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Abstract

Let r(c) be the least positive integer n such that every two coloring of the
integers 1,...,n contains a monochromatic solution to 1 4+ z3 + ¢ = 3x3. Verifying
a conjecture of Martinelli and Schaal, we prove that

2[2£¢] + ¢
o[

for all ¢ > 13, and

for all ¢ < —4.

Section 1. Introduction

Let N denote the set of positive integers, and [a,b] = {n € N:a < n < b}. A map
X : |a,b] — [1,1] is a t-coloring of [a,b]. Let L be a system of equations in the variables
T1,...,Tm. A positive integral solution ny, ..., n,, to L is monochromaticif x(n;) = x(n;),
forall 1 < i,j < m. The t-color generalized Schur number of L, denoted S;(L), is the least
positive integer n, if it exists, such that any t-coloring of [1, n] results in a monochromatic
solution to L. If no such n exists, then S;(L) is oo.
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A classical result of Schur [5] states that S;(L) < oo for L = {1 + z2 = x3} and all
t > 2. An exercise is to show that S;(L) = oo for L = {x+y = 3z}. Very few generalized
Schur numbers are known, but several recent papers have revived interest in determining
some of them (for example [1, 2, 3, 4]).

In this paper we answer a conjecture posed by Martinelli and Schaal [3] concerning
the 2-color generalized Schur number of the equation x; + x5 + ¢ = 3x3. This number is
denoted r(c). Verifying the conjecture, we prove in section that

[2[ 2] 4 ¢
r(c) = 3 |’
for all ¢ > 13, and we prove in section that
Far3=e] _ o]
r(c) = e 2; ap

for all ¢ < —4. Martinelli and Schaal were motivated to consider a more general equation
r1 + x9 + ¢ = kxg,

where ¢ is an arbitrary integer and k is a positive integer. They denote the 2-color
generalized Schur number of this equation by r(c, k). They prove that r(c, k) = oo for
any odd ¢ and even k, and give a general lower bound. In section we briefly examine this
general lower bound.

Section 2. Positive c
In this section we prove that
—‘ , for all ¢ > 13. (1)

In their paper, Martinelli and Schaal show that this is a lower bound for 7(c) (see Lemma
2 of [3]) so it suffices to prove that this is an upper bound. They also note that for positive
values of ¢ less than 13, the bound given by (1) is too small.

It is convenient for us to assume ¢ > 48 since this guarantees that M, (defined later
in Lemma 2) is at least six. The reader can verify the conjecture for values 13 < ¢ < 48.
As an example, we will show that the conjecture is true for ¢ = 24; a similar argument
may be used to verify the conjecture for other values of c¢. Let ¢ = 24. The claim is
that r(24) = 14. We must show that any 2-coloring of [1, 14| contains a monochromatic
solution to x; + @9 + 24 = 3x3. Assume that the two colors used in the coloring of [1, 14]
are red and blue. Consider two cases according to whether the values 2 and 9 have the
same color or opposite color. If 2 and 9 are the same color, say red, then

94+9+24 = 3(14) so we may assume that 14 is blue.

142424 = 3 (9) so we may assume that 1 is blue.
2+13+24 = 3(13) so we may assume that 13 is blue.
1+14424 = 3(13) is now all blue.
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If 2 is red and 9 is blue, then

9+9+24 3(14) so we may assume that 14 is red.
2+13+24 3(13) so we may assume that 13 is blue.
94+6+24 = 3(13) so we may assume that 6 is red.
14+4424 = 3(14) so we may assume that 4 is blue.
4+ 11424 = 3(13) so we may assume that 11 is red.
6+12+24 = 3(14) so we may assume that 12 is blue.
9+3+24 = 3(12) so we may assume that 3 is red.
3+6+24 = 3(11) is now all red.

We shall omit further details for values of ¢ < 48.
For the remainder of this section we shall assume that ¢ > 48,

N [2(2%;1 +1 |

and y : [1, N] — {red, blue} is a 2-coloring of the integers in the interval [1, N] such that
there is no monochromatic solution to z; + x5 + ¢ = 3xs.

