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Abstract

Let V (d, n) be the number of permutations p of {1, 2, . . . , n} that satisfy |pi−i| 6

d for all i. Generating functions for V (d, n), for fixed d, are given.

1 Introduction.

The problem considered in this paper is the enumeration of permutations which satisfy
|pi − i| 6 d for all i. The motivation comes from coding theory. A permutation array
is a set of permutations of [n] = {1, 2, . . . , n}. Recently, Jiang et al. [1, 2] showed an
application of permutation arrays to flash memories, where they used different distance
metrics to investigate efficient rewriting schemes. In [4], we studied the multi-level flash
memory model, using the Chebyshev metric.

More precisely, we consider the distance dmax between permutations defined by

dmax(p, q) = max
j

|pj − qj|.

The size of a sphere in the space of permutations with this distance is

V (d, n) = |Td,n|,

where
Td,n = {p ∈ Sn | |pi − i| 6 d for 1 6 i 6 n}.

For fixed d it is well known that V (d, n) satisfies a linear recurrence and that the
generating function is a rational function (see Lehmer [5], Stanley [6]). Lehmer’s proof
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was based on writing V (d, n) as a permanent of a suitable matrix. He only considered
d 6 3. Stanley’s proof is general and uses the transfer-matrix method, see [6, 4.7.7]. In
[3] we studied V (d, n) for general d, using permanent methods.

In the present paper we introduce two related new transfer-matrix methods. The
advantage is that the underlying matrix has a small size.

2 First transfer-matrix method.

Let
X = {(x1, x2, . . . , xd) | d > x1 > x2 > · · · > xd > 0}.

It easy to see that |X| =
(

2d

d

)

.
For 1 6 j 6 d + 1 and x ∈ X we define

xj = (x1 + 1, x2 + 1, . . . , xj−1 + 1, xj+1, xj+2, . . . , xd, 0).

In particular,

x1 = (x2, x3, . . . , xd, 0) and xd+1 = (x1 + 1, x2 + 1, . . . , xd + 1).

Let T be the |X| × |X| transfer matrix where the rows and columns are indexed by
X, and where

if x1 < d, then

{

tx,xj = 1 for j = 1, 2, . . . , d + 1
tx,y = 0 otherwise,

if x1 = d, then

{

tx,x1 = 1
tx,y = 0 otherwise,

Theorem 1. For d > 1, V (d, n) has generating function

∞
∑

n=0

V (d, n) zn =
det(K)

det(I − zT )
=

fd(z)

gd(z)
, (1)

where K denotes the matrix obtained by removing the first row (row 0) and the first
column (column 0) of (I − zT ), and

gcd(fd(z), gd(z)) = 1.

Example 1. For d = 1, the transfer matrix is

x y : (0) (1)
(0) 1 1
(1) 1 0

Hence
∞

∑

n=0

V (1, n) zn =
det(1)

det

[

1 − z −z
−z 1

] =
1

1 − z − z2
.
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We recover equation (37) in Example 4.7.7 in Stanley [6], in which the underlying
matrix is of dimension 7 × 7. Our matrix T is of dimension 2 × 2.

Example 2. For d = 2, our transfer matrix is

x y : (00) (10) (11) (20) (21) (22)
(00) 1 1 1 0 0 0
(10) 1 0 0 1 1 0
(11) 0 1 0 1 0 1
(20) 1 0 0 0 0 0
(21) 0 1 0 0 0 0
(22) 0 0 0 1 0 0

Hence

∞
∑

n=0

V (1, n) zn =

det













1 0 −z −z 0
−z 1 −z 0 −z
0 0 1 0 0
−z 0 0 1 0
0 0 −z 0 1













det

















1 − z −z −z 0 0 0
−z 1 0 −z −z 0
0 −z 1 −z 0 −z
−z 0 0 1 0 0
0 −z 0 0 1 0
0 0 0 −z 0 1

















=
1 − z2

1 − z − 2z2 − 2z3 − 2z4 + z5 + z6

=
1 − z

1 − 2z − 2z3 + z5
.

