8] page 195-196) for
trees with a vertex size as large as n = 100 led him to conjecture that:

lim
n→∞

P
(

∆(n) = 1
)

=
1

3
, (1.1)

and that if µ/n → α, then

lim
n→∞

P
(

∆(n) = 1
∣

∣µ
)

= (1 − α)2. (1.2)

In a recent paper [6], Paulden and Smith use combinatorial and numerical methods to
develop conjectures about the exact value of P (∆ = ` |µ) for ` = 1, 2, and about the
generic form that P (∆ = ` |µ) would take for ` > 2. These conjectures, if true, would
prove (1.1)-(1.2). Unfortunately, the formulas representing the exact value of P (∆ = ` |µ)

the electronic journal of combinatorics 16 (2009), #R10 2

are complicated, even for ` = 1, 2, and the proof of their correctness may be difficult. In
this paper we will show by a probabilistic method that (1.1)-(1.2) are indeed correct,
proving that

P
(

∆(n) = 1
∣

∣µ
)

= (1 − µ/n)2 + O
(

n−1/3 ln2 n
)

, (1.3)

and showing in the process that

P
(

∆(n) = `
∣

∣ µ
)

= O
(

n−1/3 ln2 n
)

, (` > 1). (1.4)

Of course (1.3) implies (1.1), because
∫ 1

0
(1−α)2 dα = 1/3. In order to prove these results

we will need to analyze the following P -string decoding algorithm, which we learned of
from [1], [6].

1.1 A Decoding Algorithm

In the decoding algorithm, the P -string P = (p1, . . . , pn−2) is read from right to left, so
we begin the algorithm at step n− 2 and count down to step 0. We begin a generic step i
with a tree Ti+1 which is a subgraph of the tree T which was encoded as P . This tree has
vertex set Vi+1 of cardinality n− i− 1 and edge set Ei+1 of cardinality n− i− 2. We will
add to Ti+1 a vertex from Xi+1 := [n] \ Vi+1, and an edge, and the resulting tree Ti will
contain Ti+1 as a subgraph. The vertex added at step i of the decoding algorithm is the
vertex which was removed at step i + 1 of the encoding algorithm, and will be denoted
by yi. A formal description of the decoding algorithm is given below.

Decoding Algorithm

Input: P = (p1, . . . , pn−2) and Xn−1 = [n − 1], Vn−1 = {n}, En−1 = ∅.
Step i (1 ≤ i ≤ n− 2): We begin with the set Xi+1 and a tree Ti+1 having vertex set Vi+1

and edge set Ei+1. We examine entry pi of P .

1. If pi ∈ Xi+1, then set yi = pi .

2. If pi /∈ Xi+1, then let yi = max Xi+1 (the largest element of Xi+1).

In either case we add yi to the tree Ti+1, joining it by an edge to the vertex pi+1 (which
must already be a vertex of Ti+1), with pn−1 := n. So Xi = Xi+1 \ {yi}, Vi = Vi+1 ∪ {yi},
and Ei = Ei+1 ∪ { {yi, pi+1} }.

Step 0: We add y0, the only vertex in X1, and the edge {y0, p1} to the tree T1 to form
the tree T0 = T.

In this algorithm, we do not need to know the values of p1, . . . , pi until after step i+1.
We will take advantage of this by using the principle of deferred decisions. With µ fixed,
we will begin with pµ+1, . . . , pn−2 determined, but with p1, . . . , pµ, as yet undetermined.

the electronic journal of combinatorics 16 (2009), #R10 3

We will then choose the values of the pi for 1 ≤ i ≤ µ when the algorithm requires those
values and no sooner.

This will mean that the composition of the sets Xi, Vi, Ei will only be determined once
we have conditioned on pi, . . . , pn−2. When we compute the probability that pi−1 is in a set
Ai whose elements are determined by pj, j > i, (for example Xi or Vi) we are implicitly
using the law of total probability:

P (pi−1 ∈ Ai |µ) =
∑

Pi

P (pi−1 ∈ Ai |Pi ; µ) P (Pi |µ) ,

where the sum above is over all P -sub-strings Pi = (pi, . . . , pn−2) of the appropriate length,
and P (Pi |µ) is the probability of entries i through n−2 of the P -string taking the values
(pi, . . . , pn−2). We will leave such conditioning as implicit when estimating probabilities
of the type P (pi−1 ∈ Ai |µ) .

In the next section, we will use the principle of deferred decisions to easily find a lower
bound for P (∆ = 1 |µ), and in later sections we will use similar techniques to establish
asymptotically sharp upper bounds for P (∆ = 1 |µ), as well as for P (∆ = ` |µ) (` > 1).
The combination of these bounds will prove (1.3)-(1.4).

2 The lower bound

For a fixed value of µ, we will construct a pair of strings from Mµ, starting our construction
with two partial strings

Pµ+1 = (pµ+1, . . . , pn−2) , P ∗
µ+1 =

(

p∗µ+1, . . . , p
∗
n−2

)

, pj = p∗j ,

where pj has been selected uniformly at random from [n] for µ + 1 ≤ j ≤ n − 2. We
have not yet chosen pj, p

∗
j for j ≤ µ. We run the decoding algorithm from step n − 2

down through step µ + 1, and at this point we have two trees Tµ+1 = T ∗
µ+1 as which

Pµ+1 = P ∗
µ+1 have been partially decoded. Of course we also have the sets Vµ+1 = V ∗

µ+1

and Xµ+1 = X∗
µ+1, where

Vi := {j : j is a vertex of Ti}, V ∗
i := {j : j is a vertex of T ∗

i },

and Xi = [n] \ Vi, X
∗
i = [n] \ V ∗

i . We let Ei, E∗
i represent the edge sets of Ti, T

∗
i .

Now we choose pµ and p∗µ 6= pµ, and execute step µ of the decoding algorithm. There
are two possibilities:

1. If both pµ, p
∗
µ ∈ Vµ+1 ∪ {max Xµ+1}, then yi = y∗

i = max Xµ+1. We have added the
same vertex and the same edge (yi and {yi, pµ+1}) to both Tµ+1 and T ∗

µ+1. We have
Vµ = V ∗

µ and Eµ = E∗
µ.

2. One of pµ, p
∗
µ is not an element of the set Vµ+1 ∪ {max Xµ+1}.

the electronic journal of combinatorics 16 (2009), #R10 4

We will denote the first of these two events by

E := {both pµ, p∗µ ∈ Vµ+1 ∪ {max Xµ+1}}, (2.1)

and we will show that on this event, ∆ = 1 no matter what values of pj = p∗j (1 ≤ j ≤ µ−1)
we choose to complete the strings P, P ∗. Thus

E ⊆ {∆ = 1} =⇒ P(E |µ) ≤ P(∆ = 1 |µ).