Lemma 1 (Cascade Lemma) Ifx € [1,N], x = c (mod 2), and v > 5, then
x(@) = x(z = 1) = x(x = 2).

Proof. First we prove that x(z) = x(z — 2) by contradiction. Assume x(z) # x(z — 2).
Without loss of generality, y(z) = red and y(x — 2) = blue. Because x = ¢ (mod 2), the

value 32=¢ is an integer. To avoid a monochromatic solution to x; + x5 + ¢ = 33,

2
3r — ¢ 3r — ¢ 3z —c\ .
< 5 )+< 5 )—l—c-?m = ( 5 )1sblue.

2r—c)+x+c=3x = 2x—cis blue

(BI; C) n (39“"2_6 —6) Ye=3-2) = (BIQ_C —6) is red.

<3x2_c—12)+<3x2_c)+c:3(a:—4) = (3:52—@_12) is red.

(3x2_c—6)+<3I2_C—12)+c:3(x—6) = (¢ —6)is blue.

Similarly,
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Notice that the hypothesis # > 5 and ¢ > 48 guarantees that all of the intermediate
numbers in these calculations are in the range 1,..., N. Now there is the following

monochromatic solution to x; + x5 + ¢ = 3x3:
(2x —c¢)+ (x —6) + ¢ = 3(z — 2),

a contradiction.

Now we prove, also by contradiction, that y(z) = x(z—1). Without loss of generality,
assume x(x) = red and x(x — 1) = blue. Note that the argument above shows that
X(x —2) = x(x) = red. Therefore,

2x — ¢ is blue.

<3x2_ C) is blue.

r+ (22 —c)+c=3x

3r — ¢ L 3r —c¢ fe—3
5 5 c= 3z

2z —c)+(x—3)+c=3(x—-1) (x — 3) is red.

3r — ¢ 3r — ¢ 3r —c .
(B5) (Bt = (250w

Now there is the following monochromatic solution to z7 + x5 + ¢ = 3x3:

<%50—3)+<mgw—3)+c=%$—%,

a contradiction. o

vl

For positive values of ¢ of the form ¢ =9s+1¢ (0 <t < 8), we have

(1 if ¢ =0or 1
2 if ¢ = 2
2[%1"‘ 3 ift=3o0r4
N‘[ 3 W‘5“% 4 if £ =5 or 6
5 if ¢ =7
| 6 if ¢ = 8.

Because ¢ = 9s + t is even if and only if s = ¢ (mod 2), the description of N above shows
N = ¢ (mod 2) if and only if ¢ # 0,4, or 5 (mod 9). A consequence of this and the last
part of Lemma 1 is that we can now easily describe a large subinterval of [1, N| that must
be monochromatic.

Corollary 1 The interval Wy = [my, My] is monochromatic, where my := [%w and

N—-1 ifc=0,4, or5 (mod9)
M1 =
N otherwise

Proof. This follows from the prior lemma. o

The large monochromatic interval W implies the existence of another large monochro-
matic interval, as shown in the next lemma.

THE ELECTRONIC JOURNAL OF COMBINATORICS 16 (2009), #R105 4



Lemma 2 (Domino Lemma) The interval Wy = [mgy, Ms] is monochromatic with color
different than the color on the interval Wy, where mo =1 and My = 3M; — mq — c.

Proof. Corollary 1 implies that the interval W, = [my, M;] is monochromatic. Consider
the set
S={t:1<t< N and a+t+c=33, for some «, 5 € Wi}.

Because all values in W; have the same color, all values in S have the same color — the
color opposite the one given the values in Wj. It suffices to prove that [1, Ms] C S.
If « =my and 8 = M, then t = M, so My € S. Suppose now that 1 <t € S via

a+t+c= 343, for some o, 3 € W.

We shall prove that t — 1 € S.

Ifa+1¢ W) and a—2 ¢ Wy, then M; —my < 1 which implies N —1—(¢—1)/2 < 1,
and thus ¢ < 27, a contradiction. In the case that o +1 ¢ Wy and § — 1 & W7, it follows
that o« = M; and 3 = m; so

1<t = 3—a—c
3m1—M1—c
c
< i _1) —
< 3(2) (N—1)—c
< 0,

a contradiction.