We recover the equation just before Example 4.7.17 in Stanley [6].

We now give a proof of Theorem 1.

Proof. For x ∈ X, let Ax be the infinite matrix (ai,j) be defined by

ai,j = 0 for j > i + d or i > j + d,

ai,j = 0 for 1 6 j 6 d and j + d − xj < i 6 j + d,

ai,j = 1 otherwise.

Let D be the directed graph whose vertices are {Ax | x ∈ X}. The arcs in D are
(Ax, Ay) where the matrix Ay can be obtained by removing the first row and the j’th
column (j = 1, 2, . . . , d+1) of Ax. By the definition of T we see that the adjacency matrix
of D is exactly T. By Stanley [6, Theorem 4.7.2], the right hand side of (1) is

det(K)

det(I − zT )
=

∞
∑

n=0

v(n)zn,
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where v(n) is the number of closed walks of length n based at A0. We claim that each
such walk is in bijection with a permutation in Td,n so that v(n) = V (d, n).

Referring to the original matrix A0, in the i’th step of the walk we remove row number
i and some column, column number pi say, where

i − d 6 pi 6 i + d.

When the walk of length n is closed, we have removed the first n rows and n column.
Since we are left with (a new) A0, the removed columns must be exactly the n first. This
also implies that (p1, p2, . . . , pn) must be a permutation in Td,n.

On the other hand, let p = (p1p2 . . . pn) ∈ Td,n. Define h = (h1, h2, . . . , hn) by

hi = pi − |{j < i | pj < pi}|.

Since
|{j < i | pj < pi}| 6 |{j ∈ [n] | pj < pi}| = pi − 1

we have hi > 1. Further, if j 6 pi − d − 1, then pj 6 j + d < pi. Hence

|{j < i | pj < pi}| > pi − d − 1

and so hi 6 d + 1. Therefore, Azhi is well defined for all i and all z ∈ X.
We will show that the walk corresponding to p is

A0A0h1A0h1h2 · · ·A0
h1h2···hn−1A0

h1h2···hn−1hn .

Since p is a permutation in Td,n we see by the argument above that

A
0

h1h2···hn−1hn = A0.

Moreover, we note that at the start of the i’th step, |{j < i | pj < pi}| columns to the
left of the column pi in the original A0 have already been removed. Therefore, at the i’th
step, when we remove column hi in A

0
h1h2···hi−1 , this is exactly column

|{j < i | pj < pi}| + hi = pi

in the original A0. Hence, we see that the walk corresponds exactly to the permutation p.

It may be easier to understand the proof with diagrams, and we illustrate with an
example below.

Example 3. A permutation p ∈ Sn can be represented by the n × n matrix B = (bi,j)
where bi,pi

= 1 and bi,j = 0 otherwise.
For example, consider p = 3142 ∈ T2,4. Then

B =









0010
1000
0001
0100









.
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Walk illustrated by removing rows/columns:

A(00) → A(11) → A(10) → A(20) → A(00)

h1 = 3 h2 = 1 h3 = 2 h4 = 1 finished
∗∗◦
∗∗∗∗
∗∗∗∗∗
∗∗∗∗∗
∗∗∗∗∗
∗∗∗∗∗
∗∗∗∗∗
∗∗∗∗∗

◦∗∗
∗∗∗∗
∗∗∗∗
∗∗∗∗
∗∗∗∗∗
∗∗∗∗∗
∗∗∗∗∗

∗◦∗
∗∗∗∗
∗∗∗∗
∗∗∗∗∗
∗∗∗∗∗
∗∗∗∗∗

◦∗∗
∗∗∗
∗∗∗∗
∗∗∗∗∗
∗∗∗∗∗

∗∗∗
∗∗∗∗
∗∗∗∗∗
∗∗∗∗∗

Walk illustrated by erasing rows/columns:

