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Abstract
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theory and of Turnbull’s Capelli-type identities for symmetric and antisymmetric
matrices.
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1 Introduction

Let R be a commutative ring, and let A = (aij)
n
i,j=1 be an n× n matrix with elements

in R. Define as usual the determinant

det A :=
∑

σ∈Sn

sgn(σ)

n∏

i=1

aiσ(i) . (1.1)

One of the first things one learns about the determinant is the multiplicative property :

det(AB) = (det A)(det B) . (1.2)

More generally, if A and B are m × n matrices, and I and J are subsets of [n] :=
{1, 2, . . . , n} of cardinality |I| = |J | = r, then one has the Cauchy–Binet formula:

det (ATB)IJ =
∑

L ⊆ [m]

|L| = r

(det (AT)IL)(det BLJ) (1.3a)

=
∑

L ⊆ [m]

|L| = r

(det ALI)(det BLJ) (1.3b)

where MIJ denotes the submatrix of M with rows I and columns J (kept in their original
order).

If one wants to generalize these formulae to matrices with elements in a noncommu-
tative ring R, the first problem one encounters is that the definition (1.1) is ambiguous
without an ordering prescription for the product. Rather, one can define numerous alter-
native “determinants”: for instance, the column-determinant

col-det A :=
∑

σ∈Sn

sgn(σ) aσ(1)1 aσ(2)2 · · · aσ(n)n (1.4)

and the row-determinant

row-det A :=
∑

σ∈Sn

sgn(σ) a1σ(1) a2σ(2) · · · anσ(n) . (1.5)

(Note that col-det A = row-det AT.) Of course, in the absence of commutativity these
“determinants” need not have all the usual properties of the determinant.

Our goal here is to prove the analogues of (1.2)/(1.3) for a fairly simple noncom-
mutative case: namely, that in which the elements of A are in a suitable sense “almost
commutative” among themselves (see below) and/or the same for B, while the commu-
tators [x, y] := xy − yx of elements of A with those of B have the simple structure
[aij , bkl] = −δikhjl.

1 More precisely, we shall need the following type of commutativity
among the elements of A and/or B:

1The minus sign is inserted for future convenience. We remark that this formula makes sense even if
the ring R lacks an identity element, as δikhjl is simply a shorthand for hjl if i = k and 0 otherwise.
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Definition 1.1 Let M = (Mij) be a (not-necessarily-square) matrix with elements in a
(not-necessarily-commutative) ring R. Then we say that M is column-pseudo-commutative
in case

[Mij , Mkl] = [Mil, Mkj] for all i, j, k, l (1.6)

and
[Mij , Mil] = 0 for all i, j, l . (1.7)

We say that M is row-pseudo-commutative in case MT is column-pseudo-commutative.

In Sections 2 and 3 we will explain the motivation for this strange definition, and show
that it really is the natural type of commutativity for formulae of Cauchy–Binet type.2

Suffice it to observe now that column-pseudo-commutativity is a fairly weak condition:
for instance, it is weaker than assuming that [Mij , Mkl] = 0 whenever j 6= l. In many
applications (though not all, see Example 3.6 below) we will actually have [aij , akl] =
[bij , bkl] = 0 for all i, j, k, l. Note also that (1.6) implies (1.7) if the ring R has the
property that 2x = 0 implies x = 0.

The main result of this paper is the following:

Proposition 1.2 (noncommutative Cauchy–Binet) Let R be a (not-necessarily-
commutative) ring, and let A and B be m× n matrices with elements in R. Suppose that

[aij , bkl] = −δikhjl (1.8)

where (hjl)
n
j,l=1 are elements of R. Then, for any I, J ⊆ [n] of cardinality |I| = |J | = r:

(a) If A is column-pseudo-commutative, then
∑

L ⊆ [m]

|L| = r

(col-det (AT)IL)(col-det BLJ) = col-det[(ATB)IJ + Qcol] (1.9)

where
(Qcol)αβ = (r − β) hiαjβ

(1.10)

for 1 6 α, β 6 r.

(b) If B is column-pseudo-commutative, then
∑

L ⊆ [m]

|L| = r

(row-det (AT)IL)(row-det BLJ) = row-det[(ATB)IJ + Qrow] (1.11)

where
(Qrow)αβ = (α − 1) hiαjβ

(1.12)

for 1 6 α, β 6 r.

2Similar notions arose already two decades ago in Manin’s work on quantum groups [38–40]. For this
reason, some authors [15] call a row-pseudo-commutative matrix a Manin matrix ; others [30–32] call it a
right-quantum matrix . See the historical remarks at the end of Section 2.
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In particular,

(c) If [aij , akl] = 0 and [bij , bkl] = 0 whenever j 6= l, then

∑

L ⊆ [m]

|L| = r

(det (AT)IL)(det BLJ) = col-det[(ATB)IJ + Qcol] (1.13a)

= row-det[(ATB)IJ + Qrow] (1.13b)

These identities can be viewed as a kind of “quantum analogue” of (1.3), with the matrices
Qcol and Qrow supplying the “quantum correction”. It is for this reason that we have
chosen the letter h to designate the matrix arising in the commutator.

Please note that the hypotheses of Proposition 1.2 presuppose that 1 6 r 6 n (oth-
erwise I and J would be nonexistent or empty). But r > m is explicitly allowed: in
this case the left-hand side of (1.9)/(1.11)/(1.13) is manifestly zero (since the sum over L
is empty), but Proposition 1.2 makes the nontrivial statement that the noncommutative
determinant on the right-hand side is also zero.

Note also that the hypothesis in part (c) — what we shall call column-commutativity ,
see Section 2 — is sufficient to make the determinants of A and B well-defined without
any ordering prescription. We have therefore written det (rather than col-det or row-det)
for these determinants.

Replacing A and B by their transposes and interchanging m with n in Proposition 1.2,
we get the following “dual” version in which the commutator −δikhjl is replaced by −hikδjl:

Proposition 1.2 ′ Let R be a (not-necessarily-commutative) ring, and let A and B be
m × n matrices with elements in R. Suppose that

[aij , bkl] = −hikδjl (1.14)

where (hik)
m
i,k=1 are elements of R. Then, for any I, J ⊆ [m] of cardinality |I| = |J | = r:

(a) If A is row-pseudo-commutative, then

∑

L ⊆ [n]

|L| = r

(col-det AIL)(col-det (BT)LJ) = col-det[(ABT)IJ + Qcol] (1.15)

where Qcol is defined in (1.10).

(b) If B is row-pseudo-commutative, then

∑

L ⊆ [n]

|L| = r

(row-det AIL)(row-det (BT)LJ) = row-det[(ABT)IJ + Qrow] (1.16)

where Qrow is defined in (1.12).

In particular,
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(c) If [aij , akl] = 0 and [bij , bkl] = 0 whenever i 6= k, then

∑

L ⊆ [n]

|L| = r

(det AIL)(det (BT)LJ) = col-det[(ABT)IJ + Qcol] (1.17a)

= row-det[(ABT)IJ + Qrow] (1.17b)

When the commutator has the special form [aij , bkl] = −hδikδjl, then both Proposi-
tions 1.2 and 1.2′ apply, and by summing (1.13)/(1.17) over I = J of cardinality r, we
obtain:

Corollary 1.3 Let R be a (not-necessarily-commutative) ring, and let A and B be m×n
matrices with elements in R. Suppose that

[aij , akl] = 0 (1.18a)

[bij , bkl] = 0 (1.18b)

[aij, bkl] = −hδikδjl (1.18c)

where h ∈ R. Then, for any positive integer r, we have

∑

I ⊆ [m]

|I| = r

∑

L ⊆ [n]

|L| = r

(det AIL)(det BIL) =
∑

I ⊆ [n]

|I| = r

col-det[(ATB)II + Qcol]

(1.19a)

=
∑

I ⊆ [n]

|I| = r

row-det[(ATB)II + Qrow]

(1.19b)

=
∑

I ⊆ [m]

|I| = r

col-det[(ABT)II + Qcol]

(1.19c)

=
∑

I ⊆ [m]

|I| = r

row-det[(ABT)II + Qrow]
(1.19d)

where

Qcol = h diag(r − 1, r − 2, . . . , 0) (1.20a)

Qrow = h diag(0, 1, . . . , r − 1) (1.20b)

The cognoscenti will of course recognize Corollary 1.3 as (an abstract version of)
the Capelli identity [6–8] of classical invariant theory. In Capelli’s identity, the ring R
is the Weyl algebra Am×n(K) over some field K of characteristic 0 (e.g. Q, R or C)
generated by an m × n collection X = (xij) of commuting indeterminates (“positions”)
and the corresponding collection ∂ = (∂/∂xij) of differential operators (proportional to
“momenta”); we then take A = X and B = ∂, so that (1.18) holds with h = 1.
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The Capelli identity has a beautiful interpretation in the theory of group representa-
tions [23]: Let K = R or C, and consider the space Km×n of m×n matrices with elements
in K, parametrized by coordinates X = (xij). The group GL(m) ×GL(n) acts on Km×n

by
(M, N)X = MTXN (1.21)

where M ∈ GL(m), N ∈ GL(n) and X ∈ Km×n. Then the infinitesimal action associated
to (1.21) gives a faithful representation of the Lie algebra gl(m) ⊕ gl(n) by vector fields
on Km×n with linear coefficients:

gl(m) : Lij :=

n∑

l=1

xil

∂

∂xjl

= (X∂T)ij for 1 6 i, j 6 m (1.22a)

gl(n) : Rij :=

m∑

l=1

xli

∂

∂xlj

= (XT∂)ij for 1 6 i, j 6 n (1.22b)

These vector fields have the commutation relations

[Lij , Lkl] = δjkLil − δilLkj (1.23a)

[Rij , Rkl] = δjkRil − δilRkj (1.23b)

[Lij , Rkl] = 0 (1.23c)

characteristic of gl(m) ⊕ gl(n). Furthermore, the action (L, R) extends uniquely to a
homomorphism from the universal enveloping algebra U(gl(m) ⊕ gl(n)) into the Weyl
algebra Am×n(K) [which is isomorphic to the algebra PD(Km×n) of polynomial-coefficient
differential operators on Km×n]. As explained in [23, secs. 1 and 11.1], it can be shown
abstractly that any element of the Weyl algebra that commutes with both L and R must
be the image via L of some element of the center of U(gl(m)), and also the image via
R of some element of the center of U(gl(n)). The Capelli identity (1.19) with A = X
and B = ∂ gives an explicit formula for the generators Γr [1 6 r 6 min(m, n)] of this
subalgebra, from which it is manifest from (1.19a or b) that Γr belongs to the image under
R of U(gl(n)) and commutes with the image under L of U(gl(m)), and from (1.19c or d)
the reverse fact. See [21–23,25,35,54,55,58] for further discussion of the role of the Capelli
identity in classical invariant theory and representation theory, as well as for proofs of the
identity.

Let us remark that Proposition 1.2′ also contains Itoh’s [25] Capelli-type identity for
the generators of the left action of o(m) on m × n matrices (see Example 3.6 below).