So, either a« +1 € Wy or a — 2,6 —1 € Wj. In the former case, the equation
(o +1)+ (t — 1)+ c = 30 implies that ¢t — 1 € S. In the latter case, the equation
(a=2)+(t—1)+c=3(8—1) implies t — 1 € S. Either way, t —1 € S, so [1,My] C S
as desired. o

Now we are ready to prove the Martinelli-Schaal conjecture for large positive c.

2[%]—1—0
3
interval [1, N| produces a monochromatic solution to x1 + xe + ¢ = 3xg. It follows that

r(c) = N.

Theorem 1 Assume ¢ > 48 and N = W Any 2-coloring of the integers in the

Proof. Corollary 1 guarantees the interval W; = [my, M;] is monochromatic, say red.
Lemma 2 ensures the interval Wy = [1, M5] is monochromatic of the opposite color, blue.
We now consider the following two cases.

CASE 1: ¢ # 0,4, or 5 (mod 9).
In this case, as noted earlier, N = ¢ (mod 2) which implies M; = N. In particular, N
is red because it is a member of W;.
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Consider the elements 1, N, %, w}ﬁ. Observe that for ¢ of the form ¢ = 9s + ¢
(0<t<8)

(1 ift =1

3 if ¢ =2

ON —5¢—-2 | 5 if t =3
2 ) 2 if t =6

4 if t =7

6 if t = 8.

\

Because ¢ > 48, the value My > 6 so (9]\[_7250_2) is blue. Therefore,

N —bc—2 N — N —
1+ (&) 4+¢=3 (3 C) implies (3 5 C) is red.

2 2

Now there is the following monochromatic solution to xy + x5 + ¢ = 3x3:

(55 (52 e

CASE 2: ¢=0,4, or 5 (mod 9).

In this case, N # ¢ (mod 2), which implies M; = N — 1. In particular, N is not a
member of Wj.

Consider the elements 1, N, 2N — ¢, 38=c=1 3N-ctl 9N-5eb ON-Setl - Opgserve that for
c of the form ¢ =9s+¢ (0 <t < 8)

2 ift=0
%X:;&:?Z 1 ift =4
3 ift=>5
Therefore, because M, > 6, both 2 _250_5 and 2 _250“ are blue. Consequently,
9N —bc—5 3N —c—1 . 3N —c—1Y\ .
1+l —— | +ec=3 —— implies —— ] isred,
2 2 2
and
9N —bc+1 3N —c+1 L 3N —c+1Y\ .
1+ — s +c=3 — implies —— ) ® red.

Now 2N —¢ < My = 3M; —my —c=3(N — 1) —my — ¢, because m; < N —3. So 2N —¢
is also blue. Hence

N+ (2N —c¢)+c=3N implies N is red.

Now there is the following monochromatic solution to z1 + x5 + ¢ = 3x3:

<3N—20—1> N <3N—2c+1) Le=3(V).
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Section 3. Negative c

In this section we prove that

r(c) = {@1 , for all ¢ < —4. 2)

In their paper, Martinelli and Schaal show that this is a lower bound for 7(c) (see Lemma
3 of [3]) so it suffices to prove that this is an upper bound. They also note that for
negative values of ¢ greater than —4, the bound given by (2) is too small. It is convenient
for us to assume ¢ < —35; the reason for this assumption is this value conveniently is
enough to guarantee % > 5 via Lemma 4. The reader can verify the conjecture for
values —35 < ¢ < —4 as illustrated in the previous section for positive c.

For the remainder of this section we shall assume that ¢ < —35,

-]

and y : [1, N] — {red, blue} is a 2-coloring such that there is no monochromatic solution
to x1 + 2o + ¢ = 3xs.