Let us prove the set containment shown in the previous line.
Proof. Suppose that event E occurs, so that Vµ = V ∗

µ and Xµ = X∗
µ, and Tµ = T ∗

µ . Now
choose p1, . . . , pµ−1 uniformly at random from [n], with p∗

i = pi for 1 ≤ i ≤ µ − 1.
At steps µ − 1, µ − 2, . . . , 0 of the algorithm, we will, at every step, read the same

entry pi = p∗i from the strings P, P ∗. Because Xµ = X∗
µ and pµ−1 = p∗µ−1, the algorithm

demands that we add to Tµ, T
∗
µ the same vertex yµ−1 = y∗

µ−1. This in turn means that
Xµ−1 = X∗

µ−1. In a similar fashion, for 0 ≤ i ≤ µ − 2 we have

Xi+1 = X∗
i+1 =⇒ yi = y∗

i .

Thus at every step i ≤ µ of the algorithm we add the same vertex to Vi+1, V
∗
i+1. Further-

more, at every step we are adding the edge {yi, pi+1} to Ei+1 and the edge {yi, p
∗
i+1} to

E∗
i+1. Since pi = p∗i for i 6= µ and pµ 6= p∗µ, we add the same edge to Ti+1 and T ∗

i+1 at every
step except at step µ − 1 at which we add {yµ−1, pµ} to Tµ and {yµ−1, p

∗
µ} (6= {yµ−1, pµ})

to T ∗
µ . Of course the same edge cannot be added to a tree twice, so at no point could we

have added {yµ−1, p
∗
µ} to T or {yµ−1, pµ} to T ∗. Thus T and T ∗ must have exactly n − 2

edges in common, and

∆ = ∆(n)(T, T ∗) := n − 1 − |E(T) ∩ E(T ∗)| = 1.

Note: We have proved that if Xk = X∗
k for k ≤ µ then Xj = X∗

j for all j < k, that
the same vertex is added at every step j < k, and that the same edge is added at every
step j < min{k, µ − 1}. We will need this result later.

Now we bound the conditional probability of event E . Because there are n − µ − 1
elements in the set Vµ+1 ∪ {max Xµ+1}, we have

P (∆ = 1 |µ) ≥ P (E |µ) =
n − µ − 1

n
·
n − µ − 2

n − 1

= 1 −
2µ

n
+

µ2

n2
+ O

(

n−1
)

= (1 − µ/n)2 + O
(

n−1
)

.

Of course P ({∆ = `} ∩ E |µ) = 0 for ` > 1, so in order to prove (1.3)-(1.4) it remains
to show that

P ({∆ = `} ∩ E c |µ) = O
(

n−1/3 ln2 n
)

, (` ≥ 1). (2.2)

This endeavor will prove more complicated than the upper bounds, so we will need
to establish some preliminary results and make some observations which will prove useful
later.

the electronic journal of combinatorics 16 (2009), #R10 5

3 Observations and preliminary results

Recall that after step j of the decoding algorithm we have two sets Xj, X
∗
j of vertices

which have not been placed in Tj, T
∗
j . For j ≥ µ + 1, we know that Xj = X∗

j , but we may
have Xj 6= X∗

j for j ≤ µ. So let us consider then the set Xj := Xj ∪ X∗
j .

Our goal is to show that either Xj = Xj, or Xj consists of Xj∩X∗
j and of two additional

vertices, one in Vj \ V ∗
j and one in V ∗

j \ Vj. This means Xj has the following form:

Xj :={x1 < · · · < xa < min{zj, z
∗
j } < xa+1 < · · · < xa+b <

max{zj, z
∗
j } < xa+b+1 < · · · < xa+b+c}, (3.1)

where
zj ∈ Vj \ V ∗

j , z∗j ∈ V ∗
j \ Vj, xi ∈ Xj ∩ X∗

j , (1 ≤ i ≤ a + b + c),

and a, b, c ≥ 0, with a + b + c = j − 1. Let us also take the opportunity to define

Vj := Vj ∩ V ∗
j ,

and note that

|Vj| = n − j (if {zj, z
∗
j } = ∅), |Vj| = n − j − 1 (if |{zj, z

∗
j }| = 2). (3.2)

We will consider a set Xj = Xj to also have the form shown in (3.1), but with
{zj, z

∗
j } = ∅ and b(j) = c(j) = 0, a(j) = j. Thus when showing that Xj must be of the

form (3.1), our concern is to show that there is at most one vertex zj ∈ Vj \ V ∗
j , and

that there can be such a vertex if and only if there is exactly one vertex z∗
j ∈ V ∗

j \ Vj, so
|{zj, z

∗
j }| is 0 or 2.

Now, for j ≥ µ+1, the set Xj = Xj = X∗
j , so Xµ is of the form (3.1). Also, we showed

in the previous section that if Xk = X∗
k for k ≤ µ then Xj = X∗

j for all j < k. Thus it is
enough to show that if Xj (j ≤ µ) is of the form (3.1) with {zj, z

∗
j } 6= ∅, then Xj−1 is also

of the form (3.1).
This will be shown in the process of examining what happens to a set Xj of the form

(3.1) (with {zj, z
∗
j } 6= ∅) at step j−1 of the decoding algorithm, an examination which will

take most of this section. In this examination, we present notation and develop results
upon which our later probabilistic analysis will depend. We begin by considering the
parameters a, b, c.

Of course,
a = a(j), b = b(j), c = c(j),

depend on j, (and on p∗µ and pi, i ≥ j), but we will use the letters a, b, c when j is clear.
We let

Aj := {x1 < · · · < xa}, Bj := {xa+1 < · · · < xa+b},

and
Cj := {xa+b+1 < · · · < xa+b+c},

so Xj = Aj ∪ Bj ∪ Cj ∪ {zj, z∗j }.

the electronic journal of combinatorics 16 (2009), #R10 6

Ultimately, we are interested not just in the set Xj, but in the distance between two
trees, i.e. ∆. We will find it useful to examine how this distance changes with each step
of the decoding algorithm, so we define

∆j = ∆
(n)
j

(

Tj, T
∗
j , Tj+1, T

∗
j+1

)

:= 1 − |Ej ∩ E∗
j | + |Ej+1 ∩ E∗

j+1|, (0 ≤ j ≤ n − 2),

and observe that

∆(n) = n − 1 − |E0 ∩ E∗
0 | + |En−1 ∩ E∗

n−1|

= ∆0 + · · ·+ ∆n−2 (3.3)

(recall that Tn−1 is the single vertex n and T = T0). We add exactly one edge to each tree
at each step of the algorithm, so the function ∆j has range {−1, 0, 1}. Of course ∆j = 0
for j > µ, and it is easy to check that ∆µ = 1 as long as min{pµ, p∗µ} /∈ Vµ+1∪{max Xµ+1}
(so on E c). Further, if Xj = X∗

j and j < µ, then we will add the same edge at every step
i < j, so ∆i = 0 for all i < j.

Finally, we will need some notation to keep track of what neighbor a given vertex had
when it was first added to the tree. Thus for v ∈ {1, . . . , n − 1} we denote by h(v) the
neighbor of v in Tj, where j is the highest number such that v is a vertex of Tj. Formally,

for v = yj, h(v) = hP (v) := pj+1, (P = (p1, . . . , pn−2)). (3.4)

For example, if our string is (4, 3, 2, 2, 7), then

h(1) = 4, h(2) = 7, h(3) = 2, h(4) = 3, h(5) = 2, h(6) = 7.