Let us also mention one important (and well-known) application of the Capelli identity:
namely, it provides a simple proof of the “Cayley” identity3 for n × n matrices,

det(∂) (det X)s = s(s + 1) · · · (s + n − 1) (detX)s−1 . (1.24)

3The identity (1.24) is conventionally attributed to Arthur Cayley (1821–1895); the generalization to
arbitrary minors [see (A.17) below] is sometimes attributed to Alfredo Capelli (1855–1910). The trouble
is, neither of these formulae occurs anywhere — as far as we can tell — in the Collected Papers of
Cayley [14]. Nor are we able to find these formulae in any of the relevant works of Capelli [5–9]. The
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To derive (1.24), one simply applies both sides of the Capelli identity (1.19) to (det X)s:
the “polarization operators” Lij = (X∂T)ij and Rij = (XT∂)ij act in a very simple way on
det X, thereby allowing col-det(X∂T +Qcol) (detX)s and col-det(XT∂ +Qcol) (detX)s to
be computed easily; they both yield det X times the right-hand side of (1.24).4 In fact, by
a similar method we can use Proposition 1.2 to prove a generalized “Cayley” identity that
lives in the Weyl algebra (rather than just the polynomial algebra) and from which the
standard “Cayley” identity can be derived as an immediate corollary: see Proposition A.1
and Corollaries A.3 and A.4 in the Appendix. See also [11] for alternate combinatorial
proofs of a variety of Cayley-type identities.

Since the Capelli identity is widely viewed as “mysterious” [2, p. 324] but also as a
“powerful formal instrument” [58, p. 39] and a “relatively deep formal result” [52, p. 40],
it is of interest to provide simpler proofs. Moreover, since the statement (1.19)/(1.20)
of the Capelli identity is purely algebraic/combinatorial, it is of interest to give a purely
algebraic/combinatorial proof, independent of the apparatus of representation theory.
Such a combinatorial proof was given a decade ago by Foata and Zeilberger [20] for the
case m = n = r, but their argument was unfortunately somewhat intricate, based on the
construction of a sign-reversing involution. The principal goal of the present paper is to
provide an extremely short and elementary algebraic proof of Proposition 1.2 and hence
of the Capelli identity, based on simple manipulation of commutators. We give this proof
in Section 3.

In 1948 Turnbull [53] proved a Capelli-type identity for symmetric matrices (see also
[57]), and Foata and Zeilberger [20] gave a combinatorial proof of this identity as well.
Once again we prove a generalization:

Proposition 1.4 (noncommutative Cauchy–Binet, symmetric version) Let R be
a (not-necessarily-commutative) ring, and let A and B be n × n matrices with elements
in R. Suppose that

[aij, bkl] = −h (δikδjl + δilδjk) (1.25)

where h is an element of R.

(a) Suppose that A is column-pseudo-commutative and symmetric; and if n = 2, suppose
further that either

(i) the ring R has the property that 2x = 0 implies x = 0, or

(ii) [a12, h] = 0.

operator Ω = det(∂) was indeed introduced by Cayley on the second page of his famous 1846 paper on
invariants [13]; it became known as Cayley’s Ω-process and went on to play an important role in classical
invariant theory (see e.g. [18, 21, 35, 47, 51, 58]). But we strongly doubt that Cayley ever knew (1.24).
See [1, 11] for further historical discussion.

4See e.g. [54, p. 53] or [23, pp. 569–570] for derivations of this type.
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Then, for any I, J ⊆ [n] of cardinality |I| = |J | = r, we have

∑

L ⊆ [n]

|L| = r

(col-det ALI)(col-det BLJ) = col-det[(ATB)IJ + Qcol] (1.26a)

= col-det[(AB)IJ + Qcol] (1.26b)

where
(Qcol)αβ = (r − β) hδiαjβ

(1.27)

for 1 6 α, β 6 r.

(b) Suppose that B is column-pseudo-commutative and symmetric; and if n = 2, suppose
further that either

(i) the ring R has the property that 2x = 0 implies x = 0, or

(ii) [b12, h] = 0.

Then, for any I, J ⊆ [n] of cardinality |I| = |J | = r, we have

∑

L ⊆ [n]

|L| = r

(row-det ALI)(row-det BLJ) = row-det[(ATB)IJ + Qrow] (1.28)

where
(Qrow)αβ = (α − 1) hδiαjβ

(1.29)

for 1 6 α, β 6 r.

Turnbull [53] and Foata–Zeilberger [20] proved their identity for a specific choice of
matrices A = Xsym and B = ∂sym in a Weyl algebra, but it is easy to see that their
proof depends only on the commutation properties and symmetry properties of A and
B. Proposition 1.4 therefore generalizes their work in three principal ways: they consider
only the case r = n, while we prove a general identity of Cauchy–Binet type5; they
assume that both A and B are symmetric, while we show that it suffices for one of the
two to be symmetric; and they assume that both [aij, akl] = 0 and [bij , bkl] = 0, while
we show that only one of these plays any role and that it moreover can be weakened to
column-pseudo-commutativity.6 We prove Proposition 1.4 in Section 4.7

5See also Howe and Umeda [23, sec. 11.2] for a formula valid for general r, but involving a sum over
minors analogous to (1.19).

6This last weakening is, however, much less substantial than it might appear at first glance, because
a matrix M that is column-pseudo-commutative and symmetric necessarily satisfies 2[Mij, Mkl] = 0 for
all i, j, k, l (see Lemma 2.5 for the easy proof). In particular, in a ring R in which 2x = 0 implies x = 0,
column-pseudo-commutativity plus symmetry implies full commutativity.

7In the first preprint version of this paper we mistakenly failed to include the extra hypotheses (i) or
(ii) in Proposition 1.4 when n = 2. For further discussion, see Section 4 and in particular Example 4.2.

the electronic journal of combinatorics 16 (2009), #R103 8



Finally, Howe and Umeda [23, eq. (11.3.20)] and Kostant and Sahi [33] independently
discovered and proved a Capelli-type identity for antisymmetric matrices.8 Unfortunately,
Foata and Zeilberger [20] were unable to find a combinatorial proof of the Howe–Umeda–
Kostant–Sahi identity; and we too have been (thus far) unsuccessful. We shall discuss
this identity further in Section 5.

Both Turnbull [53] and Foata–Zeilberger [20] also considered a different (and admit-
tedly less interesting) antisymmetric analogue of the Capelli identity, which involves a
generalization of the permanent of a matrix A,

perA :=
∑

σ∈Sn

n∏

i=1

aiσ(i) , (1.30)

to matrices with elements in a noncommutative ring R. Since the definition (1.30) is
ambiguous without an ordering prescription for the product, we consider the column-
permanent

col-perA :=
∑

σ∈Sn

aσ(1)1 aσ(2)2 · · · aσ(n)n (1.31)

and the row-permanent

row-per A :=
∑

σ∈Sn

a1σ(1) a2σ(2) · · · anσ(n) . (1.32)

(Note that col-per A = row-perAT.) We then prove the following slight generalization of
Turnbull’s formula:

Proposition 1.5 (Turnbull’s antisymmetric analogue) Let R be a (not-necessarily-
commutative) ring, and let A and B be n × n matrices with elements in R. Suppose that

[aij , bkl] = −h (δikδjl − δilδjk) (1.33)

where h is an element of R. Then, for any I, J ⊆ [n] of cardinality |I| = |J | = r:

(a) If A is antisymmetric off-diagonal (i.e., aij = −aji for i 6= j) and [aij , h] = 0 for all
i, j, we have

∑

σ∈Sr

∑

l1,...,lr∈[n]

al1iσ(1)
· · ·alriσ(r)

bl1j1 · · · blrjr
=

= col-per[(ATB)IJ − Qcol] (1.34a)

= (−1)r col-per[(AB)IJ + Qcol] (1.34b)

where
(Qcol)αβ = (r − β) hδiαjβ

(1.35)

for 1 6 α, β 6 r.

8See also [29] for related work.
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(b) If B is antisymmetric off-diagonal (i.e., bij = −bji for i 6= j) and [bij , h] = 0 for all
i, j, we have

∑

σ∈Sr

∑

l1,...,lr∈[n]

al1iσ(1)
· · ·alriσ(r)

bl1j1 · · · blrjr
= row-per[(ATB)IJ − Qrow] (1.36)

where
(Qrow)αβ = (α − 1) hδiαjβ

(1.37)

for 1 6 α, β 6 r.

Note that no requirements are imposed on the [a, a] and [b, b] commutators (but see the
Remark at the end of Section 4).

Let us remark that if [aij , bkl] = 0, then the left-hand side of (1.34)/(1.36) is simply

∑

σ∈Sr

∑

l1,...,lr∈[n]

al1iσ(1)
· · ·alriσ(r)

bl1j1 · · · blrjr
= per(ATB)IJ , (1.38)

so that Proposition 1.5 becomes the trivial statement per(ATB)IJ = per(ATB)IJ . So
Turnbull’s identity does not reduce in the commutative case to a formula of Cauchy–Binet
type — indeed, no such formula exists for permanents9 — which is why it is considerably
less interesting than the formulae of Cauchy–Binet–Capelli type for determinants.

Turnbull [53] and Foata–Zeilberger [20] proved their identity for a specific choice of
matrices A = Xantisym and B = ∂antisym in a Weyl algebra, but their proof again depends
only on the commutation properties and symmetry properties of A and B. Proposition 1.5
therefore generalizes their work in four principal ways: they consider only the case r =
n, while we prove a general identity for minors; they assume that both A and B are
antisymmetric, while we show that it suffices for one of the two to be antisymmetric
plus an arbitrary diagonal matrix ; and they assume that [aij , akl] = 0 and [bij , bkl] = 0,
while we show that these commutators play no role. We warn the reader that Foata–
Zeilberger’s [20] statement of this theorem contains a typographical error, inserting a
factor sgn(σ) that ought to be absent (and hence inadvertently converting col-per to
col-det).10 We prove Proposition 1.5 in Section 4.11

Finally, let us briefly mention some other generalizations of the Capelli identity that
have appeared in the literature. One class of generalizations [41,45,46,48] gives formulae
for further elements in the (center of the) universal enveloping algebra U(gl(n)), such
as the so-called quantum immanants. Another class of generalizations extends these

9But see the Note Added at the end of this introduction.

10Also, their verbal description of the other side of the identity — “the matrix product XTP that
appears on the right side of tur′ is taken with the assumption that the xi,j and pi,j commute” — is
ambiguous, but we interpret it as meaning that all the factors xi,j should be moved to the left, as is done
on the left-hand side of (1.34)/(1.36).

11In the first preprint version of this paper we mistakenly failed to include the hypotheses that [aij , h] =
0 or [bij , h] = 0. See the Remark at the end of Section 4.
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formulae to Lie algebras other than gl(n) [23–28, 33, 34, 41, 42, 56]. Finally, a third class
of generalizations finds analogous formulae in more general structures such as quantum
groups [49,50] and Lie superalgebras [44]. Our approach is rather more elementary than all
of these works: we ignore the representation-theory context and simply treat the Capelli
identity as a noncommutative generalization of the Cauchy–Binet formula. A different
generalization along vaguely similar lines can be found in [43].

The plan of this paper is as follows: In Section 2 we make some preliminary comments
about the properties of column- and row-determinants. In Section 3 we prove Proposi-
tions 1.2 and 1.2′ and Corollary 1.3. We also prove a variant of Proposition 1.2 in which
the hypothesis on the commutators [aij , akl] is weakened, at the price of a slightly weaker
conclusion (see Proposition 3.8). In Section 4 we prove Propositions 1.4 and 1.5. Finally,
in Section 5 we discuss whether these results are susceptible of further generalization. In
the Appendix we prove a generalization of the “Cayley” identity (1.24).

In a companion paper [10] we shall extend these identities to the (considerably more
difficult) case in which [aij , bkl] = −gikhjl for general matrices (gik) and (hjl), whose
elements do not necessarily commute.

Note added. Subsequent to the posting of the present paper in preprint form, Chervov,
Falqui and Rubtsov [16] posted an extremely interesting survey of the algebraic properties
of row-pseudo-commutative matrices (which they call “Manin matrices”) when the ring R
is an associative algebra over a field of characteristic 6= 2. In particular, Section 6 of [16]
contains an interesting generalization of the results of the present paper.12 To state this
generalization, note first that the hypotheses of our Proposition 1.2(a) are

(i) A is column-pseudo-commutative, and

(ii) [aij , bkl] = −δikhjl .