Lemma 3 Ifz >5,2r—2—c < N, and x = ¢ (mod 2), then x(x) = x(x—1) = x(z—2).
Proof. We shall argue by contradiction. First assume, to the contrary, that x(z) #
x(x — 1). Without loss of generality, y(z) = red and y(z — 1) = blue. By assumption
2r —2 —c¢ < N and x = ¢ (mod 2), so the following equations involve integers in the

interval [1, N]:

2z —2—-c)+(r—1)+c=3(x—-1) = 22—-2—cisred.

3r — ¢ 3r — ¢ 3r—rc\ .

( > )+< 5 )—l—c—Bx = ( 5 >1sblue.
3r — 3r — 3r —
<$2 C>+<$26_3)+c:3($—1) = (SEQC—B) is red.

2r—2—c¢)+(x+2)+c=3x =  x+2isblue.
<3x2_c—3)+(3x2_c+3)+c:3x = (3I2_C+3) is blue.

Now the following equation is all blue

3T — 3T —
(a:2 C+3)+< ZB2 C+3)+c:3(:)3+2),

a contradiction. Therefore, x(z) = x(z — 1).
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Now let’s assume that x(z) # x(z — 2). Without loss of generality, y(z) = red =
Xx(x — 1) and x(x — 2) = blue. By assumption z > 5, 2z —2 — ¢ < N and x = ¢ (mod 2),
so the following equations involve integers in the interval [1, V]:

2 —2—-c¢)+(x—-1)+c=3x—-1) =  22—2—cisblue.

3r — ¢ 3r —c¢ 3r—c\ .
( 5 )—I—( 5 )+C—3:L’ < 5 )1sblue.

=
2 —2—c¢)+(r—4)4+c=3(x—-2) =  x—4isred.
=

3z —¢ 3z —¢ 3r —c .
() (B oo = (20)

Now the following equation is all red

<3x2—0_6)+<35’52_C_6)+c:3(x—4),

a contradiction. Therefore, x(z) = x(z — 1) = x(xz — 2), as desired. o

In light of Lemma 3, it is natural now to define m this way
m:=max{r:5<x < Nand 2z —2—c < N and x = ¢ (mod 2)}.
It is useful to give a lower bound for m. Observe that if m exists, m > 5 by definition.

Lemma 4 For all c < —35, m exists and

5—c
> .
g

Proof. Because of its definition, m is at least 5 and is the maximum integer satisfying
2m — 2 —c < N and m = ¢ (mod 2). Because we assume ¢ < —35, we shall see that m
exists. Assuming that the right-hand side of (3) is at least 5, the definition of m shows
that

£ it [25£22] = (mod 2)
m = (3)

[WJ -1 otherwise.

For values of ¢ < —4, we have the following:

12 — 5¢ if c=0 (mod 4)
AN — 4 3[5¢1—¢c] ) 9-5¢ if c=1 (mod 4)
N 2 ) 14-5¢ if ¢ =2 (mod 4)
11— 5¢ if c=3 (mod 4)
From this one can show that
20—c¢ if c=0 (mod 4)
g N+c+2\ | 17-c¢ if c=1 (mod 4)
2 ) 22—c¢ if ¢ =2 (mod 4)
9—c¢ if c =3 (mod 4)
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Accordingly, to determine whether [WJ = ¢ (mod 2) there are sixteen cases to
consider depending on the residue of ¢ modulo 16. We show the extremal case, ¢ =
13 (mod 16), and leave the remaining similar cases to the reader.

Assume that ¢ = 13 (mod 16), say ¢ = —16p — 3, for some positive integer p. An easy
computation reveals that N = 20p + 6. Therefore,

{N+c+2J B {4})%—5

=2+ 2.
2 2J Pt

Note that the floor function caused the fraction to be reduced by a half. Now, to determine
m, another reduction is required because 2p+2 is even, whereas cis odd. Hence m = 2p+1;

that is m = %. This residue for ¢ modulo 16 causes the greatest reductions and so
determines the lower bound for m. Choosing ¢ < —35 guarantees that the right-hand side
of (3) is indeed at least 5 as needed. o

We assume that ¢ < —35, since this value conveniently is enough to guarantee % > 5
via Lemma 4; that is, m > 6 since m is an integer.

Corollary 2 Assume ¢ < —35. The interval [1,m] is monochromatic.