Now we are prepared to examine the behavior of the parameters a, b, c, and to make
some crucial observations about the behavior of ∆j. In the process we will show that if
Xj is of the form (3.1) with {zj, z

∗
j } 6= ∅ then Xj−1 is of the same form (but possibly with

{zj−1, z
∗
j−1} = ∅, meaning Xj−1 = Xj−1). The observations below apply to all 1 ≤ j ≤ µ.

1. If pj−1 ∈ Aj ∪ Bj ∪ Cj, then yj−1 = y∗
j−1 = pj−1, while zj−1 = zj, z∗j−1 = z∗j , and

∆j−1 = 0 because we add the edge {pj−1, pj} to both of Tj, T
∗
j , (unless j = µ in

which case ∆µ−1 = 1).

(a) If pj−1 ∈ Aj then a(j − 1) = a(j)− 1, while b(j − 1) = b(j) and c(j − 1) = c(j).

(b) If pj−1 ∈ Bj then b(j − 1) = b(j)− 1 while a(j − 1) = a(j) and c(j − 1) = c(j).

(c) If pj−1 ∈ Cj then c(j − 1) = c(j)− 1 while a(j − 1) = a(j) and b(j − 1) = b(j).

Thus in every case, one of the parameters a, b, c decreases by 1 while the others
remain unchanged.

2. Suppose that pj−1 ∈ Vj := Vj ∩ V ∗
j . Then

(a) If b(j) = c(j) = 0 then yj−1 = z∗j and y∗
j−1 = zj, so Xj−1 = X∗

j−1. While ∆j−1

could assume any of the values −1, 0, 1, we have ∆i = 0 for all i < j − 1.

the electronic journal of combinatorics 16 (2009), #R10 7

(b) First suppose that zj < z∗j and b(j) > 0, c(j) = 0. Then y∗
j−1 = xa+b and

yj−1 = z∗j , making z∗j−1 = xa+b, zj−1 = zj. We have Bj−1 = Bj \ {xa+b}, so
a(j −1) = a(j), b(j−1) = b(j)−1, c(j−1) = 0. Further, ∆j−1 = 0 if and only
if the event

H∗
j−1 := {pj = hP ∗(z∗j)} (3.5)

occurs, and otherwise ∆j−1 = 1.

Similarly, if zj > z∗j and b(j) > 0, c(j) = 0, then yj−1 = xa+b and y∗
j−1 = zj

with zj−1 = xa+b, z∗j−1 = z∗j . The change in the values of a, b, c are the same as
in the case of zj < z∗j . We also have ∆j−1 = 0 if and only if the event

Hj−1 := {p∗j = hP (zj)} (3.6)

occurs, and otherwise ∆j−1 = 1. In summary, if b(j) > 0, c(j) = 0 and
pj−1 ∈ Vj, then ∆j−1 = 1 unless Hj−1 ∪ H∗

j−1 occurs.

(c) If b(j) ≥ 0, c(j) > 0 and pj−1 ∈ Vj then y∗
j−1 = yj−1 = xa+b+c, zj−1 = zj,

z∗j−1 = z∗j , and we have a(j − 1) = a(j), b(j − 1) = b(j), c(j − 1) = c(j) − 1.
Since we add the edge {xa+b+c, pj} to both of Tj, T

∗
j we have ∆j−1 = 0 (unless

j = µ in which case ∆µ−1 = 1).

3. Suppose that pj−1 = max{zj, z
∗
j }.

(a) If b(j) = c(j) = 0 then the results are the same as in the case 2a.

(b) If b(j) > 0, c(j) = 0 then the results are the same as in the case 2b.

(c) Suppose b(j) ≥ 0, c(j) > 0. If zj < z∗j and pj−1 = z∗j then y∗
j−1 = xa+b+c and

yj−1 = z∗j , making z∗j−1 = xa+b+c, zj−1 = zj. If zj > z∗j and pj−1 = zj then
yj−1 = xa+b+c and y∗

j−1 = zj, making zj−1 = xa+b+c, z∗j−1 = z∗j . In both cases,
a(j − 1) = a(j), but Bj−1 = Bj ∪ Cj \ {xa+b+c}, so c(j − 1) = 0, b(j − 1) =
b(j) + c(j) − 1. In this case we have ∆j−1 ≥ 0.

4. The last remaining possibility is that pj−1 = min{zj, z
∗
j }.

(a) If c(j) = 0 then yj−1 = z∗j and y∗
j−1 = zj so Xj−1 = X∗

j−1. We have ∆j−1 ∈
{−1, 0, 1} and ∆i = 0 for all i < j − 1.

(b) If c(j) > 0 and zj < z∗j then yj−1 = xa+b+c and y∗
j−1 = zj, making zj−1 = xa+b+c,

z∗j−1 = z∗j . If zj > z∗j then y∗
j−1 = xa+b+c and yj−1 = z∗j , making z∗j−1 = xa+b+c,

zj−1 = zj. In both cases a(j − 1) = a(j) + b(j) because the set Aj−1 = Aj ∪Bj,
and Bj−1 = Cj \ {xa+b+c}, so c(j − 1) = 0, b(j − 1) = c(j) − 1. In this case we
have ∆j−1 ≥ 0.

We have shown that if Xj is of the form shown in (3.1) then Xj−1 will be of the same
form. Furthermore, if {zj, z

∗
j } 6= ∅, then {zj−1, z

∗
j−1} = ∅ (i.e. Xj−1 = X∗

j−1) can only
occur if c(j) = 0, see cases 2a, 3a, and 4a. We have also seen that as j decreases: 1) the
parameter c(j) never gets larger, and 2) the parameter b(j) decreases by 1 if pj−1 ∈ Bj

the electronic journal of combinatorics 16 (2009), #R10 8

and otherwise can only decrease if pj−1 ∈ {zj, z
∗
j }. We end our analysis of the decoding

algorithm with one last observation, which is that ∆j = −1 for at most one value of j,
which is clear from an examination of cases 2a, 3a, and 4a, since only in these cases can
∆j = −1, and in every case ∆i = 0 for all i < j.

In light of the knowledge that ∆j = −1 at most once, and of (3.3), we now see that
(on Ec) if there are `+2 indices j1, . . . j`+2 ≤ µ such that ∆i = 1 (for all i ∈ {j1, . . . j`+2}),
then ∆ > `. Thus in order to show that ∆(T, T ∗) > ` it suffices to show that there are
` + 2 such indices. So we have reduced the ‘global’ problem of bounding (from below)
∆ = ∆0 + · · ·+ ∆n−2 to the ‘local’ problem of showing that it is likely (on E c) that for at
least ` + 2 indices i ≤ µ we have ∆i = 1. We will begin this process in the next section.