Left-multiplying (ii) by akm and summing over k, we obtain

(ii′)
∑
k

akm [aij, bkl] + aimhjl = 0 ;

moreover, the converse is true if A is invertible. Furthermore, (i) and (ii) imply

(iii) [aij , hls] = [ail, hjs]

as shown in Lemma 3.4 below. Then, Chervov et al. [16, Theorem 6] observed in essence
(translated back to our own language) that our proof of Proposition 1.2(a) used only (i),
(ii′) and (iii), and morover that (ii′) can be weakened to13

12Chervov et al. [16] also reformulated the hypotheses and proofs by using Grassmann variables (=
exterior algebra) along the lines of [25, 28]. This renders the proofs slightly more compact, and some
readers may find that it renders the proofs more transparent as well (this is largely a question of taste).
But we do think that the hypotheses of the theorems are best stated without reference to Grassmann
variables.

13Here we have made the translations from their notation to ours (M → AT, Y → B, Q → H)
and written their hypotheses without reference to Grassmann variables. Their Conditions 1 and 2 then
correspond to (ii′′) and (iii), respectively.
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(ii′′)
∑
k

akm [aij, bkl] + aimhjl = [j ↔ m]

— that is, we need not demand the vanishing of the left-hand side of (ii′), but merely of its
antisymmetric part under j ↔ m, provided that we also assume (iii). Their Theorem 6
also has the merit of including as a special case not only Proposition 1.2(a) but also
Proposition 1.4.

Chervov et al. [16, Section 6.5] also provide an interesting rejoinder to our assertion
above that no formula of Cauchy–Binet type exists for permanents. They show that if one
defines a modified permanent for submatrices involving possibly repeated indices, which
includes a factor 1/ν! for each index that is repeated ν times, then one obtains a formula
of Cauchy–Binet type in which the intermediate sum is over r-tuples of not necessarily
distinct indices l1 6 l2 6 . . . 6 lr. Moreover, this formula of Cauchy–Binet type extends
to a Capelli-type formula involving a “quantum correction” [16, Theorems 11–13]. In our
opinion this is a very interesting observation, which goes a long way to restore the analogy
between determinants and permanents (and which in their formalism reflects the analogy
between Grassmann algebra and the algebra of polynomials).

2 Properties of column- and row-determinants

In this section we shall make some preliminary observations about the properties of
column- and row-determinants, stressing the following question: Which commutation
properties among the elements of the matrix imply which of the standard properties of
the determinant? Readers who are impatient to get to the proof of our main results can
skim this section lightly. We also call the reader’s attention to the historical remarks
appended at the end of this section, concerning the commutation hypotheses on matrix
elements that have been employed for theorems in noncommutative linear algebra.

Let us begin by recalling two elementary facts that we shall use repeatedly in the
proofs throughout this paper:

Lemma 2.1 (Translation Lemma) Let A be an abelian group, and let f : Sn → A.
Then, for any τ ∈ Sn, we have

∑

σ∈Sn

sgn(σ) f(σ) = sgn(τ)
∑

σ∈Sn

sgn(σ) f(σ ◦ τ) . (2.1)

Proof. Just note that both sides equal
∑

σ∈Sn

sgn(σ ◦ τ) f(σ ◦ τ). 2

Lemma 2.2 (Involution Lemma) Let A be an abelian group, and let f : Sn → A.
Suppose that there exists a pair of distinct elements i, j ∈ [n] such that

f(σ) = f(σ ◦ (ij)) (2.2)
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for all σ ∈ Sn [where (ij) denotes the transposition interchanging i with j]. Then

∑

σ∈Sn

sgn(σ) f(σ) = 0 . (2.3)

Proof. We have

∑

σ∈Sn

sgn(σ) f(σ) =
∑

σ : σ(i)<σ(j)

sgn(σ) f(σ) +
∑

σ : σ(i)>σ(j)

sgn(σ) f(σ) (2.4a)

=
∑

σ : σ(i)<σ(j)

sgn(σ) f(σ) −
∑

σ′ : σ′(i)<σ′(j)

sgn(σ′) f(σ′ ◦ (ij)) (2.4b)

= 0 , (2.4c)

where in the second line we made the change of variables σ′ = σ ◦ (ij) and used sgn(σ′) =
− sgn(σ) [or equivalently used the Translation Lemma]. 2

With these trivial preliminaries in hand, let us consider noncommutative determinants.
Let M = (Mij) be a matrix (not necessarily square) with entries in a ring R. Let us call
M

• commutative if [Mij , Mkl] = 0 for all i, j, k, l;

• row-commutative if [Mij , Mkl] = 0 whenever i 6= k [i.e., all pairs of elements not in
the same row commute];

• column-commutative if [Mij , Mkl] = 0 whenever j 6= l [i.e., all pairs of elements not
in the same column commute];

• weakly commutative if [Mij , Mkl] = 0 whenever i 6= k and j 6= l [i.e., all pairs of
elements not in the same row or column commute].

Clearly, if M has one of these properties, then so do all its submatrices MIJ . Also, M is
commutative if and only if it is both row- and column-commutative.

Weak commutativity is a sufficient condition for the determinant to be defined unam-
biguously without any ordering prescription, since all the matrix elements in the product
(1.1) differ in both indices. Furthermore, weak commutativity is sufficient for single de-
terminants to have most of their basic properties:

Lemma 2.3 For weakly commutative square matrices:

(a) The determinant is antisymmetric under permutation of rows or columns.

(b) The determinant of a matrix with two equal rows or columns is zero.

(c) The determinant of a matrix equals the determinant of its transpose.
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The easy proof, which uses the Translation and Involution Lemmas, is left to the reader
(it is identical to the usual proof in the commutative case). We simply remark that if the
ring R has the property that 2x = 0 implies x = 0, then antisymmetry under permutation
of rows (or columns) implies the vanishing with equal rows (or columns). But if the ring
has elements x 6= 0 satisfying 2x = 0 (for instance, if R = Zn for n even), then a slightly
more careful argument, using the Involution Lemma, is needed to establish the vanishing
with equal rows (or columns).

The situation changes, however, when we try to prove a formula for the determinant
of a product of two matrices, or more generally a formula of Cauchy–Binet type. We
are then inevitably led to consider products of matrix elements in which some of the
indices may be repeated — but only in one of the two positions. It therefore turns out
(see Proposition 3.1 below) that we need something like row - or column-commutativity;
indeed, the result can be false without it (see Example 3.2).

Some analogues of Lemma 2.3(a,b) can nevertheless be obtained for the column- and
row-determinants under hypotheses weaker than weak commutativity. For brevity let us
restrict attention to column-determinants; the corresponding results for row-determinants
can be obtained by exchanging everywhere “row” with “column”.

If M = (Mij)
n
i,j=1 is an n × n matrix and τ ∈ Sn is a permutation, let us define the

matrices obtained from M by permutation of rows or columns:

(τM)ij := Mτ(i) j (2.5a)

(M τ )ij := Mi τ(j) (2.5b)

We then have the following trivial result:

Lemma 2.4 For arbitrary square matrices:

(a) The column-determinant is antisymmetric under permutation of rows:

col-det τM = sgn(τ) col-det M (2.6)

for any permutation τ .

(b) The column-determinant of a matrix with two equal rows is zero.

Indeed, statements (a) and (b) follow immediately from the Translation Lemma and the
Involution Lemma, respectively.

On the other hand, the column-determinant is not in general antisymmetric under per-
mutation of columns , nor is the column-determinant of a matrix with two equal columns
necessarily zero. [For instance, in the Weyl algebra in one variable over a field of char-

acteristic 6= 2, we have col-det

(
d d
x x

)
= dx − xd = 1, which is neither equal to −1 nor

to 0.] It is therefore natural to seek sufficient conditions for these two properties to hold.
We now proceed to give a condition, weaker than weak commutativity, that entails the
first property and almost entails the second property.
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Let us begin by observing that µijkl := [Mij , Mkl] is manifestly antisymmetric under
the simultaneous interchange i ↔ k, j ↔ l. So symmetry under one of these interchanges
is equivalent to antisymmetry under the other. Let us therefore say that a matrix M has

• row-symmetric (and column-antisymmetric) commutators if [Mij , Mkl] = [Mkj , Mil]
for all i, j, k, l;

• column-symmetric (and row-antisymmetric) commutators if [Mij , Mkl] = [Mil, Mkj]
for all i, j, k, l.

Let us further introduce the same types of weakening that we did for commutativity,
saying that a matrix M has

• weakly row-symmetric (and column-antisymmetric) commutators if [Mij , Mkl] =
[Mkj, Mil] whenever i 6= k and j 6= l;

• weakly column-symmetric (and row-antisymmetric) commutators if [Mij , Mkl] =
[Mil, Mkj] whenever i 6= k and j 6= l.

(Note that row-symmetry is trivial when i = k, and column-symmetry is trivial when
j = l.) Obviously, each of these properties is inherited by all the submatrices MIJ of
M . Also, each of these properties is manifestly weaker than the corresponding type of
commutativity.

The following fact is sometimes useful:

Lemma 2.5 Suppose that the square matrix M has either row-symmetric or column-
symmetric commutators and is either symmetric or antisymmetric. Then 2[Mij, Mkl] = 0
for all i, j, k, l. In particular, if the ring R has the property that 2x = 0 implies x = 0,
then M is commutative.

Proof. Suppose that M has row-symmetric commutators (the column-symmetric case
is analogous) and that MT = ±M . Then [Mij , Mkl] = [Mkj , Mil] = [Mjk, Mli] =
[Mlk, Mji] = [Mkl, Mij ], where the first and third equalities use the row-symmetric com-
mutators, and the second and fourth equalities use symmetry or antisymmetry. 2

Returning to the properties of column-determinants, we have:

Lemma 2.6 If the square matrix M has weakly row-symmetric commutators:

(a) The column-determinant is antisymmetric under permutation of columns, i.e.

col-det M τ = sgn(τ) col-det M (2.7)

for any permutation τ .
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(b) If M has two equal columns, then 2 col-detM = 0. (In particular, if R is a ring in
which 2x = 0 implies x = 0, then col-detM = 0.)

(c) If M has two equal columns and the elements in those columns commute among
themselves, then col-detM = 0.

Proof. (a) It suffices to prove the claim when τ is the transposition exchanging i with
i + 1 (for arbitrary i). We have

col-det M =
∑

σ∈Sn

sgn(σ) Mσ(1),1 · · · Mσ(i),i Mσ(i+1),i+1 · · · Mσ(n),n (2.8a)

= −
∑

σ∈Sn

sgn(σ) Mσ(1),1 · · · Mσ(i+1),i Mσ(i),i+1 · · · Mσ(n),n (2.8b)

where the last equality uses the change of variables σ′ = σ ◦ (i, i + 1) and the fact that
sgn(σ′) = − sgn(σ). Similarly,

col-detM τ =
∑

σ∈Sn

sgn(σ) Mσ(1),1 · · · Mσ(i),i+1 Mσ(i+1),i · · · Mσ(n),n (2.9a)

= −
∑

σ∈Sn

sgn(σ) Mσ(1),1 · · · Mσ(i+1),i+1 Mσ(i),i · · · Mσ(n),n . (2.9b)

It follows from (2.8a) and (2.9b) that

col-det M + col-det M τ =
∑

σ∈Sn

sgn(σ) Mσ(1),1 · · · [Mσ(i),i, Mσ(i+1),i+1] · · · Mσ(n),n .