Proof. Apply induction on j to prove that m—2j5—1 and m—2j —2 have the same color as
m. The basis case, j = 0, states that m — 1 and m — 2 have the same color as m, which is
a consequence of Lemma 3. Assume now that 7 > 0 and that m,m—1,...,m —2j are all
monochromatic. Because m = ¢ (mod 2), it follows that m — 2j = ¢ (mod 2). Therefore,
if m — 25 > 5, then Lemma 3 applies and shows that m — 2j,m — 25 — 1,m — 25 — 2 all
have the same color. Thus, m,m —1,...,4 all have the same color, say red. It suffices to
show that 1,2, 3 are also red. Because m > 6, we have for ¢ = 3,2, 1 in this order,

B4+i1)+(2i—c)+c=3(i+1) = 2i—cisblue.
(i)+(2i—c)+c=3(i) = iisred.

o

The monochromatic interval [1, m] forces another large monochromatic interval as the
next lemma shows.

Lemma 5 Define M = 3 —c —m. The interval [M,N] is monochromatic with color
opposite the color given to elements of the interval [1, m].

Proof. Set W = [1,m]. Consider the set
S:={t:xz+t+ c= 3y for some z,y € W}.

Observe that because Corollary 2 guarantees that the interval W is monochromatic, the
elements of S must all have color opposite the color given to elements in W. So it suffices
to show that S contains the interval [M, N].
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Notice that M € S because 1, m € W and, by definition, m + M + ¢ = 3(1). Suppose
now that t € S via x +t + ¢ = 3y for some 1 < z,y < m. We shall prove that t +1 € S,
provided that t < N.

If 2 —1€ W, then (x — 1)+ (t + 1) + ¢ = 3y shows that ¢t + 1 € S. Otherwise z € W
and x — 1 ¢ W implies that x = 1. We may assume now that x = 1, so in particular, by
assumption x +2 € Wsince m > 5. If y+1 € W, then (z+2)+ (t+1)+c=3(y+1)
shows that ¢t + 1 € S. Otherwise y € W and y + 1 ¢ W implies that y = m. Therefore,
1+t+4+c=3m;that is, t =3m — ¢ — 1. Lemma 4 shows m > %, SO

t = 3m—c—1

> 3(5;0)—0—1

7—1lc

8
N.

V

Now we are ready to prove the Martinelli-Schaal conjecture for ¢ < —35.

3[%]—0
2

interval [1, N| produces a monochromatic solution to xy + xo + ¢ = 3xs. It follows that
r(c) = N.

Theorem 2 Assume ¢ < —35 and N = -‘ . Any 2-coloring of the integers in the

Proof. For values of ¢ < —4, recall that

12 — 5¢ if c=0 (mod 4)

3[3<] — — if c =
an — o | B ] ) 9-5e %fc:l(modél)
2 14 — 5¢ if ¢ =2 (mod 4)
11 —5¢ if ¢ =3 (mod 4)

Corollary 2 guarantees the interval [1, m] is monochromatic, say red. Lemma 5 ensures
the interval [M, N|, where M = 3 — ¢ — m, is monochromatic of the opposite color, blue.
We consider four cases according to the residue of ¢ modulo 4.

CASE 1: ¢ =0 (mod 4).
Consider the elements 1, N,N — 1, N — 2. Now

12 — 5¢ 12 — 5¢ c c .
( . )+( 1 )+c_3<2—§):>2—§1sred,

12 — 5¢ 12 — 5¢ c c .
< - —1)+( v —2)+c—3<1—§>:>1—§1sred,

SO (2—%)+<1—§>+c:3-1isallred.
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We need to verify that M < N —2. We have M = 3 —c—m and, by Lemma 4, m > %,

soM:3—c—m<3—c+%:%. Now 19g70< —%:N—2ifandonlyif
cé—%,soMgN—Z

CASE 2: ¢ =1 (mod 4).
We need only look at 1 and N:

9 — b5c¢ 9 — b5¢ 3—c 3—c\ .

( 1 )+( 1 )+C—3( 5 ):><?) is red, and
3—c 3—c .
<2 )+< 5 )+C—3-11sallred.