4 The upper bound

4.1 Dividing the set E c

We now begin the process of showing that for any positive integer `,

P ({∆ = `} ∩ E c |µ) = O
(

n−1/3 ln2 n
)

. (4.1)

The event E is the event that pµ, p∗µ ∈ Vµ+1 ∪{max Xµ+1}, which means that {zµ, z∗µ} = ∅
(equivalently Xµ = Xµ). So on E c we have |{zµ, z∗µ}| = 2, and E c is the union of the
following events:

1. E1 := {b(µ) < δn} ∩ {|{zµ, z
∗
µ}| = 2}, δn := n1/3,

2. E2 := {b(µ) ≥ δn}.

This means that

P ({∆ = `} ∩ E c |µ) ≤ P (E1 |µ) + P ({∆ = `} ∩ E2 |µ) .

Let us show now that
P (E1 |µ) = O(δn/n). (4.2)

Proof. From the definitions of X ,V, b(j), see (3.1), it is clear that on E1 either:

1. max{pµ, p∗µ} ∈ Vµ+1 and min{pµ, p∗µ} is one of the dδne largest elements of Xµ+1, or

2. pµ ∈ Xµ+1 and p∗µ is separated from pµ by at most dδne elements of Xµ+1.

So E1 is contained in the union of the two events U1,U2 defined as follows:

U1 := {at least one of pµ, p∗µ is one of the dδne largest elements of Xµ+1}

U2 :=
{

pµ = xj ∈ Xµ+1 ; p∗µ ∈ Y(xj)
}

,

Y(xj) = Y(pµ, . . . , pn−2) :=
{

xmin{1,j−dδne}, . . . , xmax{µ+1,j+dδne}

}

\ {xj} ⊆ X∗
µ+1

the electronic journal of combinatorics 16 (2009), #R10 9

(note that |Y(xj)| ≤ 2dδne). Because pµ is chosen uniformly at random from [n] and p∗
µ

is chosen uniformly at random from [n] \ {pµ}, a union bound gives us

P (U1 |µ) ≤
dδne

n
+

dδne

n − 1
= O(δn/n).

As for U2, we have

P (U2 |µ) =

µ+1
∑

j=1

P
(

p∗µ ∈ Y(xj) | pµ = xj ; µ
)

P (pµ = xj ∈ Xµ+1 |µ)

≤

µ+1
∑

j=1

2dδne

n − 1

1

n
= O(δn/n).

Thus
P (E1 |µ) ≤ P (U1 |µ) + P (U2 |µ) = O(δn/n).

So we have proved (4.2), and from now on, we may assume that b(µ) = |Bµ| is at least
dδne. Further, Bµ ⊆ Xj \ {zj}, and |Xµ| = µ, so we must have µ ≥ dδne + 1 on the event
E2. So from here on, we will also be restricting our attention to µ ≥ dδne+ 1. We will end
this section with an overview of how we plan to deal with the event E2.

In order to show that E2 is negligible, we will start at step µ− 1, with p∗
µ, pµ, . . . , pn−2

already chosen (so that (P, P ∗) ∈ E2), and we will begin choosing values for a number of
positions pj = p∗j (j < µ) of our P -strings. We must eventually reach a step τ = τ(P, P ∗)
at which c(τ) = 0, and we will find that at this step it is unlikely that b(τ) << δn. Then
with b(τ) (on the order of δn) values of pj (j < µ) left to choose, it is unlikely that fewer
than ` + 1 of those choices we will have pj ∈ Vj+1. From case 2b of section 3, we know
that each time pj ∈ Vj+1 there are three possibilities:

1. the event Hj := {p∗j+1 = hP (zj+1)} occurs,

2. the event H∗
j := {pj+1 = hP ∗(z∗j+1)} occurs, or

3. ∆j = 1

(recall that hP (z) = y means that y was the neighbor of z when z was added to the tree
T corresponding to P). So conditioning on the event that ∆j = 1 for ` + 1 values of j,
we will prove that the event Hj ∪ H∗

j is unlikely to occur, which makes it likely that we
have ∆j = 1 for ` + 1 values of j < µ. This in turn implies ∆ > `. Thus we show that E2

is the union of several unlikely events, and an event on which the conditional probability
that ∆ > ` is high.

In the next section, after introducing some definitions and explaining some technical
details, we will elaborate on the plan outlined above. We will end this section by observing
that the problem we are trying to solve is conceptually similar to a Pólya urn model with

the electronic journal of combinatorics 16 (2009), #R10 10

four colors A, B, C,V (the balls are the vertices in each set) in which the drawing of any
ball results in the removal of that ball and its replacement by a ball of color V (see [3]).
The added difficulty we face is that the sizes of our sets change radically if we choose
either of two distinguished balls zj, z

∗
j (which may happen with positive probability for µ

of order n).

4.2 Definitions and details

We will begin with some definitions we require to carry out the steps outlined at the end
of the previous section. Let us start by defining the random variable

τ(z) = τ(z)(P, P ∗) := max
j≤µ

{j : c(j) ≤ z} (µ ≥ dδne + 1),

and the events

S := {b(τ(0)) ≥ δn/5} , δ = δn := n1/3, (4.3)

T := {τ(δ) − τ(0) ≤ 2βn}, βn := n2/3 ln2 n.

We observe that for u ≤ v we have τ(u) ≤ τ(v) because c(j) is a non-decreasing
function of j (j ≤ µ). Further, we note that if τ(z) < µ, then |Cτ(z)+1| ≥ bzc + 1, and
because Cj ⊆ Xj \ {zj}, we have |Xτ(z)+1| ≥ bzc + 2. Since |Xj| = j, it must be true that
τ(z) ≥ bzc + 1, and in particular we have τ(δ) ≥ bδc + 1, τ(0) ≥ 1. These bounds also
hold if τ(δ), τ(0) = µ, because we are considering only µ ≥ dδe+1. By a similar argument
we can see that if b(τ(0)) ≥ δ/5 (as on the event S) then we must have τ(0) ≥ bδ/5c+ 1.

Next we note that the following set containment holds for any sets S, T :

{∆ = `} ∩ E2 ⊆ T c ∪ (Sc ∩ T ∩ E2) ∪ ({∆ = `} ∩ S) . (4.4)

This containment, along with a union bound, means that

P ({∆ = `} ∩ E2 |µ) ≤ P (T c |µ) + P (Sc ∩ T ∩ E2 |µ) + P ({∆ = `} ∩ S |µ) , (4.5)

and in the next two sections we will bound each of the terms on the right side of the
previous line.

Our discussion at the end of the last section explains our interest in the event {∆ =
`} ∩ S, which depends on τ(0). But why must we concern ourselves with τ(δ) and T ?
The reason is the complications caused by the possibility of choosing pj ∈ {zj+1, z

∗
j+1}.

To explain fully, we must introduce the events

Zi := {pj /∈ {zj+1, z
∗
j+1} for i ≤ j < µ}, (1 ≤ i < µ), (4.6)

Zδ := {pj /∈ {zj+1, z
∗
j+1} for τ(δ) ≤ j < µ}, Z0 := {pj /∈ {zj+1, z

∗
j+1} for τ(0) ≤ j < µ}.