(2.10)

Under the hypothesis that M has weakly row-symmetric commutators [which applies here
since i 6= i + 1 and σ(i) 6= σ(i + 1)], the summand [excluding sgn(σ)] is invariant under
σ 7→ σ ◦ (i, i + 1), so the Involution Lemma implies that the sum is zero.

(b) is an immediate consequence of (a).
(c) Using (a), we may assume without loss of generality that the two equal columns

are adjacent (say, in positions 1 and 2). Then, in

col-detM =
∑

σ∈Sn

sgn(σ) Mσ(1)1 Mσ(2)2 · · · Mσ(n)n , (2.11)

we have by hypothesis Mi1 = Mi2 and

Mσ(1)1 Mσ(2)1 = Mσ(2)1 Mσ(1)1 , (2.12)

so that the summand in (2.11) [excluding sgn(σ)] is invariant under σ 7→ σ ◦ (12); the
Involution Lemma then implies that the sum is zero. 2

The embarrassing factor of 2 in Lemma 2.6(b) is not simply an artifact of the proof;
it is a fact of life when the ring R has elements x 6= 0 satisfying 2x = 0:
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Example 2.7 Let R be the ring of 2× 2 matrices with elements in the field GF (2), and

let α and β be any two noncommuting elements of R [for instance, α =

(
1 0
0 0

)
and

β =

(
0 1
1 0

)
]. Then the matrix M =

(
α α
β β

)
has both row-symmetric and column-

symmetric commutators (and hence also row-antisymmetric and column-antisymmetric
commutators! — note that symmetry is equivalent to antisymmetry in a ring of charac-
teristic 2). But col-detM = αβ − βα 6= 0. 2

In Proposition 3.8 below, we shall prove a variant of Proposition 1.2 that requires
the matrix AT only to have row-symmetric commutators, but at the price of multiplying
everything by this embarrassing factor of 2.

If we want to avoid this factor of 2 by invoking Lemma 2.6(c), then (as will be seen
in Section 3) we shall need to impose a condition that is intermediate between row-
commutativity and row-symmetry: namely, we say (as in Definition 1.1) that M is

• row-pseudo-commutative if [Mij , Mkl] = [Mkj , Mil] for all i, j, k, l and [Mij , Mkj] = 0
for all i, j, k;

• column-pseudo-commutative if [Mij , Mkl] = [Mil, Mjk] for all i, j, k, l and [Mij , Mil] =
0 for all i, j, l.

(Of course, the [M, M ] = [M, M ] condition need be imposed only when i 6= k and
j 6= l, since in all other cases it is either trivial or else a consequence of the [M, M ] = 0
condition.) We thus have M row-commutative =⇒ M row-pseudo-commutative =⇒ M
has row-symmetric commutators; furthermore, the converse to the second implication
holds whenever R is a ring in which 2x = 0 implies x = 0. Row-pseudo-commutativity
thus turns out to be exactly the strengthening of row-symmetry that we need in order to
apply Lemma 2.6(c) and thus avoid the factor of 2 in Proposition 3.8, i.e. to prove the
full Proposition 1.2.

The following intrinsic characterizations of row-pseudo-commutativity and row-sym-
metry are perhaps of some interest14:

Proposition 2.8 Let M = (Mij) be an m × n matrix with entries in a (not-necessarily-
commutative) ring R.

(a) Let x1, . . . , xn be commuting indeterminates, and define for 1 6 i 6 m the ele-

ments x̃i =
n∑

j=1

Mijxj in the polynomial ring R[x1, . . . , xn]. Then the matrix M

14Proposition 2.8 is almost identical to a result of Chervov and Falqui [15, Proposition 1], from whom
we got the idea; but since they work in an associative algebra over a field of characteristic 6= 2, they
don’t need to distinguish between row-pseudo-commutativity and row-symmetry. They attribute this
result to Manin [38, top p. 199] [39, 40], but we are unable to find it there (or perhaps we have simply
failed to understand what we have read). However, a result of similar flavor can be found in [38, p. 193,
Proposition] [39, pp. 7–8, Theorem 4], and it is probably this to which the authors are referring.

the electronic journal of combinatorics 16 (2009), #R103 17



is row-pseudo-commutative if and only if the elements x̃1, . . . , x̃m commute among
themselves.

(b) Let η1, . . . , ηm be Grassmann indeterminates (i.e. η2
i = 0 and ηiηj = −ηjηi), and de-

fine for 1 6 j 6 n the elements η̃j =
m∑

i=1

ηiMij in the Grassmann ring R[η1, . . . , ηm]Gr.

Then:

(i) The matrix M has row-symmetric commutators if and only if the elements
η̃1, . . . , η̃n anticommute among themselves (i.e. η̃iη̃j = −η̃j η̃i).

(ii) The matrix M is row-pseudo-commutative if and only if the elements η̃1, . . . , η̃n

satisfy all the Grassmann relations η̃iη̃j = −η̃j η̃i and η̃2
i = 0.

Proof. (a) We have

[x̃i, x̃k] =

[
∑

j

Mijxj ,
∑

l

Mklxl

]
=

∑

j,l

[Mij , Mkl] xjxl . (2.13)

For j 6= l, the two terms in xjxl = xlxj cancel if and only if [Mij , Mkl] = −[Mil, Mkj]; and
the latter equals [Mkj , Mil]. For j = l, there is only one term, and it vanishes if and only
if [Mij , Mkj ] = 0.

(b) We have

η̃j η̃l + η̃lη̃j =
∑

i,k

(ηiMijηkMkl + ηkMklηiMij) =
∑

i,k

ηiηk [Mij , Mkl] (2.14)

since ηkηi = −ηiηk. For i 6= k, the two terms in ηiηk = −ηkηi cancel if and only if
[Mij , Mkl] = [Mkj, Mil]. (Note that there is no term with i = k, so no further condition is
imposed on the commutators [M, M ].) On the other hand,

η̃2
j =

∑

i,k

ηiMijηkMkj =
∑

i<k

ηiηk [Mij , Mkj] , (2.15)

which vanishes if and only if [Mij , Mkj] = 0 for all i, k. 2

Some historical remarks. 1. Row-commutativity has arisen in some previous work
on noncommutative linear algebra, beginning with the work of Cartier and Foata on
noncommutative extensions of the MacMahon master theorem [12, Théorème 5.1]. For
this reason, many authors [15, 30–32] call a row-commutative matrix a Cartier–Foata
matrix . See e.g. [12, 19, 30, 32, 37] for theorems of noncommutative linear algebra for
row-commutative matrices; and see also [32, secs. 5 and 7] for some beautiful q- and
q-generalizations.
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2. Row-pseudo-commutativity has also arisen previously, beginning (indirectly) with
Manin’s early work on quantum groups [38–40]. Thus, some authors [15] call a row-
pseudo-commutative matrix a Manin matrix ; others [30–32] call it a right-quantum ma-
trix . Results of noncommutative linear algebra for row-pseudo-commutative matrices
include Cramer’s rule for the inverse matrix [15, 31, 39] and the Jacobi identity for co-
factors [31], the formula for the determinant of block matrices [15], Sylvester’s determi-
nantal identity [30], the Cauchy–Binet formula (Section 3 below), the Cayley–Hamilton
theorem [15], the Newton identities between trMk and coefficients of det(tI + M) [15],
and the MacMahon master theorem [31, 32]; see also [32, secs. 6 and 8] [30, 31] for some
beautiful q- and q-generalizations. See in particular [32, Lemma 12.2] for Lemma 2.6
specialized to row-pseudo-commutative matrices.

The aforementioned results suggest that row-pseudo-commutativity is the natural hy-
pothesis for (most? all?) theorems of noncommutative linear algebra involving the column-
determinant. Some of these results were derived earlier and/or have simpler proofs under
the stronger hypothesis of row-commutativity.

We thank Luigi Cantini for drawing our attention to the paper [15], from which we
traced the other works cited here.

3. Subsequent to the posting of the present paper in preprint form, Chervov, Falqui
and Rubtsov [16] posted an extremely interesting survey of the algebraic properties of
row-pseudo-commutative matrices (which they call “Manin matrices”) when the ring R is
an associative algebra over a field of characteristic 6= 2. This survey discusses the results
cited in #2 above, plus many more; in particular, Section 6 of [16] contains an interesting
generalization of the results of the present paper on Cauchy–Binet formulae and Capelli-
type identities. These authors state explicitly that “the main aim of [their] paper is to
argue the following claim: linear algebra statements hold true for Manin matrices in a
form identical to the commutative case” [16, first sentence of Section 1.1].

4. The reader may well wonder (as one referee of the present paper did): Since the
literature already contains two competing terminologies for the class of matrices in ques-
tion (“Manin” and “right-quantum”), why muddy the waters by proposing yet another
terminology (“row-pseudo-commutative”) that is by no means guaranteed to catch on?
We would reply by stating our belief that a “good” terminology ought to respect the
symmetry A 7→ AT; or in other words, rows and columns ought to be treated on the same
footing, with neither one privileged over the other. (For the same reason, we endeavor
to treat the row-determinant and the column-determinant on an equal basis.) We do not
claim that our terminology is ideal — perhaps someone will find one that is more concise
and easier to remember — but we do think that this symmetry property is important.

3 Proof of the ordinary Capelli-type identities

In this section we shall prove Proposition 1.2; then Proposition 1.2′ and Corollary 1.3
follow immediately. At the end we shall also prove a variant (Proposition 3.8) in which
the hypotheses on the commutators are slightly weakened, with a corresponding slight
weakening of the conclusion.
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It is convenient to begin by reviewing the proof of the classical Cauchy–Binet formula
(1.3) where the ring R is commutative. First fix L = {l1, . . . , lr} with l1 < . . . < lr, and
compute

(det (AT)IL) (det BLJ) =
∑

τ,π∈Sr

sgn(τ) sgn(π) al1iτ(1)
· · ·alriτ(r)

blπ(1)j1 · · · blπ(r)jr

(3.1a)

=
∑

σ,π∈Sr

sgn(σ) alπ(1)iσ(1)
· · ·alπ(r)iσ(r)

blπ(1)j1 · · · blπ(r)jr
,

(3.1b)

where we have written σ = τ ◦ π and exploited the commutativity of the elements of A
(but not of B). Now the sum over L and π is equivalent to summing over all r-tuples of
distinct elements l1, . . . , lr ∈ [m]:

∑

L

(det (AT)IL) (detBLJ) =
∑

l1,...,lr∈[m] distinct

f(l1, . . . , lr) bl1j1 · · · blrjr
, (3.2)

where we have defined

f(l1, . . . , lr) :=
∑

σ∈Sr

sgn(σ) al1iσ(1)
· · ·alriσ(r)

(3.3)

for arbitrary l1, . . . , lr ∈ [m]. Note now that f(l1, . . . , lr) = 0 whenever two or more
arguments take the same value, because (3.3) is then the determinant of a matrix with
two (or more) equal rows. We can therefore add such terms to the sum (3.2), yielding

∑

L

(det (AT)IL) (det BLJ) =
∑

l1,...,lr∈[m]

∑

σ∈Sr

sgn(σ) al1iσ(1)
· · ·alriσ(r)

bl1j1 · · · blrjr

(3.4a)

=
∑

σ∈Sr

sgn(σ) (ATB)iσ(1)j1 · · · (A
TB)iσ(r)jr

(3.4b)

= det (ATB)IJ , (3.4c)

where we have here commuted the b’s through the a’s. Note that the order of the elements
of B remains unchanged throughout these manipulations.