CASE 3: ¢ =2 (mod 4).
Consider the red element 1 and blue elements N, N — 1, N — 3. Then

14 — 5¢ 14 — 5¢ c c .
< - —1)+< v —3)+c—3<1—§>:>1—§1sred,

14 -5 14 -5
( 1 C)_q_( 1 0—1)+c:3<2—§>:>2—§isred,andso

(1—%)—|—<2—§>+c:3-1isallred.

It is easily verified in a manner similar to Case 1 that M < N — 3.

CASE 4: ¢ =3 (mod 4).
Consider the red element of 1 and blue elements N, N — 1. We have

11 — 5¢ 11 — 5¢ 3—c¢ 3—c.

( . )+< I —1)+c-3< 5 ):> 5 is red, and
3—c 3—c .
<2 )+< 5 )+c—3~1lsallred.

Again, it is easy to verify in a manner similar to Case 1 that M < N — 1. o

Section 4. x; + 29+ ¢ = kx3

In this section we briefly address the function r(c, k) which is defined (for every positive
integer k and every integer c¢) to equal the smallest integer n, provided that it exists,
such that every 2-coloring of [1,n] has a monochromatic solution to x; + xo + ¢ = kxs.
Martinelli and Schaal prove the lower bound

9[2+c
r(c, k) > {#—‘ , for all ¢,k > 0. (4)

This lower bound is achieved for infinitely many values of ¢ and k as the next proposition
shows.
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Proposition 1 If m is a positive integer, k = 2m + 1 and ¢ = m(2m + 1)?, then

r(e k) — [72(27? * ﬂ

= (m+1)(2m+1).
Proof. Let k =2m+1, c=m(2m + 1)?> and r = (m + 1)(2m + 1). Because of the lower

bound (4), it suffices to prove that every 2-coloring of [1,r], using colors red and blue say,
results in a monochromatic solution to x1 + x5 + ¢ = kxz. Without loss of generality, r is
red. We now prove by induction on j, for j = 0,...,m that if r —j is red, then r — (j+ 1)k
is blue and r — (5 + 1) is red. If r — j is red, then for these values of k, ¢, and r:
r—G+Dk)+r4+c=k(r—j) = (r—(j+1)k) is blue.
r—G+Dk)+(r—k) +c=k(r—(G+1)) = (r—(+1))is red.
It follows that r —m and r — (m + 1) are both red. Therefore, we have a monochromatic
solution to x1 + x9 + ¢ = kuxg:
(r—m)+(r—(m+1))+c=kr
o

Finally we illustrate an infinite number of values of ¢ and k for which the bound (4) is
not sharp.

Proposition 2 If m > 2 is a positive integer, k = 2m +1 and ¢ = m(2m + 1)> + 1, then

(e k) > [LTT ha 1

= (m+1)2m+1).

Proof. Let k =2m+1,c=m2m+1)2+1=mk*+1andr = k(m+1) =2m?>+3m+1.
Consider this 2-coloring of [1, 7] into red (R) and blue (B):

R = {1,....2m* +m -2 u{2m?* + m}uU {2m* + 3m + 1}
B = {2m*+m—-1}u{2m*+m+1,...,2m* + 3m}.
We must prove that there are no monochromatic 1, zo, x3 € [1,7] that satisfy
1+ oy +m2m+ 1)+ 1= (2m + 1)s. (5)

If 23 < 2m?+m, then kxs < c and therefore z1 + x5 < 0, which clearly has no solution
n [1,7]. So we may assume that zz > 2m? + m.
CASE 1: 23 € R

Because z3 > 2m?* + m, we have x3 = 2m? + 3m + 1, so from (5) we find 1 + x5 =
4m? 4+ 4m which has no solution in R.
CASE 2: 23 € B

Since x3 < 2m? + 3m, from (5) we find z1 + 2o < 4m? + 2m — 1 which implies, if
21,9 € B, that 21 = 2o = 2m? + m — 1. But these values for z; and x5 do not produce,
from (5), a value of z3 in B. o
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