For a fixed integer i ≥ 1, we know if the event Zi occurred after examining pi, . . . , pn−2, p
∗
µ,

while the events Zδ, Z0 require knowledge of all p1, . . . , pn−2, p
∗
µ. Of course if we condition

on τ(0) or τ(δ) then these last two events require knowledge of only pτ , . . . , pn−2, p
∗
µ, for

the electronic journal of combinatorics 16 (2009), #R10 11

τ = τ(0), τ(δ). Also, if τ(δ) = µ (respectively if τ(0) = µ) then the event Zδ (respectively
Z0) trivially occurred.

To conclude our remarks on the events Zδ, Z0, we note that an examination of their
definitions shows that on Zδ (respectively on Z0) we cannot have chosen pj ∈ {zj+1, z

∗
j+1}

for τ(δ) < j < µ (resp. for τ(0) < j < µ), which in turn implies that the parameter
c(j) ≥ c(j + 1) − 1 and b(j) ≥ b(j + 1) − 1 for j > τ(δ) (resp. τ(0)). On the other hand,
on the set Zc

δ we have τ(δ) = τ(0).

To see why we must consider τ(δ), note that on the event

{pj = min{zj+1, z
∗
j+1} for τ(0) < j < τ(δ)} ⊆ Zc

0,

we could have

c(j + 1) << δn =⇒ b(j) = c(j + 1) − 1 << δn, c(j) = 0,

see case 4b of section 3. This is a problem because we want b(τ(0)) to be at least on the
order of δn. But if the event Zc

δ occurs, then for some j ≥ τ(δ) either:
pj = min{zj+1, z

∗
j+1} and

c(j + 1) ≥ δn =⇒ b(j) = c(j + 1) − 1 ≥ δn − 1, c(j) = 0,

(see case 4b), or pj = max{zj+1, z
∗
j+1} and

c(j + 1) ≥ δn =⇒ b(j) = b(j + 1) + c(j + 1) − 1 ≥ δn − 1, c(j) = 0,

(see case 3c).
Thus (for n large enough that δn − 1 ≥ δn/5) we have

Zc
δ ⊆ S =⇒ Sc ∩ T ∩ E2 ⊆ (Sc ∩ Z0 ∩ E2) ∪ (Zc

0 ∩ Zδ ∩ T)

(the set containment in the previous line is true for any sets S, T , E2,Z0,Zδ). This means
that

P (Sc ∩ T ∩ E2 |µ) ≤ P (Sc ∩ Z0 ∩ E2 |µ) + P (Zc
0 ∩ Zδ ∩ T |µ) . (4.7)

In the next section, we start by showing that

P (T c |µ) + P (Zc
0 ∩ Zδ ∩ T |µ) = O(βn/n), (4.8)

and then we will prove that

P (Sc ∩ Z0 ∩ E2 |µ) = O(βn/n). (4.9)

Finally, in section 4.4 we will prove that

P ({∆ = `} ∩ S |µ) = O(δn/n). (4.10)

the electronic journal of combinatorics 16 (2009), #R10 12

The combination of (4.7)-(4.10), along with (4.5), implies

P ({∆ = `} ∩ E2 |µ) = O(βn/n) = O
(

n−1/3 ln2 n
)

.

We end this section with one final detail: we comment on a method of proof we will
use in the next two sections. We will occasionally show (for some events A,B that depend
on n) that P (B |µ) → 0 by first showing that for some event A we have P (Ac |µ) → 0,
and then showing that

P (B |A ; µ) :=
P (B ∩ A |µ)

P (A |µ)
→ 0, n → ∞.

Obviously the combination of these results proves that P (B |µ) → 0 as n → ∞. A
conditional probability like the one above is only defined as long as P (A |µ) > 0, but of
course if P (A |µ) = 0 then because B ⊂ A ∩ Ac we must have P (B |µ) → 0 anyway.
Thus whenever we discuss conditional probabilities we will assume (and not prove) that
the event we condition on has positive probability.

4.3 Bounding some unlikely events

Let us begin by proving the result (4.8).

Lemma 4.1 Let T = {τ(δ) − τ(0) ≤ 2βn}, and let Z0,Zδ be defined as in (4.6). Then

P (T c |µ) = O
(

n−1
)

, P (Zc
0 ∩ Zδ ∩ T |µ) = O(βn/n).

Proof. We will start with the second of the results above. We will condition on the
value of τ(δ), and introduce notation for events conditioned on that value:

P (W | τ ; µ) := P (W |τ = τ(δ) ; µ) .

With Zi defined as in (4.6), we observe that Zi ⊆ Zi+1. If the set{zi+1, z
∗
i+1} is empty,

then the (conditional) probability that pi ∈ {zi+1, z
∗
i+1} is 0, and if the set {zi+1, z

∗
i+1} is

non-empty, then the (conditional) probability that pi ∈ {zi+1, z
∗
i+1} is 2/n. Thus we have

P (Zc
i ∩ Zi+1| τ ; µ) ≤ 2/n, (1 ≤ i < µ − 1). (4.11)

To avoid having to condition also on the value of τ(0), we introduce Zφ, where φ =
max{τ(δ) − 2bβnc, 1}. On T , the event Zφ implies the event Z0, so Zφ ∩ T ⊆ Z0 ∩ T .
Also, consideration of the definitions of Zi and T shows that Zc

φ ∩ Zδ ⊆ T .
From law of total probability we have

P
(

Zc
φ ∩ Zδ |µ

)

=

µ
∑

τ=bδc+1

P
(

Zc
φ ∩ Zδ | τ ; µ

)

P (τ = τ(δ) |µ) (4.12)

the electronic journal of combinatorics 16 (2009), #R10 13

(the discussion after (4.3) explains why τ ≥ bδc + 1). Since τ − φ ≤ 2βn, we obtain from
(4.11) the bound

P
(

Zc
φ ∩ Zδ | τ ; µ

)

=
τ−1
∑

i=φ

P (Zc
i ∩ Zi+1 | τ ; µ)

≤ 2βn(2/n) = 4βn/n. (4.13)

This bound is independent of τ, so (4.13), combined with (4.12) shows that

P
(

Zc
φ ∩ Zδ |µ

)

= O(βn/n). (4.14)

We noted (above (4.12)) that Zφ ∩ T ⊆ Z0 ∩ T . For any sets Z0,Zφ,Zδ, T , we have

Zφ ∩ T ⊆ Z0 ∩ T =⇒ Zc
0 ∩ T ⊆ Zc

φ ∩ T ,

with the right-most set containment implying that

Zc
0 ∩ Zδ ∩ T ⊆ Zc

φ ∩ Zδ ∩ T = Zδ ∩ Zc
φ

(the last equality follows from the observation that Zδ ∩ Zc
φ ⊆ T , as was noted above

(4.12)). The discussion above, combined with (4.14) shows that

P (Zc
0 ∩ Zδ ∩ T |µ) = O(βn/n).