Let us also remark that this proof is valid even if r > m: the starting sum (3.2) is then
empty, since there do not exist distinct elements l1, . . . , lr ∈ [m]; but the sum (3.4a) is
nonempty, since repetitions among the l1, . . . , lr are now allowed, and we prove the non-
trivial result that det(ATB)IJ = 0. (Of course, in the commutative case this is no surprise,
since the matrix ATB has rank at most m; but the corresponding noncommutative result
will be less trivial.)

Now let us examine this proof more closely, in order to see what commutation prop-
erties of the matrix elements were really needed to make it work. In the passage from
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(3.1a) to (3.1b), the essence of the argument was that

(col-det (AT)IL) (col-detBLJ) =
∑

π∈Sr

sgn(π) (col-det (AT)IL) blπ(1)j1 · · · blπ(r)jr

(3.5a)

=
∑

π∈Sr

sgn(π)2 [col-det ((AT)IL)π] blπ(1)j1 · · · blπ(r)jr
,

(3.5b)

where Lemma 2.6(a) justifies the passage from the first line to the second; so it suffices for
AT to have weakly row-symmetric commutators. In the argument that f(l1, . . . , lr) = 0
whenever two or more arguments take the same value, we need to apply Lemma 2.6(c)
to a matrix that is a submatrix of AT with possibly repeated columns; therefore we need,
in addition to weak row-symmetry, the additional hypothesis that the matrix elements of
AT within each column commute among themselves — or in other words, we need AT to
be row-pseudo-commutative (Definition 1.1). Finally, in the step from (3.4a) to (3.4b),
we commuted the b’s through the a’s. We have therefore proven:

Proposition 3.1 (easy noncommutative Cauchy–Binet) Let R be a (not-necessar-
ily-commutative) ring, and let A and B be m × n matrices with elements in R. Suppose
that

(a) AT is row-pseudo-commutative, i.e. A is column-pseudo-commutative, i.e. [aij , akl]=
[ail, akj] whenever i 6= k and j 6= l and [aij , ail] = 0 whenever j 6= l;

(b) the matrix elements of A commute with those of B, i.e. [aij , bkl] = 0 for all i, j, k, l.

Then, for any I, J ⊆ [n] of cardinality |I| = |J | = r, we have

∑

L ⊆ [m]

|L| = r

(col-det (AT)IL)(col-det BLJ) = col-det (ATB)IJ . (3.6)

Note that no hypothesis whatsoever is needed concerning the commutators [bij , bkl].
There is also a dual result using row-det, in which B is required to be column-pseudo-

commutative and no hypothesis is needed on the [a, a] commutators.

The hypothesis in Proposition 3.1 that A be column-pseudo-commutative really is
necessary:

Example 3.2 Let α and β be any noncommuting elements of the ring R, and let A =(
α β
0 0

)
and B =

(
1 1
0 0

)
[let us assume for simplicity that the ring R has an identity

element], so that ATB =

(
α α
β β

)
. Then A is row-commutative but not column-pseudo-

commutative, while the elements of B commute with everything. We have det AT =
det B = 0 but col-det(ATB) = αβ − βα 6= 0.
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This example can be streamlined by dropping the second row of the matrices A and
B, i.e. considering it as an example with m = 1, n = 2 and r = 2. Then the left-hand side
of (3.6) is an empty sum (since r > m), but the right-hand side does not vanish. 2

Example 3.3 It is instructive to consider the general case of 2 × 2 matrices (i.e. m =
n = 2) under the sole hypothesis that [aij , bkl] = 0 for all i, j, k, l. We have

col-det(ATB) − (col-detAT)(col-detB) =
(
[a21, a12] + [a11, a22]

)
b21b12

+ [a11, a12] b11b12 + [a21, a22] b21b22 , (3.7)

where the terms on the first (resp. second) line of the right-hand side come from the
first (resp. second) step of the proof. We see that column-pseudo-commutativity of A is
precisely what we need in order to guarantee that (3.7) vanishes for arbitrary matrices B.
2

We are now ready to consider Proposition 1.2, which generalizes Proposition 3.1 by
allowing nonzero commutators [aij , bkl] = −δikhjl, thereby producing a “quantum correc-
tion” on the right-hand side of the identity. In the proof of Proposition 1.2(a) it will be
necessary (as we shall see) to commute the h’s through the a’s. We therefore begin with
a lemma giving an important property of such commutators:

Lemma 3.4 Let R be a (not-necessarily-commutative) ring, and let A and B be m × n
matrices with elements in R. Suppose that for all i, k ∈ [m] and j, l ∈ [n] we have

[aij , ail] = 0 (3.8a)

[aij , bkl] = −δikhjl (3.8b)

where (hjl)
n
j,l=1 are elements of R. Then, for all i ∈ [m] and j, l, s ∈ [n] we have

[aij , hls] = [ail, hjs] . (3.9)

Note the very weak hypothesis here on the [a, a] commutators: we require [aij , akl] = 0
only when i = k, i.e. between different columns within the same row . This is much weaker
than the column-pseudo-commutativity assumed in Proposition 1.2(a), as it imposes (1.7)
but omits (1.6).

Proof. For any indices i, k, r ∈ [m] and j, l, s ∈ [n], we have the Jacobi identity

[aij, [akl, brs]] + [akl, [brs, aij]] + [brs, [aij , akl]] = 0 . (3.10)

By taking k = r = i and using the hypotheses (3.8), we obtain the conclusion (3.9). 2

Remark. Since A and B play symmetrical roles in this problem (modulo the substitution
h 7→ −hT), a similar argument shows that if [bij , bil] = 0, then [bij , hls] = [bis, hlj]. This
will be relevant for Proposition 1.2(b). 2
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One consequence of Lemma 3.4 is that h can be commuted through a when it arises
inside a sum over permutations with the factor sgn(σ):

Corollary 3.5 Fix distinct elements α, β ∈ [r] and fix a set I ⊆ [n] of cardinality |I| = r.
Then, under the hypotheses of Lemma 3.4, we have

∑

σ∈Sr

sgn(σ) F
(
{σ(j)}j 6=α,β

)
[aliσ(α)

, hiσ(β)k] G
(
{σ(j)}j 6=α,β

)
= 0 (3.11)

for arbitrary functions F, G : [r]r−2 → R and arbitrary indices l ∈ [m] and k ∈ [n].

Proof. By Lemma 3.4 we have

[aliσ(α)
, hiσ(β)j] = [aliσ(β)

, hiσ(α)j] . (3.12)

This means that the summand in (3.11) [excluding the factor sgn(σ)] is invariant under
σ 7→ σ ◦ (αβ). The claim then follows immediately from the Involution Lemma. 2

We also have a dual version of Corollary 3.5, along the lines of the Remark above,
stating that if [bij , bil] = 0, then sums involving [bljσ(α)

, hkjσ(β)
] vanish. Let us call this

Corollary 3.5′.

We are now ready to prove Proposition 1.2:

Proof of Proposition 1.2. We begin with part (a). The first two steps in the proof
are identical to those in Proposition 3.1: we therefore have

∑

L

(col-det (AT)IL) (col-detBLJ) =
∑

σ∈Sr

sgn(σ)
∑

l1,··· ,lr∈[m]

al1iσ(1)
· · ·alriσ(r)

bl1j1 · · · blrjr
.

(3.13)
It is only now that we have to work harder, because of the noncommutativity of the b’s
with the a’s. Let us begin by moving the factor bl1j1 to the left until it lies just to the
right of al1iσ(1)

, using the general formula

x1 [x2 · · ·xr, y] = x1

r∑

s=2

x2 · · ·xs−1 [xs, y] xs+1 · · ·xr (3.14)

with xα = alαiσ(α)
and y = bl1j1 . This gives

∑

σ∈Sr

sgn(σ)
∑

l1,...,lr∈[m]

al1iσ(1)
· · ·alriσ(r)

bl1j1 · · · blrjr

=
∑

σ∈Sr

sgn(σ)
∑

l1,...,lr∈[m]

al1iσ(1)

[
bl1j1al2iσ(2)

· · ·alriσ(r)

−
r∑

s=2

δl1ls al2iσ(2)
· · ·als−1iσ(s−1)

hiσ(s)j1als+1iσ(s+1)
· · ·alriσ(r)

]
bl2j2 · · · blrjr

. (3.15)
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Now we repeatedly use Corollary 3.5 to push the factor hiσ(s)j1 to the left: we obtain

∑

σ∈Sr

sgn(σ)
∑

l1,...,lr∈[m]

al1iσ(1)

[
bl1j1al2iσ(2)

· · ·alriσ(r)

−

r∑

s=2

hiσ(s)j1δl1lsal2iσ(2)
· · ·als−1iσ(s−1)

als+1iσ(s+1)
· · ·alriσ(r)

]
bl2j2 · · · blrjr

(3.16a)

=
∑

σ∈Sr

sgn(σ)
∑

l2,...,lr∈[m]

[
(ATB)iσ(1)j1al2iσ(2)

· · ·alriσ(r)

−

r∑

s=2

hiσ(s)j1al2iσ(2)
· · ·als−1iσ(s−1)

alsiσ(1)
als+1iσ(s+1)

· · ·alriσ(r)

]
bl2j2 · · · blrjr

(3.16b)

=
∑

σ∈Sr

sgn(σ)

[
(ATB)iσ(1)j1 +

r∑

s=2

hiσ(1)j1

]
∑

l2,...,lr∈[m]

al2iσ(2)
· · ·alriσ(r)

bl2j2 · · · blrjr

(3.16c)

=
∑

σ∈Sr

sgn(σ)
[
ATB + (r − 1) h

]
iσ(1)j1

∑

l2,...,lr∈[m]

al2iσ(2)
· · ·alriσ(r)

bl2j2 · · · blrjr
, (3.16d)

where we have simply executed the sum over l1 and, in the second summand, interchanged
σ(1) with σ(s) [which multiplies sgn(σ) by −1]. This procedure can be now iterated to
obtain

∑

L

(det (AT)IL)(col-detBLJ) (3.17a)

=
∑

σ∈Sr

sgn(σ)
[
ATB + (r − 1) h

]
iσ(1)j1

[
ATB + (r − 2) h

]
iσ(2)j2

· · ·
[
ATB

]
iσ(r)jr

(3.17b)

= col-det
[
(ATB)IJ + Qcol

]
, (3.17c)

which is the desired result of part (a).
For part (b), let us start as before:

∑

L

(row-det(AT)IL) (row-det BLJ) (3.18a)

=
∑

L

∑

τ,π∈Sr

sgn(τ) sgn(π) alτ(1)i1 · · ·alτ(r)irbl1jπ(1)
· · · blrjπ(r)

(3.18b)

=
∑

L

∑

τ,σ∈Sr

sgn(σ) alτ(1)i1 · · ·alτ(r)irblτ(1)jσ(1)
· · · blτ(r)jσ(r)

(3.18c)

where we have written σ = π ◦ τ and exploited the commutativity of the elements of B
(but not of A). An argument as in Proposition 3.1 allows us to rewrite this as

∑

σ∈Sr

sgn(σ)
∑

l1,··· ,lr∈[m]

al1i1 · · ·alrirbl1jσ(1)
· · · blrjσ(r)

. (3.19)
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We first move the factor alrir to the right, giving

∑

σ∈Sr

sgn(σ)
∑

l1,...,lr∈[m]

al1i1 · · ·alr−1ir−1

[
bl1jσ(1)

· · · blr−1jσ(r−1)
alrir

−

r−1∑

s=1

δlrlsbl1jσ(1)
· · · bls−1jσ(s−1)

hirjσ(s)
bls+1jσ(s+1)

· · · blr−1jσ(r−1)

]
blrjσ(r)

. (3.20)