A(00) → A(11) → A(10) → A(20) → A(00)

h1 = 3 h2 = 1 h3 = 2 h4 = 1 finished
∗∗◦
∗∗∗∗
∗∗∗∗∗
∗∗∗∗∗
∗∗∗∗∗
∗∗∗∗∗
∗∗∗∗∗
∗∗∗∗∗

· ·•
◦∗·∗
∗∗·∗∗
∗·∗∗∗
·∗∗∗∗
∗∗∗∗∗
∗∗∗∗∗
∗∗∗∗∗

· ·•
• · · ·
·∗ ·◦∗
∗·∗∗∗
·∗∗∗∗
∗∗∗∗∗
∗∗∗∗∗
∗∗∗∗∗

· ·•
• · · ·
· · ·• ·
◦ · ·∗∗
· ·∗∗∗
·∗∗∗∗
∗∗∗∗∗
∗∗∗∗∗

· ·•
• · · ·
· · ·• ·
• · · · ·
· ·∗∗∗
·∗∗∗∗
∗∗∗∗∗
∗∗∗∗∗

We can easily identify the matrix B in the last diagram.

Figure 1: Diagrams illustrating the first transfer-atrix method

Further, we get h = (3, 1, 2, 1). We have (by the definition of xj)

(00)3 = (11), (11)1 = (10), (10)2 = (20), (20)1 = (00).

Therefore, the closed walk corresponding to p is

A(00)A(11)A(10)A(20)A(00).

The first diagram (in Fig. 1) shows the walk by using the “remove”-process, that is,
removing the first row and column hi in the i’th step).

We write “∗” for “1”, blank for “0”, and mark the column (and row) to be removed
by “◦”.

The second diagram (in Fig. 1) shows the walk by using an “erase”-process (instead of
removing the first row and the hi’th column in the i’th step, we just erase these elements
by changing “∗” to “·” to show the history of the process, moreover, “◦” from previous
steps are marked by “•”).
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3 Second transfer-matrix method.

For 1 6 a 6 d + 1 and 1 6 b 6 d, let

Xa,b = {(x1, x2, . . . , xd) | a = x1 > x2 > · · · > xb > 0 and xi = 0 for i > b}.

For 0 6 a 6 d and 0 6 b 6 d, let

Ya,b = {(x1, x2, . . . , xd) | a = x1 > x2 > · · · > xb > 0 and xi = 0 for i > b}.

Let

Y =

d−1
⋃

a=0

Ya,d−a.

For y = (y1, y2, . . . , yb, 0, 0, . . . , 0) ∈ Xa,b, let

y− = (y2 − 1, y3 − 1, . . . , yb − 1, 0, 0, . . . , 0) ∈ Yy2−1,b−1.

For a pair x,y ∈ X, let Ax,y be the infinite matrix (ai,j) be defined by

ai,j = 0 for j > i + d or i > j + d,

ai,j = 0 for 1 6 i 6 d and i + d − xi < j 6 i + d

ai,j = 0 for 1 6 j 6 d and j + d − yj < i 6 j + d

ai,j = 1 otherwise,

We note that in the first row of this matrix, the first d + 1 − x1 elements are 1, the
remaining are 0.

Let 6 denote the lexicographic ordering, that is

y 6 x if y = x or yi = xi for 1 6 i < j and yj < xj for some j.

We define three classes of pairs of sequences:

Z1 = {(x, 0) | x ∈ Y },

Z2 = {(x,y) | x ∈ Ya,d−a,y ∈ Yb,d−a, where 1 6 b 6 a 6 d − 1 and y 6 x},

Z3 = {(x,y−) | x,y ∈ Xa,d+1−a, where 1 6 a 6 d and x 6 y}.

Let Z = Z1 ∪ Z2 ∪ Z3. A relatively simple calculation shows that

|Z| =
1

2

(

2d

d

)

+ 2d−1.