Further, on the event Zc
δ we have τ(0) = τ(δ) (see the second paragraph after (4.6)), so

Zc
δ ⊆ T and

Zc
δ ⊆ T , Zδ ∩ Zc

φ ⊆ T =⇒ T c = T c ∩ Zφ,

(the implication above is true for any sets Zδ,Zφ, T). Thus we conclude that

P (T c |µ) = P (T c ∩ Zφ |µ) ,

and we will proceed to bound the probability above. Now {τ(δ) ≤ 2bβnc} ⊆ T , so we
may restrict our attention to τ(δ) > 2bβnc. Hence

P (T c ∩ Zφ |µ) =

µ
∑

τ=2bβnc+1

P (T c ∩ Zφ | τ ; µ) P (τ(δ) = τ |µ) .

To complete the proof of this lemma it is sufficient to show that

P (T c ∩ Zφ | τ ; µ) = O
(

n−1
)

.

Toward this end, we define

εn :=
1

ln n
, ν = νn := bεnβn/δnc, k = kn := bδn/εnc,

the electronic journal of combinatorics 16 (2009), #R10 14

observing that
kν ≤ bβnc, k >> δn, kν2 >> n ln n.

Then we consider the sub-string (pτ−2νk, . . . , pτ−1), which can be divided into 2k seg-
ments of length ν, leading us to introduce the notation

P (i) := (pm(i), . . . , pm(i−1)−1), m(i) := τ − iν, (1 ≤ i ≤ 2k),

and
Di := {pj ∈ Vj+1 for at least one pj ∈ P (i)}.

At step τ(δ), we have c(τ(δ)) ≤ δn. Each choice of pj ∈ Vj+1 forces us to add an element
of Cτ(δ) as a vertex of the pair of trees we are constructing (see section 3 case 2c). If we
choose pj ∈ Vj+1 at least δn times in steps τ − 1 through τ − 2νk, then τ(0) ≥ τ − 2νk
(which means T occurred). Consequently, the event T c ∩ Zφ is the event that in steps
τ − 1 through τ − 2νk we add fewer than δn elements of Cτ(δ) as vertices of the pair of
trees we are building. Because k >> δn, this means

T c ∩ Zφ ⊆
2k
⋃

i=k+1

Dc
i . (4.15)

This will prove useful, because we can easily bound P (Dc
i | Zφ ; τ ; µ) (and we will now

do so).
On the event Zφ, we have |Vj+1| = n − (j + 1) − 1 for τ − 2kν ≤ j ≤ τ − 1, see (3.2).

Thus

P (pj /∈ Vj+1 | Zφ ; τ ; µ) = 1 −
n − j − 2

n − 2
,

and the events pj /∈ Vj+1 are conditionally independent for τ − 2kν ≤ j ≤ τ − 1. Also for
m(i) ≤ j ≤ m(i − 1) − 1 we have

|Vj+1| = n − j − 2 ≥ n −
(

τ − (i − 1)ν − 1
)

− 2

≥ n −
(

n − 2 − (i − 1)ν − 1
)

− 2

≥ (i − 1)ν.

Using this bound, along with the inequality 1 − x ≤ e−x, we find that

P (Dc
i | Zφ ; τ ; µ) =

m(i−1)−1
∏

j=m(i)

P (pj /∈ Vj+1 | Zφ ; τ ; µ)

=

m(i−1)−1
∏

j=m(i)

(

1 −
n − j − 2

n − 2

)

≤

(

1 −
(i − 1)ν

n − 2

)ν

≤ e−(i−1)ν2/(n−2). (4.16)

the electronic journal of combinatorics 16 (2009), #R10 15

Hence, combining (4.16)-(4.15), we have

P (T c | Zφ ; τ ; µ) ≤
2k

∑

i=k+1

P (Dc
i | Zφ ; τ ; µ)

≤ ke−kν2/(n−2) = O
(

n−1
)

,

and we find that

P (T c ∩ Zφ | τ ; µ) ≤ P (T c | Zφ ; τ ; µ) = O
(

n−1
)

.

Next we prove (4.9).

Lemma 4.2 Let S = {b(τ(0)) ≥ δn/5}, and let Z0 be defined as in (4.6). Then

P (Sc ∩ Z0 ∩ E2 |µ) = O (1/bδnc) = O (βn/n) .

Proof. We will condition of the composition of the set Bµ, (b(µ) ≥ dδne) and prove that

P (Sc ∩ Z0 ∩ E2 |Bµ ; µ) = O (1/bδnc) .

With the law of total probability, this is enough to prove the lemma.
Given a fixed set Bµ, we enumerate its lowest d := bδnc elements from least to greatest

as S = {q1, . . . , qd}. Denoting by Q the event that more than 4/5 of these qi are chosen
as values for pj (for j < µ), we have (conditioned on Bµ) Sc ∩ Z0 ∩ E2 ⊆ Q. Thus it is
enough to show that the conditional probability of Q occurring is on the order of 1/d. To
do so, we will treat µ − 1 > n/5 and µ − 1 ≤ n/5 as separate cases. Let us begin with
the first of these cases.

We denote by Q(i) the event that element qi is chosen as some pj for j < µ. Then we
count the number of times this happens with the random variable

Qn =
d

∑

i=1

IQ(i)

where IA is the indicator of the event A. We note that on Q we must have Qn ≥ 4d/5.
So our goal is to show that

P (Qn ≥ 4d/5 |Bµ ; µ) = O(1/d). (4.17)

Observing that

P (Q(i) |Bµ ; µ) = 1 −

(

1 −
1

n

)µ−1

≥ 1 − e−1/5 ≥ 1/10, (4.18)

P (Q(i) ∩ Q(j) |Bµ ; µ) = 1 − 2

(

1 −
1

n

)µ−1

+

(

1 −
2

n

)µ−1

(for i 6= j),

the electronic journal of combinatorics 16 (2009), #R10 16

(so for fixed µ, n, the random variable Qn is a sum of Bernoulli random variables) we
expect that we can use Chebyshev’s inequality to bound the probability that Qn deviates
from its expectation by more than a fraction of that expectation. The first and second
(conditional) factorial moments of Qn are easy to find, because

E1,n := E [Qn |Bµ ; µ] = dP (Q(i) |Bµ ; µ) ≥ d/10, (4.19)

E2,n := E [Qn(Qn − 1) |Bµ ; µ] = d(d − 1)P (Q(i) ∩Q(j) |Bµ ; µ) .

Now for large enough n,

E1,n ≤ d
(

1 − e−1(1 + o(1))
)

< 7d/10.