Now we repeatedly use Corollary 3.5′ to push the factor hirjσ(s)
to the right: we obtain

∑

σ∈Sr

sgn(σ)
∑

l1,...,lr∈[m]

al1i1 · · ·alr−1ir−1

[
bl1jσ(1)

· · · blr−1jσ(r−1)
alrir

−
r−1∑

s=1

δlrlsbl1jσ(1)
· · · bls−1jσ(s−1)

bls+1jσ(s+1)
· · · blr−1jσ(r−1)

hirjσ(s)

]
blrjσ(r)

(3.21a)

=
∑

σ∈Sr

sgn(σ)
∑

l1,...,lr−1∈[m]

al1i1 · · ·alr−1ir−1

[
bl1jσ(1)

· · · blr−1jσ(r−1)
(ATB)irjσ(r)

−
r−1∑

s=1

bl1jσ(1)
· · · bls−1jσ(s−1)

blsjσ(r)
bls+1jσ(s+1)

· · · blr−1jσ(r−1)
hirjσ(s)

]
(3.21b)

=
∑

σ∈Sr

sgn(σ)
∑

l1,...,lr−1∈[m]

al1i1 · · ·alr−1ir−1bl1jσ(1)
· · · blr−1jσ(r−1)

[
(ATB)irjσ(r)

+

r−1∑

s=1

hirjσ(r)

]

(3.21c)

=
∑

σ∈Sr

sgn(σ)
∑

l1,...,lr−1∈[m]

al1i1 · · ·alr−1ir−1bl1jσ(1)
· · · blr−1jσ(r−1)

[ATB + (r − 1)h]irjσ(r)
,

(3.21d)

where we exchanged σ(s) with σ(r). This procedure can be iterated as before to obtain

∑

L

(row-det (AT)IL)(det BLJ) (3.22a)

=
∑

σ∈Sr

sgn(σ)
[
ATB

]
i1jσ(1)

· · ·
[
ATB + (r − 2) h

]
ir−1jσ(r−1)

[
ATB + (r − 1) h

]
irjσ(r)

(3.22b)

= row-det
[
(ATB)IJ + Qrow

]
, (3.22c)

which is the desired result of part (b). 2

Let us remark that if we care only about the Capelli identity (i.e., Corollary 1.3 with
h = 1), then the proof becomes even simpler: all the discussion about column-pseudo-
commutativity is unnecessary because we have the stronger hypothesis [aij , akl] = 0, so
the first steps in the proof proceed exactly as in the commutative case; and Lemma 3.4
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is unnecessary because the quantities hjl are by hypothesis central elements of the ring.
The key nontrivial steps in the proof of the Capelli identity are thus the manipulations
of commutators leading from (3.13) to (3.17).

Example 3.6 Itoh [25, Theorem A] proves a Capelli-type identity for some matrices
arising from the action of O(m) × Sp(n) on m × n matrices (n even). His result can be
obtained as a special case of Proposition 1.2′, as follows: We write ν = n/2 and work in the
Weyl algebra Am×ν(K) generated by an m×ν matrix of indeterminates X = (xij) and the
corresponding matrix ∂ = (∂/∂xij) of differential operators. Now form the m×n matrices
A = (X, ∂) and B = (−∂, X), which satisfy the commutation relations [aij, bkl] = δikδjl.
Note that A and B are row-commutative but not column-pseudo-commutative. We can
therefore apply Proposition 1.2′(c) to obtain the identity

∑

L ⊆ [n]

|L| = r

(det AIL)(det (BT)LJ) = col-det[(ABT)IJ + Qcol] (3.23a)

= row-det[(ABT)IJ + Qrow] , (3.23b)

in which the matrix ABT describes the left action of o(m). But we cannot obtain a
corresponding identity for the matrix ATB, which describes the right action of sp(n),
because A and B fail to be column-pseudo-commutative. Itoh [25] also notes this failure
and interprets it from the point of view of his own proof (which uses exterior algebra); he
goes on to provide a weaker alternative formula. 2

Example 3.7 (generalizing Example 3.2) It is instructive to consider the most gen-
eral case with m = 1, n = 2 and r = 2: here the left-hand side of the identity is automati-
cally zero (since r > m), but the right-hand side need not vanish unless we make suitable

hypotheses on the matrices A = (α, β) and B = (γ, δ). We have ATB =

(
αγ αδ
βγ βδ

)
,

H =

(
γα − αγ δα − αδ
γβ − βγ δβ − βδ

)
and Qcol =

(
γα − αγ 0
γβ − βγ 0

)
, so that ATB+Qcol =

(
γα αδ
γβ βδ

)

(a beautiful cancellation!) and hence

col-det(ATB + Qcol) = γαβδ − γβαδ = γ [α, β] δ . (3.24)

In Example 3.2 we took γ = δ = 1 and found that the identity fails unless [α, β] = 0, i.e.
A is column-(pseudo-)commutative. In Itoh’s [25] sp(n) action (specialized to m = 1 and
n = 2) we work in the Weyl algebra A1(K) and have α = x, β = d, γ = −d and δ = x,
so that [α, β] = −1 6= 0 and the identity again fails. 2

Remarks. 1. Part (b) of Proposition 1.2 is essentially equivalent to part (a) under
a duality that reverses the order of products inside each monomial, when R is the alge-
bra of noncommutative polynomials (over Z) in indeterminates (aij) and (bij) with the
appropriate relations. For brevity we omit the details.
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2. Suppose that [aij , bkl] = −gikhjl where G = (gik) and H = (hjl) are two matrices.
Now make the replacements A → PAQ and B → RAS, where P, Q, R, S are matrices
whose elements commute with each other and with those of A, B, G, H ; then G → PGRT

and H → QTHS. It follows that Proposition 1.2 with general h — or even the extension
to general g and h, provided that [gik, hjl] = 0 — is not terribly much more general than
the traditional case g = h = δ. However, the case in which [gik, hjl] 6= 0 is much more
difficult [10]. 2

Let us now state and prove a variant of Proposition 1.2 in which the hypotheses on the
[a, a] or [b, b] commutators are weakened: instead of assuming that A (or B) is column-
pseudo-commutative, we shall assume only that it has column-symmetric commutators.
The price that we have to pay (as in Lemma 2.6(b)) is that the final identity must be
multiplied by a factor of 2 — or in other words, the identity holds only up to addition
of an unknown element x ∈ R satisfying 2x = 0. Of course, if the ring R is such that
2x = 0 implies x = 0 (as it is in most applications), then both the hypotheses and the
conclusion are equivalent to those of Proposition 1.2; but in general rings, the hypotheses
are slightly weaker, as is the conclusion.

Proposition 3.8 (noncommutative Cauchy–Binet, variant) Let R be a (not-nec-
essarily-commutative) ring, and let A and B be m × n matrices with elements in R.
Suppose that

[aij , bkl] = −δikhjl (3.25)

where (hjl)
n
j,l=1 are elements of R. Then, for any I, J ⊆ [n] of cardinality |I| = |J | = r:

(a) If A has column-symmetric commutators, then

2
∑

L ⊆ [m]

|L| = r

(col-det (AT)IL)(col-det BLJ) = 2 col-det[(ATB)IJ + Qcol] (3.26)

where
(Qcol)αβ = (r − β) hiαjβ

(3.27)

for 1 6 α, β 6 r.

(b) If B has column-symmetric commutators, then

2
∑

L ⊆ [m]

|L| = r

(row-det (AT)IL)(row-det BLJ) = 2 row-det[(ATB)IJ + Qrow] (3.28)

where
(Qrow)αβ = (α − 1) hiαjβ

(3.29)

for 1 6 α, β 6 r.

the electronic journal of combinatorics 16 (2009), #R103 27



In proving Proposition 3.8, we shall need a variant of Lemma 3.4:

Lemma 3.9 Let R be a (not-necessarily-commutative) ring, and let A and B be m × n
matrices with elements in R. Suppose that for all i, k ∈ [m] and j, l ∈ [n] we have

[aij , akl] = [ail, akj] (3.30a)

[aij , bkl] = −δikhjl (3.30b)

where (hjl)
n
j,l=1 are elements of R. Then, for all i ∈ [m] and j, l, s ∈ [n] we have

2 [aij, hls] = 2 [ail, hjs] ; (3.31)

and if m > 2 we have
[aij , hls] = [ail, hjs] . (3.32)

Proof. We consider the Jacobi identity (3.10) and the corresponding identity with j and
l interchanged:

[aij , [akl, brs]] + [akl, [brs, aij]] + [brs, [aij, akl]] = 0 (3.33a)

[ail, [akj, brs]] + [akj, [brs, ail]] + [brs, [ail, akj]] = 0 (3.33b)

Now subtract the two equations and use the hypotheses (3.30): we obtain

δkr ([aij , hls] − [ail, hjs]) = δir ([akl, hjs] − [akj, hls]) . (3.34)

Now fix arbitrarily the indices i ∈ [m] and j, l, s ∈ [n]. Choosing k = r = i, we get

[aij , hls] − [ail, hjs] = [ail, hjs] − [aij , hls] , (3.35)

which is (3.31). For m > 2 we can choose k = r ∈ [m] different from i, which yields
(3.32). 2

Proof of Proposition 3.8. The proof is almost identical to that of Proposition 1.2,
with the following changes: in the argument that f(l1, . . . , lr) = 0 whenever two or more
arguments take the same value, we use Lemma 2.6(b) instead of Lemma 2.6(c); and in the
commutation argument involving h, we use Lemma 3.9 [eq. (3.31)] instead of Lemma 3.4.
These two weakenings are permissible since we are multiplying the identity by 2. 2
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4 Proof of the Turnbull-type identities

In this section we shall prove Propositions 1.4 and 1.5, following the same strategy as
in the previous proofs.

We begin with a variant of Lemma 3.4 that will be useful in both the symmetric and
antisymmetric cases.

Lemma 4.1 Let n > 2, let R be a (not-necessarily-commutative) ring, and let A and B
be n × n matrices with elements in R. Suppose that for all i, j, k, l ∈ [n] we have

[aij , ail] = 0 (4.1a)

[aij , bkl] = −h1δikhjl − h2δilδjk (4.1b)

where h1 and h2 are elements of R. Then:

(a) If either i = j or n > 3 (or both), we have [aij , h1] = 0.

(b) If i 6= j, we have [aij , h1 + h2] = 0.

Proof. For any indices i, j, k, l, r, s ∈ [n] we have the Jacobi identity

[aij, [akl, brs]] + [akl, [brs, aij]] + [brs, [aij , akl]] = 0 . (4.2)

Now fix indices i, j, l such that j 6= l (here we use n > 2) and take k = r = i and s = l.
Using the hypotheses (4.1), we obtain

[aij , h1 + h2δil] = 0 whenever j 6= l . (4.3)

If i = j or n > 3, then we can choose l to be different from both i and j, and conclude
that [aij , h1] = 0. If i 6= j, then we can choose l = i and conclude that [aij, h1 + h2] = 0.
2

Proof of Proposition 1.4. Let us first consider the case in which A is symmetric
and we seek a result with col-det. The result is trivial when n = 1, so we can assume that
n > 2 and apply Lemma 4.1 with h1 = h2 = h. The conclusions of Lemma 4.1, together
with the supplementary hypotheses (i) or (ii) of Proposition 1.4(a) in case n = 2, ensure
that [aij , h] = 0 for all i, j and hence that we can push all h factors freely to the left.

The first two steps in the proof are identical to those in Proposition 3.1: we therefore
have

∑

L

(col-detALI) (col-det BLJ) =
∑

σ∈Sr

sgn(σ)
∑

l1,··· ,lr∈[m]

al1iσ(1)
· · ·alriσ(r)

bl1j1 · · · blrjr
.

