Generalized Schur Numbers for $x_{1}+x_{2}+c=3 x_{3}$

André E. Kézdy
Department of Mathematics
University of Louisville
Louisville, KY 40292 USA
kezdy@louisville.edu

Hunter S. Snevily
Department of Mathematics
University of Idaho
Moscow, ID 83844 USA
snevily@uidaho.edu

Susan C. White
Department of Mathematics
University of Louisville
Louisville, KY 40292 USA
susan.white@louisville.edu

Submitted: Jul 10, 2008; Accepted: Jul 30, 2009; Published: Aug 14, 2009
Mathematics Subject Classification: 05D10

Abstract

Let $r(c)$ be the least positive integer n such that every two coloring of the integers $1, \ldots, n$ contains a monochromatic solution to $x_{1}+x_{2}+c=3 x_{3}$. Verifying a conjecture of Martinelli and Schaal, we prove that

$$
r(c)=\left\lceil\frac{2\left\lceil\frac{2+c}{3}\right\rceil+c}{3}\right\rceil,
$$

for all $c \geqslant 13$, and

$$
r(c)=\left\lceil\frac{3\left\lceil\frac{3-c}{2}\right\rceil-c}{2}\right\rceil,
$$

for all $c \leqslant-4$.

Section 1. Introduction

Let \mathbb{N} denote the set of positive integers, and $[a, b]=\{n \in \mathbb{N}: a \leqslant n \leqslant b\}$. A map $\chi:[a, b] \rightarrow[1, t]$ is a t-coloring of $[a, b]$. Let L be a system of equations in the variables x_{1}, \ldots, x_{m}. A positive integral solution n_{1}, \ldots, n_{m} to L is monochromatic if $\chi\left(n_{i}\right)=\chi\left(n_{j}\right)$, for all $1 \leqslant i, j \leqslant m$. The t-color generalized Schur number of L, denoted $S_{t}(L)$, is the least positive integer n, if it exists, such that any t-coloring of $[1, n]$ results in a monochromatic solution to L. If no such n exists, then $S_{t}(L)$ is ∞.

A classical result of Schur [5] states that $S_{t}(L)<\infty$ for $L=\left\{x_{1}+x_{2}=x_{3}\right\}$ and all $t \geqslant 2$. An exercise is to show that $S_{4}(L)=\infty$ for $L=\{x+y=3 z\}$. Very few generalized Schur numbers are known, but several recent papers have revived interest in determining some of them (for example $[1,2,3,4]$).

In this paper we answer a conjecture posed by Martinelli and Schaal [3] concerning the 2-color generalized Schur number of the equation $x_{1}+x_{2}+c=3 x_{3}$. This number is denoted $r(c)$. Verifying the conjecture, we prove in section that

$$
r(c)=\left\lceil\frac{2\left\lceil\frac{2+c}{3}\right\rceil+c}{3}\right\rceil,
$$

for all $c \geqslant 13$, and we prove in section that

$$
r(c)=\left\lceil\frac{3\left\lceil\frac{3-c}{2}\right\rceil-c}{2}\right\rceil,
$$

for all $c \leqslant-4$. Martinelli and Schaal were motivated to consider a more general equation

$$
x_{1}+x_{2}+c=k x_{3}
$$

where c is an arbitrary integer and k is a positive integer. They denote the 2 -color generalized Schur number of this equation by $r(c, k)$. They prove that $r(c, k)=\infty$ for any odd c and even k, and give a general lower bound. In section we briefly examine this general lower bound.

Section 2. Positive c

In this section we prove that

$$
\begin{equation*}
r(c)=\left\lceil\frac{2\left\lceil\frac{2+c}{3}\right\rceil+c}{3}\right\rceil, \text { for all } c \geqslant 13 \tag{1}
\end{equation*}
$$

In their paper, Martinelli and Schaal show that this is a lower bound for $r(c)$ (see Lemma 2 of [3]) so it suffices to prove that this is an upper bound. They also note that for positive values of c less than 13 , the bound given by (1) is too small.