For x, z ∈ Y , where x 6= z, define U{x,z} = {Ax,z, Az,x}. The set of vertices is defined by

M2 = {U{x,z} | (x, z) ∈ Z}.
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Remark. We have z 6 x for any pair (x, z) ∈ Z. Hence, given U{u,v} ∈ M2, we can
uniquely determine if (u,v) ∈ Z or (v,u) ∈ Z.

Consider U{x,z} ∈ M2 where (x, z) ∈ Z. For 1 6 j 6 d + 1 − x1 there is an arc from
U{x,z} to U{x′,z′}, where

x′ = (x2, x3, . . . , xd, 0)

and
z′ = (z1 + 1, z2 + 1, . . . , zj−1 + 1, zj+1, zj+2, . . . , zd, 0).

This is well defined since for the matrix Ax,z,

ai,d+1−x1
= 1 for 1 6 i 6 2d + 1 − x1,

that is, there are no “extra” zeros in column d + 1 − x1. Moreover, the set of extra zeros
determined by x and the set of extra zeros determined by z are disjoint. We must show
that U{x′,z′} ∈ M2, that is (x′, z′) ∈ Z or (z′,x′) ∈ Z. We split the proof into cases.
Case I) (x, z) ∈ Z1 (where (z = 0). Then x ∈ Xa,l where 1 6 l 6 d − a.
Subcase I.a) j = 1. Then z′ = 0. Hence (x′, z′) ∈ Z1.
Subcase I.b) 1 < j 6 d + 1. Then z′ = (1, 1, . . . , 1, 0, 0, . . . , 0) ∈ X1,j−1 ⊂ Y .
Subsubcase I.b.1) z′ < x′. Then (x′, z′) ∈ Z2.
Subsubcase I.b.2) x′ = 0. Then (z′,x′) ∈ Z1.
Subsubcase I.b.3) x′ = (1, 1, . . . , 1, 0, 0, . . . , 0) ∈ X1,i where i 6 j−1. Then (z′,x′) ∈ Z2.

Case II) (x,y) ∈ Z2. Then x ∈ Xa,l and y ∈ Xb,m where

1 6 b 6 a, 1 6 l 6 d − a, and 1 6 m 6 d − a.

In this case, we get x′ ∈ Xx2,d−1−a ⊂ Yx2,d−x2
since

d − 1 − a = d1 − x1 6 d − 1 − x2 < d − x2.

Subcase II.a) j = 1. Then y′ = (y2, . . . , ym, 0, . . . , 0) ∈ Xy2,m−1. If y′ 6 x′, then
(x′,y′) ∈ Z2 since Xy2,m−1 ⊂ Yy2,d−x2

(because m − 1 6 d − a − 1 < d − x2).

On the other hand, if x′ 6 y′, then

x2 6 y2 and d − 1 − a 6 d − 1 − b 6 d − 1 − y2 < d − y2

and so x′ ∈ Yx2,d−y2
and (y′,x′) ∈ Z2.

Subcase II.b) 1 < j 6 m. Then

y′ = (y1 + 1, y2 + 1, . . . , yj−1 + 1, yj+1, . . . , ym, 0, . . . , 0) ∈ Xy1+1,m−1.

If y′ 6 x′, then (x′,y′) ∈ Z2 since Xy1+1,m−1 ⊂ Yy1+1,d−x2

(because m − 1 6 d − a − 1 < d − x2).
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On the other hand, if x′ 6 y′, we must have x2 6 y2 + 1 and so d − x2 6 d − y2, that is,
x′ ∈ Yx2,d−y2

. Hence then (y′,x′) ∈ Z2.
Subcase II.c) m + 1 6 j 6 d − a. We get

y′ = (y1 + 1, y2 + 1, . . . , ym + 1, 1, . . . , 1, 0, . . . , 0) ∈ Xy1+1,j−1.