(4.4)
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We now push the factor bl1j1 to the left:
∑

L

(col-det ALI) (col-detBLJ) (4.5a)

=
∑

σ∈Sr

sgn(σ)
∑

l1,...,lr∈[n]

al1iσ(1)

[
bl1j1al2iσ(2)

· · ·alriσ(r)

−h
r∑

s=2

(δiσ(s)j1δl1ls + δiσ(s)l1δlsj1) al2iσ(2)
· · ·als−1iσ(s−1)

als+1iσ(s+1)
· · ·alriσ(r)

]
×

bl2j2 · · · blrjr
(4.5b)

=
∑

σ∈Sr

sgn(σ)
∑

l2,...,lr∈[n]

[
(ATB)iσ(1)j1al2iσ(2)

· · ·alriσ(r)

−h

r∑

s=2

δiσ(s)j1al2iσ(2)
· · ·als−1iσ(s−1)

alsiσ(1)
als+1iσ(s+1)

· · ·alriσ(r)

−h

r∑

s=2

δlsj1al2iσ(2)
· · ·als−1iσ(s−1)

aiσ(s)iσ(1)
als+1iσ(s+1)

· · ·alriσ(r)

]
bl2j2 · · · blrjr

(4.5c)

=
∑

σ∈Sr

sgn(σ)

[
(ATB)iσ(1)j1 + h

r∑

s=2

δiσ(1)j1

]
∑

l2,...,lr∈[n]

al2iσ(2)
· · ·alriσ(r)

bl2j2 · · · blrjr

(4.5d)

=
∑

σ∈Sr

sgn(σ)
[
ATB + h(r − 1)

]
iσ(1)j1

∑

l2,...,lr∈[n]

al2iσ(2)
· · ·alriσ(r)

bl2j2 · · · blrjr
, (4.5e)

where in the interchange of σ(1) with σ(s) we dropped out the third summand within
square brackets because it is symmetric, hence vanishing when summed over σ with a
factor sgn(σ). Iterating this procedure, we obtain the desired final result

∑

L

(det ALI)(det BLJ) (4.6a)

=
∑

σ∈Sr

sgn(σ)
[
ATB + (r − 1) h

]
iσ(1)j1

[
ATB + (r − 2) h

]
iσ(2)j2

· · ·
[
ATB

]
iσ(r)jr

(4.6b)

= col-det
[
(ATB)IJ + Qcol

]
. (4.6c)

The proof of part (b) is similar. 2

Remark. In the proof of Proposition 1.4 contained in the first preprint version of this
paper, we inadvertently assumed without justification that [aij , h] = 0.15 We have now

15We realized our error when we read [16] and in particular their Lemmas 21 and 25, which correspond
to our Lemma 4.1 albeit restricted to the case where 2x = 0 implies x = 0 in the ring R.
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repaired the error by including Lemma 4.1 and adding the extra conditions (i) or (ii) in
Proposition 1.4 when n = 2. The importance of these extra conditions is illustrated by
the following example. 2

Example 4.2 Let us consider the general case of 2 × 2 matrices (i.e. n = 2) under the
hypotheses that A is column-pseudo-commutative and that [aij , bkl] = −h(δikδjl + δilδjk).

With Q =

(
h 0
0 0

)
, we have

col-det(ATB + Q) − (col-detAT)(col-detB) = −[a12, h]b12 + (a21 − a12)hb12 . (4.7)

The second term illustrates the importance of assuming that A is symmetric. The first
term illustrates the importance of assuming that [a12, h] = 0 when n = 2 (i.e. when this
is not guaranteed by Lemma 4.1).

To see that [a12, h] 6= 0 and (4.7) 6= 0 can actually arise, let R be the ring of 2 × 2

matrices with elements in the field GF (2), and consider the elements α =

(
1 0
0 0

)
and

β =

(
0 1
1 0

)
in R. Note that [α, β] = β. Now let A =

(
0 α
α 0

)
and B =

(
0 β
β 0

)
. These

matrices satisfy [aij , akl] = [bij , bkl] = 0 and [aij , bkl] = −h(δikδjl + δilδjk) with h = β (this
works when ij = kl = 11 or 22 because 2h = 0). But [a12, h] = [α, β] = β 6= 0 and
(4.7) = β2 6= 0. 2

Proof of Proposition 1.5. Let us first consider the case in which A is antisymmetric
off-diagonal and we seek a result with col-per. We follow closely the proof of the previous
Proposition 1.4, starting from the expression in which the a’s and b’s are ordered and first
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pushing the factor bl1j1 to the left:
∑

σ∈Sr

∑

l1,··· ,lr∈[n]

al1iσ(1)
· · ·alriσ(r)

bl1j1 · · · blrjr
(4.8a)

=
∑

σ∈Sr

∑

l1,...,lr∈[n]

al1iσ(1)

[
bl1j1al2iσ(2)

· · ·alriσ(r)

−h

r∑

s=2

(δiσ(s)j1δl1ls − δiσ(s)l1δlsj1) al2iσ(2)
· · ·als−1iσ(s−1)

als+1iσ(s+1)
· · ·alriσ(r)

]
×

bl2j2 · · · blrjr
(4.8b)

=
∑

σ∈Sr

∑

l2,...,lr∈[n]

[
(ATB)iσ(1)j1al2iσ(2)

· · ·alriσ(r)

−h

r∑

s=2

δiσ(s)j1al2iσ(2)
· · ·als−1iσ(s−1)

alsiσ(1)
als+1iσ(s+1)

· · ·alriσ(r)

+h
r∑

s=2

δlsj1al2iσ(2)
· · ·als−1iσ(s−1)

aiσ(s)iσ(1)
als+1iσ(s+1)

· · ·alriσ(r)

]
bl2j2 · · · blrjr

(4.8c)

=
∑

σ∈Sr

[
(ATB)iσ(1)j1 − h

r∑

s=2

δiσ(1)j1

]
∑

l2,...,lr∈[n]

al2iσ(2)
· · ·alriσ(r)

bl2j2 · · · blrjr

(4.8d)

=
∑

σ∈Sr

[
ATB − h(r − 1)

]
iσ(1)j1

∑

l2,...,lr∈[n]

al2iσ(2)
· · ·alriσ(r)

bl2j2 · · · blrjr
, (4.8e)

where now in the interchange of σ(1) with σ(s) there is no change of sign in the second
summand because there is no sgn(σ) factor, and we dropped out the third summand
within square brackets because it is antisymmetric and hence vanishing when summed
over σ (note that we used here only the off-diagonal antisymmetry of A). Iterating this
procedure, we obtain the desired final result

∑

σ∈Sr

∑

l1,··· ,lr∈[n]

al1iσ(1)
· · ·alriσ(r)

bl1j1 · · · blrjr
(4.9a)

=
∑

σ∈Sr

[
ATB − (r − 1) h

]
iσ(1)j1

[
ATB − (r − 2) h

]
iσ(2)j2

· · ·
[
ATB

]
iσ(r)jr

(4.9b)

= col-per
[
(ATB)IJ − Qcol

]
. (4.9c)

The proof of part (b) is similar. 2

Remark. In the proof of Proposition 1.5 contained in the first preprint version of this
paper, we inadvertently assumed without justification that [aij, h] = 0 or [bij , h] = 0. We
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have now repaired the error by including these hypotheses explicitly. Alternatively, if we
assume that [aij, ail] = 0 for all i, j, l, then Lemma 4.1 with h1 = −h2 = h implies that
[aij , h] = 0 for all i, j whenever n > 3 (and analogously for B). 2

5 Further generalizations?

In this section we investigate whether any of our results can be further generalized.
We always assume, for simplicity, that [aij , akl] = 0 and [bij , bkl] = 0 for all i, j, k, l, and
we ask the following question:

In which cases does there exist a diagonal matrix Q such that

(det A)(det B) = col-det(ATB + Q) ? (5.1)

And what are the elements of Q?

More specifically, we investigate two types of possible extensions:

• Can we allow commutators [aij , bkl] = −h1δikδjl − h2δilδjk beyond the ordinary case
(h2 = 0) and the symmetric case (h2 = h1)?

• In the symmetric case h2 = h1, is it really necessary that the matrix A be symmetric?

Our approach is to perform exact calculations for small matrices, in order to conjecture
possible identities and to rule out others. We shall find, not surprisingly, that there ex-
ists an antisymmetric case (h2 = −h1) corresponding to the Howe–Umeda–Kostant–Sahi
identity [23, 33] with n even; but it appears that there exists also another antisymmetric
case, with a different “quantum correction”, when n is odd.

We shall perform our calculations in two alternative frameworks:

Abstract framework. We work in the ring Z〈A, B〉[h1, h2]/R generated by noncom-
muting indeterminates A = (aij)

n
i,j=1 and B = (bij)

n
i,j=1 and commuting indeterminates h1

and h2 modulo the two-sided ideal R generated by the relations [aij , akl] = 0, [bij , bkl] = 0
and [aij, bkl] = −h1δikδjl − h2δilδjk. We then introduce a matrix Q = diag(q1, . . . , qn) of
central elements and expand out the polynomial

f(A, B, Q) := (det A)(det B) − col-det(ATB + Q) . (5.2)

We ask whether q1, . . . , qn can be chosen so that either

• f(A, B, Q) ≡ 0, or

• f(A, B, Q) ≡ 0 modulo the ideal corresponding to the symmetry or antisymmetry
of A and/or B. More precisely, there are six nontrivial ideals to be considered:

– A symmetric
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– B symmetric

– A and B symmetric

– A antisymmetric

– B antisymmetric

– A and B antisymmetric

In the first three cases we have h2 = h1, while in the latter three cases we have
h2 = −h1. (If A and B have opposite symmetries, then h1 = h2 = 0 and we are
back in the commutative case.)

Concrete framework. We work in the Weyl algebra An×n(K) over a field K of
characteristic 0 (e.g. Q, R or C) generated by a matrix X = (xij)

n
i,j=1 of indeterminates

and the corresponding matrix ∂ = (∂/∂xij)
n
i,j=1 of partial derivatives. The matrices X

and Y = h∂ (where h ∈ K, h 6= 0) satisfy the commutation relations

[xij , xkl] = 0 ; [yij, ykl] = 0 ; [xij , ykl] = −h δik δjl . (5.3)

Now consider the matrices A = (aij)
n
i,j=1 and B = (bij)

n
i,j=1 defined by

A = αX + βXT ; B = γY + δY T (5.4)

(where α, β, γ, δ ∈ K), so that

[aij , akl] = 0 (5.5a)

[bij , bkl] = 0 (5.5b)

[aij , bkl] = −h [(αγ + βδ) δikδjl + (αδ + βγ) δilδjk] . (5.5c)

Some cases of special interest are:

• αδ + βγ = 0, so that (5.5) reduces to the starting case (5.3) with the replacement
h → h (αγ + βδ);

• β = α, so that A is symmetric and αγ + βδ = αδ + βγ = α(γ + δ);

• δ = γ, so that B is symmetric and αγ + βδ = αδ + βγ = (α + β)γ;

• β = α and δ = γ, so that both A and B are symmetric and αγ+βδ = αδ+βγ = 2αγ;

• β = −α, so that A is antisymmetric and αγ + βδ = −(αδ + βγ) = α(γ − δ);

• δ = −γ, so that B is antisymmetric and αγ + βδ = −(αδ + βγ) = (α − β)γ;

• β = −α and δ = −γ, so that both A and B are antisymmetric and αγ + βδ =
−(αδ + βγ) = 2αγ.
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We shall use the abstract framework to conjecture possible identities, and the concrete
framework to find counterexamples.