It is convenient for us to assume $c>48$ since this guarantees that M_{2} (defined later in Lemma 2) is at least six. The reader can verify the conjecture for values $13 \leqslant c \leqslant 48$. As an example, we will show that the conjecture is true for $c=24$; a similar argument may be used to verify the conjecture for other values of c. Let $c=24$. The claim is that $r(24)=14$. We must show that any 2 -coloring of $[1,14]$ contains a monochromatic solution to $x_{1}+x_{2}+24=3 x_{3}$. Assume that the two colors used in the coloring of $[1,14]$ are red and blue. Consider two cases according to whether the values 2 and 9 have the same color or opposite color. If 2 and 9 are the same color, say red, then

$$
\begin{aligned}
9+9+24 & =3(14) \quad \text { so we may assume that } 14 \text { is blue. } \\
1+2+24 & =3(9) \quad \text { so we may assume that } 1 \text { is blue. } \\
2+13+24 & =3(13) \quad \text { so we may assume that } 13 \text { is blue. } \\
1+14+24 & =3(13) \quad \text { is now all blue. }
\end{aligned}
$$

If 2 is red and 9 is blue, then

$$
\begin{aligned}
9+9+24 & =3(14) \\
2+13+24 & =3(13) \\
9+6+24 & =3(13)
\end{aligned} \quad \begin{aligned}
& \text { so we may assume that } 14 \text { is red. } \\
& 14+4+24 \\
& =3(14) \\
& 4+11+24
\end{aligned}=3(13) \quad \text { so we may assume that } 13 \text { is blue. } \quad \text { so we may assume that } 6 \text { is red. } . ~ \text { so may assume that } 4 \text { is blue. } 11 \text { is red. } \text {. }
$$

We shall omit further details for values of $c \leqslant 48$.
For the remainder of this section we shall assume that $c>48$,

$$
N=\left\lceil\frac{2\left\lceil\frac{2+c}{3}\right\rceil+c}{3}\right\rceil,
$$

and $\chi:[1, N] \rightarrow\{$ red, blue $\}$ is a 2-coloring of the integers in the interval $[1, N]$ such that there is no monochromatic solution to $x_{1}+x_{2}+c=3 x_{3}$.

Lemma 1 (Cascade Lemma) If $x \in[1, N], x \equiv c(\bmod 2)$, and $x>\frac{c}{2}$, then

$$
\chi(x)=\chi(x-1)=\chi(x-2) .
$$

Proof. First we prove that $\chi(x)=\chi(x-2)$ by contradiction. Assume $\chi(x) \neq \chi(x-2)$. Without loss of generality, $\chi(x)=$ red and $\chi(x-2)=$ blue. Because $x \equiv c(\bmod 2)$, the value $\frac{3 x-c}{2}$ is an integer. To avoid a monochromatic solution to $x_{1}+x_{2}+c=3 x_{3}$,

$$
\left(\frac{3 x-c}{2}\right)+\left(\frac{3 x-c}{2}\right)+c=3 x \quad \Rightarrow \quad\left(\frac{3 x-c}{2}\right) \text { is blue. }
$$

Similarly,

$$
\begin{aligned}
&(2 x-c)+x+c=3 x \Rightarrow \\
&\left(\frac{3 x-c}{2}\right)+\left(\frac{3 x-c}{2}-6\right)+c=3(x-2) \Rightarrow \\
&\left(\frac{3 x-c}{2}-6\right)+\left(\frac{3 x-c}{2}-6\right) \text { is red. } \\
&\left(\frac{3 x-c}{2}-6\right)+c=3(x-4) \Rightarrow \\
&(x-4) \text { is blue. } \\
&\left(\frac{3 x-c}{2}-6\right)+\left(\frac{3 x-c}{2}\right)+c=3(x-4) \Rightarrow \\
& 2\left(\frac{3 x-c}{2}-12\right) \text { is red. } \\
&\Rightarrow 12)+c=3(x-6)
\end{aligned} \quad \Rightarrow \quad(x-6) \text { is blue. } .
$$