Consequently, we obtain

P (Qn ≥ 4d/5 |Bµ ; µ) ≤ P (Qn − E1,n > E1,n/7 |Bµ ; µ) . (4.20)

Using (4.18)-(4.19), we can bound the variance of Qn,

VAR [Qn |Bµ ; µ] = E2,n + E1,n − E2
1,n

= d2

((

1 −
2

n

)µ

−

(

1 −
1

n

)2µ)

+ d

((

1 −
1

n

)µ

−

(

1 −
2

n

)µ)

= d2

(

1 −
2

n

)µ (

1 −

(

1 −
1

n(n − 2)

)µ)

+ O(d)

= O

(

d2µ

n2

)

+ O(d) = O(d). (4.21)

Combining (4.19) and (4.21), and using Chebyshev’s inequality, we find that

P (|Qn − E1,n| > E1,n/7 |Bµ ; µ) ≤
49VAR[Qn |Bµ ; µ]

E2
1,n

= O(1/d). (4.22)

This proves (4.20) and thus (4.17), completing the case of µ − 1 > n/5.
In order to bound the probability of Q when µ − 1 ≤ n/5, we will count the number

strings of length µ−1 which use at least 4/5 of the elements of S, and denote this number
by N(S). Then we will divide N(S) by the total number of strings of length µ − 1. So
the probability of event Q (conditioned on µ and the composition of Bµ, with b(µ) ≥ δn)
is N(S)/nµ−1. Before we begin counting, let us also introduce the notation

(z)j := z(z − 1) · · · (z − j + 1), k := d4d/5e.

To calculate (and then bound) N(S), we

1. choose k out of µ − 1 positions,

2. choose k distinct elements of S for those positions, and

3. then we choose any value of pj for the remaining µ − 1 − k positions.

the electronic journal of combinatorics 16 (2009), #R10 17

Thus we have

N(S)

nk
≤

(

µ − 1

k

)

(d)k nµ−1−k

nµ−1
.

Using the bounds
kk

ek
≤ k! (d)k ≤ dk ,

we obtain
(

µ − 1

k

)

(d)k nµ−1−k

nµ−1
= O

(

µkdkek

kknk

)

= O
(

5−k(5/4)kek
)

= O
(

n−1
)

.

In this section we have shown that

P ({∆ = `} ∩ E2 |µ) = P ({∆ = `} ∩ S |µ) + O(βn/n).

In the next section we will consider the event {∆ = `} ∩ S.

4.4 The event {∆ = `} ∩ S

At the end of section 4.1 we outlined our plan for showing that it is unlikely that ∆ ≤ `
on E2. We have now reached the point of having proved it unlikely that b(τ(0)) < bδn/5c,
and it remains for us to show that:

1. it is unlikely (on S) that ∆j = 1 fewer than ` + 2 times,

2. for ` + 2 values of j such that ∆j = 1, it is unlikely that Hj ∪H∗
j occurs.

In this fashion we will show that

P ({∆ = `} ∩ S |µ) = O (δn/n) . (4.23)

We will begin by conditioning on the value of τ(0) (τ(0) = τ ≥ bδn/5c), and let

ν = νn := bτ/kc, k := ` + 3.

We will then divide the substring (pτ−kν , . . . , pτ−1), into k segments of length ν. The event
Hj ∪H∗

j depends on the value of pj+1. Thus to preserve the (conditional) independence of
the segments, we need to leave the right-most element of each segment as a buffer between
adjacent sub-segments. This leads us to introduce the notation

P−(i) := (pm(i), . . . , pm(i−1)−2), m(i) := τ − iν, (1 ≤ i ≤ k),

to denote the last ν − 1 elements of the i th segment.

the electronic journal of combinatorics 16 (2009), #R10 18

Let us now introduce a familiar event:

Z∗ := {pj /∈ {zj+1, z
∗
j+1} for τ − kν ≤ j < τ}.

The event Z∗
c is unlikely to occur (conditioned on S); in fact

P (Z∗
c | S ; τ ; µ) = O(δn/n). (4.24)

The proof is similar to the proof of (4.14) in lemma 4.1, so we omit it.
We will show that conditioned on S ∩ Z∗, it is likely that the event

C := {we choose at least one pj ∈ Vj+1 in each segment P−(i) for 2 ≤ i ≤ k}

occurs. Then, conditioned on C ∩ S ∩ Z∗, we will show that it is unlikely that ∆ ≤
`. Notice that in the definition of C, we are ignoring the rightmost segment P−(0) :=
(pτ−ν , . . . , pτ−2). The reason is that we want to make sure that the set Vj+1 is large
enough that we can find a good lower bound for P (pj ∈ Vj+1 | Z∗ ∩ S ; τ ; µ) , which we
will now proceed to do.

Lemma 4.3 For j ≤ τ − ν,

P (pj ∈ Vj+1 | Z∗ ∩ S ; τ ; µ) ≥
1

k
+ O

(

n−1
)

Proof. Because |Vj+1| = n − j − 2 (1 ≤ j ≤ τ − 1), we can obtain the bound

P (pj ∈ Vj+1 | Z∗ ∩ S ; τ ; µ) =
n − j − 2

n − 2
, (4.25)

and that the events pj ∈ Vj+1 are conditionally independent for τ − kν ≤ j < τ. Now, if
n/2 ≤ τ ≤ n, then ν ≥ τ/k − 1, so

n − j − 2

n − 2
≥

n − (τ − ν) − 2

n − 2
≥

n/k − 3

n − 2
≥

1

k
+ O

(

n−1
)

.

Meanwhile, if τ ≤ n/2, then

n − j − 2

n − 2
≥

n − τ − 2

n − 2
≥

n/2 − 2

n − 2
≥

1

2
+ O

(

n−1
)

.

Thus we obtain

P (pj ∈ Vj+1 | Z∗ ∩ S ; τ ; µ) ≥
1

k
+ O

(

n−1
)

.

In order to proceed further, we must define

Ci = {pj ∈ Vj+1 for at least one pj ∈ P (i)−}, C = ∩k
i=2Ci.

the electronic journal of combinatorics 16 (2009), #R10 19

Lemma 4.4 Let C and Ci be defined as above. Then

P (Cc | Z∗ ∩ S ; τ ; µ) = O
(

n−1
)

.

Proof. First, we denote ρ(i) := m(i − 1) − 2. Then, repeating the arguments of (4.16)
(and using lemma 4.3), we have

P (Cc
i | Z∗ ∩ S ; τ ; µ) =

ρ(i)
∏

j=m(i)

P (pj /∈ Vj+1 | Z∗ ∩ S ; τ ; µ)

≤

(

1 −
1

k
+ O

(

n−1
)

)ν−1

= O
(

n−1
)

,

where the last bound follows from the fact that ν is of order n1/3. Since Cc = ∪k
i=2C

c
i , we

use a union bound to obtain

P(Cc | Z∗ ∩ S ; τ ; µ) ≤
k

∑

i=2

P (Cc
i | Z∗ ∩ S ; τ ; µ) = O

(

n−1
)

.

In order to complete our proof of (4.23), we introduce the notation

G = C ∩ Z∗ ∩ S, (4.26)

and note that (4.24) and lemma 4.4 imply that

P ({∆ = `} ∩ S |µ) ≤ P ({∆ = `} ∩ G |µ) + P (Cc ∩ S |µ) + P (Z∗
c ∩ S |µ)

≤ P ({∆ = `} | G ; µ) + O(δn/n).