We have j − 1 6 d − a − 1 < d − x2. Hence if y′ 6 x′, then (x′,y′) ∈ Z2. On the other
hand, if x′ 6 y′, then m − 1 6 d − a − 1 6 d − y1 − 1 and so x′ ∈ Yx2,d−y1−1. Hence
(y′,x′) ∈ Z2.
Subcase II.d) j = d + 1 − a. We get

y′ = (y1 + 1, y2 + 1, . . . , ym + 1, 1, . . . , 1, 0, . . . , 0) ∈ Xy1+1,d−a.

Subsubcase II.d.1) y′ 6 x′. Then (x′,y′) ∈ Z2.
Subsubcase II.d.2) x′ < y′ and y1 + 1 6 a. Then (y′,x′) ∈ Z2.
Subsubcase II.d.3) y1 + 1 = a + 1. Note that x1 + 1 = a + 1. Let

u = (a + 1, x2 + 1, . . . , xd−a + 1, 0, . . . , 0).

Then u− = x′. Since y 6 x, y′ 6 u. Hence (y′,x′) = (y′,u−) ∈ Z3.

Case III) (x, z) ∈ Z3 where z = y−, x,y ∈ Xa,d+1−a and x 6 y. In this case, we get
x′ ∈ Xx2,d−a ⊂ Y . We have z ∈ Xy2−1,m for some m 6 d − a.
Subcase III.a) j = 1. If z′ = 0, then (x′, z′) ∈ Z1. Otherwise, (x′, z′) ∈ Z2 or (z′,x′) ∈ Z2.
Subcase III.b) j = 1. If z′ = 0, then (x′, z′) ∈ Z1. Otherwise, (x′, z′) ∈ Z2 or (z′,x′) ∈ Z2.
Subcase III.c) 1 < j 6 m. Then

z′ = (y2, y3, . . . , yj−1, yj+1 − 1, . . . , ym − 1, 0, . . . , 0).

Again, (x′, z′) ∈ Z2 or (z′,x′) ∈ Z2.
Subcase III.d) m + 1 6 j 6 d + 1 − a. Then

z′ = (y2, y3, . . . , ym, 1, . . . , 1, 0, . . . , 0).

Subsubcase III.d.1) j 6 d − a or y2 < a. Then (x′, z′) ∈ Z2 or (z′,x′) ∈ Z2.
Subsubcase III.d.2) j = d + 1 − a and y2 = a. Then z ∈ Xa,d−a and so (x′, z′) ∈ Z2 or
(z′,x′) ∈ Z2 also in this case.

An n step path from U{0,0} to U{0,0} will remove the first n rows and the first n columns
of A0,0. Hence, it corresponds to a permutation.

To describe the path that corresponds to a given permutation p ∈ Td,n is similar to
the first transfer-matrix method, but a little more involved. Let p ∈ Td,n, let B be the
matrix corresponding to p, and let q be the permutation corresponding to the transposed
of B.

We start with A0,0. Let Ax,z be the matrix we have after k − 1 steps. Let the first
row of Ax,z be row number r and the first column of Ax,z be column number s of the
original A0,0. Let the number of erased columns j such that j < pr be tk and the number
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of erased rows i such that i < qs be uk. Since A0,0 has a 1 in position (r, pr), Ax,z must
have a 1 in position (1, pr − tk). Similarly, it has a 1 in position (qs − uk, 1). In the k’th
step, if x 6 z, then remove the first row of Ax,z and column number pr − tk. Similarly,
if x > z, then remove the first column and row number qs − uk. By this process, in each
step we remove a row/column pair corresponding to a 1 in matrix B. Hence, the path
corresponds exactly to the permutation p.