Notice that the hypothesis $x>\frac{c}{2}$ and $c>48$ guarantees that all of the intermediate numbers in these calculations are in the range $1, \ldots, N$. Now there is the following monochromatic solution to $x_{1}+x_{2}+c=3 x_{3}$:

$$
(2 x-c)+(x-6)+c=3(x-2),
$$

a contradiction.
Now we prove, also by contradiction, that $\chi(x)=\chi(x-1)$. Without loss of generality, assume $\chi(x)=$ red and $\chi(x-1)=$ blue. Note that the argument above shows that $\chi(x-2)=\chi(x)=$ red. Therefore,

$$
\begin{aligned}
x+(2 x-c)+c=3 x & \Rightarrow \quad 2 x-c \text { is blue. } \\
\left(\frac{3 x-c}{2}\right)+\left(\frac{3 x-c}{2}\right)+c=3 x & \Rightarrow \quad\left(\frac{3 x-c}{2}\right) \text { is blue. } \\
(2 x-c)+(x-3)+c=3(x-1) & \Rightarrow \quad(x-3) \text { is red. } \\
\left(\frac{3 x-c}{2}\right)+\left(\frac{3 x-c}{2}-3\right)+c=3(x-1) & \Rightarrow \quad\left(\frac{3 x-c}{2}-3\right) \text { is red. }
\end{aligned}
$$

Now there is the following monochromatic solution to $x_{1}+x_{2}+c=3 x_{3}$:

$$
\left(\frac{3 x-c}{2}-3\right)+\left(\frac{3 x-c}{2}-3\right)+c=3(x-2)
$$

a contradiction.
For positive values of c of the form $c=9 s+t(0 \leqslant t \leqslant 8)$, we have

$$
N=\left\lceil\frac{2\left\lceil\frac{2+c}{3}\right\rceil+c}{3}\right\rceil=5 s+ \begin{cases}1 & \text { if } t=0 \text { or } 1 \\ 2 & \text { if } t=2 \\ 3 & \text { if } t=3 \text { or } 4 \\ 4 & \text { if } t=5 \text { or } 6 \\ 5 & \text { if } t=7 \\ 6 & \text { if } t=8\end{cases}
$$

Because $c=9 s+t$ is even if and only if $s \equiv t(\bmod 2)$, the description of N above shows $N \equiv c(\bmod 2)$ if and only if $c \not \equiv 0,4$, or $5(\bmod 9)$. A consequence of this and the last part of Lemma 1 is that we can now easily describe a large subinterval of $[1, N]$ that must be monochromatic.

Corollary 1 The interval $W_{1}=\left[m_{1}, M_{1}\right]$ is monochromatic, where $m_{1}:=\left\lceil\frac{c-1}{2}\right\rceil$ and

$$
M_{1}:= \begin{cases}N-1 & \text { if } c \equiv 0,4, \text { or } 5(\bmod 9) \\ N & \text { otherwise }\end{cases}
$$

Proof. This follows from the prior lemma.
The large monochromatic interval W_{1} implies the existence of another large monochromatic interval, as shown in the next lemma.

Lemma 2 (Domino Lemma) The interval $W_{2}=\left[m_{2}, M_{2}\right]$ is monochromatic with color different than the color on the interval W_{1}, where $m_{2}=1$ and $M_{2}=3 M_{1}-m_{1}-c$.

Proof. Corollary 1 implies that the interval $W_{1}=\left[m_{1}, M_{1}\right]$ is monochromatic. Consider the set

$$
S=\left\{t: 1 \leqslant t \leqslant N \text { and } \alpha+t+c=3 \beta, \text { for some } \alpha, \beta \in W_{1}\right\}
$$

Because all values in W_{1} have the same color, all values in S have the same color - the color opposite the one given the values in W_{1}. It suffices to prove that $\left[1, M_{2}\right] \subseteq S$.