On the event G, we will choose at least one pj ∈ Vj+1 from each segment P−(i) for the
` + 2 segments 2 ≤ i ≤ k. Thus we can consider the (random) subset of indices

Γ = {γ(k) < · · · < γ(2)}, (4.27)

where γ(i) is the largest element of {m(i), . . . , ρ(i)} such that pγ(i) ∈ Vγ(i)+1. This makes
pγ(i) the right-most element of the segment such that pj ∈ Vj+1. Now, unless the event
Hγ(i) ∪H∗

γ(i) occurs, we will have ∆γ(i) = 1. Determining whether this event occurs should

require conditioning on the set Γ, but we will be able to avoid this by proving that (on
G) the event γ(i) < ρ(i) implies that Hγ(i) ∪H∗

γ(i) did not occur.

Lemma 4.5 Let ρ(i) := m(i−1)−2, and let γ(i) be defined as above. Then for 2 ≤ i ≤ k,

{γ(i) < ρ(i)} ∩ G ⊆ G ∩
(

Hγ(i) ∪H∗
γ(i)

)c
.

the electronic journal of combinatorics 16 (2009), #R10 20

Proof. We begin by noting that on Z∗,

pj ∈ Vc
j+1 = Aj+1 ∪ Bj+1 ∪ {zj+1, z

∗
j+1} =⇒ pj ∈ Aj+1 ∪ Bj+1,

for τ − kν ≤ j < τ . Thus if γ(i) = j < ρ(i), then

pj+1 ∈ Aj+2 ∪ Bj+2.

Now, recall that the elements of Aj+2 ∪ Bj+2 have not appeared as any entry pi or p∗i
(i ≥ j + 2), but both hP (z∗j+1), hP ∗(zj+1) have appeared as some pi or p∗i (i ≥ j + 2)
because hP (x) is defined as the neighbor of x when x was added to the tree corresponding
to P . Thus

hP (z∗j+1), hP ∗(zj+1) /∈ Aj+2 ∪ Bj+2 =⇒ pj+1 6= hP (z∗j+1), hP ∗(zj+1).

But this means that (on G) the event γ(i) < ρ(i) implies that Hγ(i) ∪H∗
γ(i) did not occur.

In order to use the lemma we have just proved, let us define

H = H(P, P ∗) :=
k

∑

i=2

IG∩(Hρ(i)∪H
∗

ρ(i)
).

So (on the event G), the random variable H counts the number of i for which Hρ(i) ∪H∗
ρ(i)

occurs. Lemma 4.5 implies that Hγ(i)∪H∗
γ(i) can only occur if both: 1) γ(i) = ρ(i), and 2)

Hρ(i)∪H∗
ρ(i) occur. In terms of indicator variables, this means that for every i (2 ≤ i ≤ k),

IG∩(Hγ(i)∪H
∗

γ(i)
) ≤ IG∩(Hρ(i)∪H

∗

ρ(i)
).

Thus H is an upper bound for the number of times that Hγ(i)∪H
∗
γ(i) occurred (conditioned

on the event G). In light of our discussions at the beginning of this section and at the end
of section 4.1, this means that

P ({∆ = `} | G ; µ) ≤ P ({H > 0} | G ; µ) .

Thus it remains to prove the following lemma.

Lemma 4.6

P ({H > 0} | G ; µ) = O
(

n−1
)

.

Proof. Appealing to the law of total probability, we will show that

P ({H > 0} | τ ; G ; µ) = O
(

n−1
)

.

Conditioned on the event G = C ∩Z∗ ∩S, we have |{zj+1, z
∗
j+1}| = 2 (for τ −kν ≤ j < τ),

so

P
(

Hρ(i) | G ; τ ; µ
)

=

{

1/(n − 2), hP (zρ(i)+1) /∈ {zρ(i)+2, z
∗
ρ(i)+2},

0, otherwise.

the electronic journal of combinatorics 16 (2009), #R10 21

This means that

P
(

Hρ(i) | G ; τ ; µ
)

= P
(

H∗
ρ(i) | G ; τ ; µ

)

≤
1

n − 2
,

and a union bound gives us

P
(

Hρ(i) ∪H∗
ρ(i) | G ; τ ; µ

)

≤
2

n − 2
.

Hence

P ({H > 0} | G ; τ ; µ) ≤ E [H | G ; τ ; µ]

=
k

∑

i=2

P
(

Hρ(i) ∪H∗
ρ(i) | G ; τ ; µ

)

≤
2k − 2

n − 2
= O

(

n−1
)

.

5 Conclusion

In [6], Paulden and Smith conjectured that P (∆ = ` |µ) was on the order of n−1 for ` > 1
(conjecture 3 on page 16). We agree with this conjecture, even though we have only
proved that this probability is on the order of n−1/3+o(1). But even our bound implies that

lim
n→∞

P
(

∆(n) ≥ n1/3−o(1)
∣

∣

∣
µ
)

=
2

3
,

which means that the Prüfer code does have low locality.
Acknowledgements: I would like to thank Boris Pittel for suggesting this problem

to me, and David Smith for sending me a copy of Thompson’s dissertation.

References

[1] M. Cho, Kim, S. Seo, and H Shin, “Colored Prüfer codes for k-edge colored trees,”
The Electronic Journal of Combinatorics, vol. 10, 2004.

[2] J. Gottlieb, B. Julstrom, G. Raidl, F. Rothlauf. “Prüfer numbers and genetic algo-
rithms: A lesson how the low locality of an encoding can harm the performance of
GAs.” Lecture Notes in Computer Science vol. 1917, Proc. PPSN VI Paris, France,
pp. 395-404, September 2000.

[3] H. Mahmoud, Pólya Urn Models , New York, New York: CRC Press, 2008.

the electronic journal of combinatorics 16 (2009), #R10 22

[4] T. Paulden and D. K. Smith, “From the Dandelion Code to the Rainbow Code: A
class of bijective spanning tree representations with linear complexity and bounded
locality,” IEEE Transactions on Evolutionary Computation, vol. 10, no. 2, pp. 108-122,
April 2006.

[5] T. Paulden and D. K. Smith, “Some Novel Locality Results for the Blob Code Span-
ning Tree Representation,” Genetic and Evolutionary Computation Conference: Pro-

ceedings of the 9th annual conference on genetic and evolutionary computation, pp.
1320-1327, 2007.

[6] T. Paulden and D. K. Smith, “Developing new locality results for the Prüfer Code
using a remarkable linear-time decoding algorithm,” The Electronic Journal of Com-

binatorics, vol. 14, August 2007.

[7] F. Rothlauf, Representations for Genetic and Evolutionary Algorithms, Second edi-
tion. Heidelberg, Germany: Physica-Verlag, 2006.

[8] E. B. Thompson, “The application of evolutionary algorithms to spanning tree prob-
lems,” Ph.D. dissertation, University of Exeter, U.K., 2003.

[9] E. Thompson, T. Paulden, and D. K. Smith, “The Dandelion Code: A new coding of
spanning trees for genetic algorithms,” IEEE Transactions on Evolutionary Comput-

ing, vol. 1,no. 1, 1 pp. 91-100, February 2007.

the electronic journal of combinatorics 16 (2009), #R10 23