In the abstract framework we know the following general solutions:

(a) Capelli: For any n, with h2 = 0 and qi = (n − i)h1.

(b) Turnbull: For any n, with h2 = h1, A symmetric and qi = (n − i)h1. [Turnbull
requires symmetry of both A and B, but we have shown in Proposition 1.4 that
only the symmetry of A is needed.]

(c) Howe–Umeda–Konstant–Sahi: For any even n, with h2 = −h1, A and B antisym-
metric and qi = (n − i − 1)h1. [But we suspect that only B need be assumed
antisymmetric: see below.]

Our results lead us to conjecture a fourth general solution:

(d) For any odd n, with h2 = −h1, A or B antisymmetric (or both) and qi = (n− i)h1.

We shall show — with the aid of the symbolic-algebra package Mathematica — that for
n 6 5 there are no other solutions, except for a special antisymmetric solution at n = 2.

Case n = 1. This case is trivial and we have Q = 0.

Case n = 2. For n = 2 we find the following solutions:

• Capelli: h2 = 0, q1 = h1, q2 = 0.

• Turnbull: h2 = h1, A symmetric, q1 = h1, q2 = 0.

• Howe–Umeda–Konstant–Sahi: h2 = −h1, B antisymmetric, q1 = 0, q2 = −h1.

• New antisymmetric solution: h2 = −h1, A antisymmetric, q1 = h1, q2 = 0.

We see, therefore, that for n = 2 the Howe–Umeda–Konstant–Sahi solution requires only
the antisymmetry of B, not of A. Furthermore, there is an additional antisymmetric
solution with a different quantum correction; this solution does not, however, seem to
generalize to larger even n (see n = 4 below).

There are no solutions for n = 2 besided the ones listed above. Indeed, even in the
more restrictive concrete framework we can show that unless we are in one of the foregoing
cases, there is no choice of q1 and q2 for which (5.1) holds.

Case n = 3. For n = 3 we find the following solutions:

• Capelli: h2 = 0, qi = (n − i)h1.

• Turnbull: h2 = h1, A symmetric, qi = (n − i)h1.

• New antisymmetric solution: h2 = −h1, either A or B (or both) antisymmetric,
qi = (n − i)h1.
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There are no solutions for n = 3 besided the ones listed above. Indeed, even in the
more restrictive concrete framework we can show that unless we are in one of the foregoing
cases, there is no choice of q1, q2 and q3 for which (5.1) holds.

Case n = 4. For n = 4 we find the following solutions:

• Capelli: h2 = 0, qi = (n − i)h1.

• Turnbull: h2 = h1, A symmetric, qi = (n − i)h1.

• Howe–Umeda–Konstant–Sahi: h2 = −h1, B antisymmetric, qi = (n − i − 1)h1.

There are no solutions for n = 4 besided the ones listed above. (With our available
computer facilities we were able to perform the computation for n = 4, 5 only in the
abstract framework, not in the concrete framework.)

Case n = 5. For n = 5 we find the following solutions:

• Capelli: h2 = 0, qi = (n − i)h1.

• Turnbull: h2 = h1, A symmetric, qi = (n − i)h1.

• New antisymmetric solution: h2 = −h1, either A or B (or both) antisymmetric,
qi = (n − i)h1.

There are no solutions for n = 5 besided the ones listed above.

These results for n 6 5 lead us to make the following conjectures:

Conjecture 5.1 (generalized Howe–Umeda–Konstant–Sahi) If n is even and B is
antisymmetric (but A can be arbitrary), then (5.1) holds with

qi = (n − i − 1)h1 . (5.6)

Conjecture 5.2 (new antisymmetric solution) If n is odd and at least one of the
matrices A and B is antisymmetric, then (5.1) holds with

qi = (n − i)h1 . (5.7)
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A A generalized “Cayley” identity

In this appendix we use Proposition 1.2 to prove a generalization of the “Cayley”
identity (1.24).

Proposition A.1 (generalized Cayley identity) Let R be a (not-necessarily-commu-
tative) ring, and let A and B be n × n matrices with elements in R. Suppose that

[aij , akl] = 0 (A.1a)

[aij, bkl] = −δikhjl (A.1b)

[aij , hkl] = 0 (A.1c)

where H = (hjl)
n
j,l=1 is a matrix with elements in R. Then, for any I, J ⊆ [n] of cardinality

|I| = |J | = r and any nonnegative integer s, we have
∑

L ⊆ [n]

|L| = r

(det (AT)IL)(col-det BLJ)(det A)s = (det A)s col-det[(ATB + sH)IJ + Qcol] ,

(A.2)

where
(Qcol)αβ = (r − β) hiαjβ

(A.3)

for 1 6 α, β 6 r.

The identity (A.2) clearly generalizes the identity (1.9) from Proposition 1.2(a), to
which it reduces when s = 0 (and A is commutative: see also Remarks 2 and 3 below).

The key fact needed in the proof of Proposition A.1 is the following identity:

Lemma A.2 Let A and B be as in Proposition A.1. Then, for all i, j ∈ [n] and all
nonnegative integers s, we have

[(ATB)ij, (det A)s] = s hij (det A)s = s (det A)s hij . (A.4)

Proof. A simple computation using the hypotheses [a, a] = 0 shows that

[(ATB)ij, akl] = akihlj . (A.5)

We therefore have (using the hypotheses [a, h] = 0)

[(ATB)ij , det A]

=
∑

σ∈Sn

n∑

r=1

sgn(σ) aσ(1)1 · · ·aσ(r−1),r−1 [(ATB)ij , aσ(r)r] aσ(r+1),r+1 · · ·aσ(n)n (A.6a)

=
n∑

r=1

hrj

∑

σ∈Sn

sgn(σ) aσ(1)1 · · ·aσ(r−1),r−1 aσ(r)i aσ(r+1),r+1 · · ·aσ(n)n (A.6b)

=

n∑

r=1

hrj δir (det A) (A.6c)

= hij (det A) , (A.6d)
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where the third equality used the fact that the determinant of a (commutative) matrix
with two equal columns is zero (so that the terms with i 6= r vanish). This proves (A.4) for
the case s = 1. The general case easily follows by induction using [x, yz] = [x, y]z +y[x, z]
along with the hypotheses [a, h] = 0. 2

Proof of Proposition A.1. By Proposition 1.2 we have

∑

L ⊆ [n]

|L| = r

(det (AT)IL)(col-det BLJ)(det A)s = col-det[(ATB)IJ + Qcol] (det A)s . (A.7)

Now let us work on the right-hand side. By Lemma A.2 we have

[((ATB)IJ + Qcol)αβ, (det A)s] = s (det A)s hiαjβ
(A.8)

(since the matrix elements of Qcol commute with those of A), or in other words

((ATB)IJ + Qcol)αβ (det A)s = (det A)s ((ATB + sH)IJ + Qcol)αβ . (A.9)

Now expand out col-det[(ATB)IJ+Qcol] and right-multiply it by (det A)s; repeatedly using
(A.9) to push (det A)s to the left, we obtain [using the shorthands M = (ATB)IJ + Qcol

and M ′ = (ATB + sH)IJ + Qcol]

(col-detM) (det A)s =
∑

σ∈Sr

sgn(σ) Mσ(1)1 · · ·Mσ(r)r (det A)s (A.10a)

=
∑

σ∈Sr

sgn(σ) (detA)s M ′
σ(1)1 · · ·M

′
σ(r)r (A.10b)

= (det A)s (col-det M ′) , (A.10c)

as was to be proved. 2

Specializing Proposition A.1 to the Weyl algebra R = An×n(K) over a field K of
characteristic 0, we obtain:

Corollary A.3 (Cayley identity, Weyl algebra version) Let X = (xij)
n
i,j=1 be a

square matrix of commuting indeterminates, and let ∂ = (∂/∂xij)
n
i,j=1 be the corresponding

matrix of partial derivatives. Then, for any I, J ⊆ [n] of cardinality |I| = |J | = r and
any nonnegative integer s, we have

∑

L ⊆ [n]

|L| = r

(det (XT)IL)(det ∂LJ )(det X)s = (det X)s col-det[(XT∂)IJ + Qcol(s)] , (A.11)

where
Qcol(s)αβ = (s + r − β) δiαjβ

(A.12)
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for 1 6 α, β 6 r. In particular, for I = J = [n] we have

(det X)(det ∂)(det X)s = (det X)s col-det(XT∂ + ∆) (A.13)

where
∆ij = (s + n − j) δij . (A.14)

Finally, let us take the identity (A.13) in the Weyl algebra and apply it to the constant
polynomial 1 ∈ K[X]; then all the derivatives ∂ij annihilate 1, and by removing an overall
factor (det X) from the left we obtain the usual Cayley identity:

Corollary A.4 (Cayley identity, traditional version) Let X = (xij)
n
i,j=1 be a square

matrix of commuting indeterminates, and let ∂ = (∂/∂xij)
n
i,j=1 be the corresponding matrix

of partial derivatives. Then, for any nonnegative integer s, we have

(det ∂)(det X)s = s(s + 1) . . . (s + n − 1) (det X)s−1 . (A.15)

Remarks. 1. Let us stress that (A.11)/(A.13) are identities in the Weyl algebra;
they can be applied to any polynomial P ∈ K[X] to obtain an identity in the polynomial
algebra. They are therefore stronger than the traditional Cayley identity (A.15), which
corresponds to taking P = 1 only. This example suggests that it might be fruitful to
investigate more generally whether identities of Bernstein–Sato type [3, 4, 17, 36] can be
extended in a useful way to identities in the Weyl algebra.

2. The hypothesis in Proposition A.1 that [aij , hkl] = 0 can be avoided when n > 2,
since by a simple modification of Lemma 3.4 it can be shown that [aij , akl] = 0 and
[aij , bkl] = −δikhjl for all i, j, k, l implies [aij, hkl] = 0 for all i, j, k, l, provided that n > 2.
For n = 1, by contrast, this implication is in general false, and neither Proposition A.1
nor Lemma A.2 holds when [a, h] 6= 0.

3. It would be interesting to know whether the hypothesis on [a, a] commutators in
Proposition A.1 can be weakened from commutativity to column-pseudo-commutativity
(of course replacing all occurrences of det by col-det) or, more modestly, to column-
commutativity. When [a, a] 6= 0, (A.5) must be replaced by

[(ATB)ij , akl] = akihlj +
∑

m

[ami, akl] bmj , (A.16)

and we do not know how to handle the extra terms in (A.6).
4. For simplicity we have assumed that s is a nonnegative integer, so that the formulae

make sense in arbitrary rings R. But in specific applications we can often allow s to be an
arbitrary real or complex number, or an indeterminate. For instance, (A.11)/(A.13) make
sense in a ring of differential operators (with C∞ or analytic coefficients) over a connected
open set D ⊂ Rn×n or Cn×n where det X is nonvanishing; here s is an arbitrary real or
complex number, and (det X)s denotes any fixed branch of the corresponding analytic
function. Alternatively, these formulae can be interpreted algebraically, with s treated as
an indeterminate, in a well-known way [17, pp. 93–94] [36, pp. 96 ff.].
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5. The Cayley identity (A.15) has an extension to arbitrary minors,

det(∂IJ) (det X)s = s(s + 1) · · · (s + k − 1) (detX)s−1 ǫ(I, J) (detXIcJc) (A.17)

where |I| = |J | = k and ǫ(I, J) = (−1)
P

i∈I i+
P

j∈J j. Unfortunately we do not know how
to derive (A.17) from the Capelli identity (we always seem to get sums over minors rather
than one particular minor). See [11] for alternate combinatorial proofs of the Cayley
identity, which do include the all-minors version (A.17). 2
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