Example 4. For d = 2, the vertices are

v1 v2 v3 v4 v5

U{(00),(00)} U{(10),(00)} U{(10),(10)} U{(11),(00)} U{(20),(00)}

A(00),(00) → A(11),(00) → A(10),(00) → A(00),(10) → A(00),(00)

∗∗◦
∗∗∗∗
∗∗∗∗∗
∗∗∗∗∗
∗∗∗∗∗
∗∗∗∗∗
∗∗∗∗∗
∗∗∗∗∗

· ·•
◦∗·∗
∗∗·∗∗
∗·∗∗∗
·∗∗∗∗
∗∗∗∗∗
∗∗∗∗∗
∗∗∗∗∗

· ·•
• · · ·
·∗ ·∗∗
◦·∗∗∗
·∗∗∗∗
∗∗∗∗∗
∗∗∗∗∗
∗∗∗∗∗

· ·•
• · · ·
· · ·◦∗
•· · · ·
·∗∗∗∗
∗∗∗∗∗
∗∗∗∗∗
∗∗∗∗∗

· ·•
• · · ·
· · ·• ·
• · · · ·
· ·∗∗∗
·∗∗∗∗
∗∗∗∗∗
∗∗∗∗∗

Figure 2: Walk in second method for the permutation (3142) illustrated by erasing
rows/columns

The transfer matrix is

v1 v2 v3 v4 v5

v1 1 1 0 1 0
v2 1 1 0 0 0
v3 1 0 0 0 1
v4 0 1 1 0 0
v5 1 0 0 0 0

Hence

det(K)

det(I − zT )
=

det









1 − z 0 0 0
0 1 0 −z
−z −z 1 0
0 0 0 1









det













1 − z −z 0 −z 0
−z 1 − z 0 0 0
−z 0 1 0 −z
0 −z −z 1 0
−z 0 0 0 1













=
1 − z

1 − 2z − 2z3 + z5
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as before, but now with a 5×5 matrix. Also gcd(det(K), det(I−Tz)) = 1 in this case. The
diagram in Fig. 2 shows the walk for the permutation (3142) by using the “erase”-process
for this graph.

4 On deg fd(z) and deg gd(z).

In Theorem 1 we showed that the generating function for V (d, n) is a rational function
fd(z)/gd(z).

Theorem 2. For all d > 1 we have

deg fd(z) 6 deg gd(z) − 2d. (2)

Proof. Consider the matrix K in Theorem 1. Since t(d00...0),y = 1 only for y = (000 . . . 0),
the row (d00 . . . 0) in K contains a single 1 (in column (d00 . . . 0)) and zeros otherwise.
Hence we can remove row and column (d00 . . . 0) in K without changing the value of
det(K). Similarly, t(dd00...0),y = 1 only for y = (d00 . . . 0). Hence, the reduced matrix K
contains a single 1 in row (dd00 . . .0) and so row and column (dd00 . . .0) in K can also be
removed without changing the value of det(K). The same argument and induction shows
that we can remove all d rows and columns (dd . . . d00 . . . 0).

Column (111 . . . 1) contains a single 1 since tx,(111...1) = 1 only for x = (000 . . . 0).
Hence row and column (111 . . . 1) can also be removed without changing the value of
det(K). In general, for 1 6 r 6 d, tx,(rrr...r) = 1 only for x = (r−1, r−1, r−1, . . . , r−1).
Hence, induction shows that all rows and columns (rrr . . . r) can also be removed without
changing the value of det(K) for r = 1, 2, . . . , d−1 (note that (ddd . . . d) has already been
removed). In all we can remove 2d − 1 row/column pairs. The reduced matrix with the
same determinant as K has dimension 2r less than the dimension of T .

The second transfer-matrix method shows that

deg gd(z) 6 |Z| = 2d−1 +
1

2

(

2d

d

)

. (3)

We have computed the generating functions for d 6 6. They are listed in the appendix
of [3]. For these examples, we have equality in both (3) and (2). This limited evidence
indicate that we may have equality in both (3) and (2) in general. In particular, this
would imply that

gcd(det(K)), det(I − zT )) = 1

for the second transfer-matrix method, and that the matrix in the second transfer-matrix
method is smallest possible for any transfer-matrix for this problem.
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