If $\alpha=m_{1}$ and $\beta=M_{1}$, then $t=M_{2}$ so $M_{2} \in S$. Suppose now that $1<t \in S$ via

$$
\alpha+t+c=3 \beta, \text { for some } \alpha, \beta \in W_{1} .
$$

We shall prove that $t-1 \in S$.
If $\alpha+1 \notin W_{1}$ and $\alpha-2 \notin W_{1}$, then $M_{1}-m_{1} \leqslant 1$ which implies $N-1-(c-1) / 2 \leqslant 1$, and thus $c<27$, a contradiction. In the case that $\alpha+1 \notin W_{1}$ and $\beta-1 \notin W_{1}$, it follows that $\alpha=M_{1}$ and $\beta=m_{1}$ so

$$
\begin{aligned}
1<t & =3 \beta-\alpha-c \\
& =3 m_{1}-M_{1}-c \\
& \leqslant 3\left(\frac{c}{2}\right)-(N-1)-c \\
& \leqslant 0,
\end{aligned}
$$

a contradiction.
So, either $\alpha+1 \in W_{1}$ or $\alpha-2, \beta-1 \in W_{1}$. In the former case, the equation $(\alpha+1)+(t-1)+c=3 \beta$ implies that $t-1 \in S$. In the latter case, the equation $(\alpha-2)+(t-1)+c=3(\beta-1)$ implies $t-1 \in S$. Either way, $t-1 \in S$, so $\left[1, M_{2}\right] \subseteq S$ as desired.

Now we are ready to prove the Martinelli-Schaal conjecture for large positive c.
Theorem 1 Assume $c>48$ and $N=\left\lceil\frac{2\left\lceil\frac{2+c}{3}\right\rceil+c}{3}\right\rceil$. Any 2 -coloring of the integers in the interval $[1, N]$ produces a monochromatic solution to $x_{1}+x_{2}+c=3 x_{3}$. It follows that $r(c)=N$.

Proof. Corollary 1 guarantees the interval $W_{1}=\left[m_{1}, M_{1}\right]$ is monochromatic, say red. Lemma 2 ensures the interval $W_{2}=\left[1, M_{2}\right]$ is monochromatic of the opposite color, blue.

We now consider the following two cases.
Case 1: $c \not \equiv 0,4$, or $5(\bmod 9)$.
In this case, as noted earlier, $N \equiv c(\bmod 2)$ which implies $M_{1}=N$. In particular, N is red because it is a member of W_{1}.

Consider the elements $1, N, \frac{3 N-c}{2}, \frac{9 N-5 c-2}{2}$. Observe that for c of the form $c=9 s+t$ $(0 \leqslant t \leqslant 8)$

$$
\frac{9 N-5 c-2}{2}= \begin{cases}1 & \text { if } t=1 \\ 3 & \text { if } t=2 \\ 5 & \text { if } t=3 \\ 2 & \text { if } t=6 \\ 4 & \text { if } t=7 \\ 6 & \text { if } t=8\end{cases}
$$

Because $c>48$, the value $M_{2} \geqslant 6$ so $\left(\frac{9 N-5 c-2}{2}\right)$ is blue. Therefore,

$$
1+\left(\frac{9 N-5 c-2}{2}\right)+c=3\left(\frac{3 N-c}{2}\right) \quad \text { implies } \quad\left(\frac{3 N-c}{2}\right) \text { is red. }
$$

Now there is the following monochromatic solution to $x_{1}+x_{2}+c=3 x_{3}$:

$$
\left(\frac{3 N-c}{2}\right)+\left(\frac{3 N-c}{2}\right)+c=3(N)
$$

Case 2: $c \equiv 0,4$, or $5(\bmod 9)$.
In this case, $N \not \equiv c(\bmod 2)$, which implies $M_{1}=N-1$. In particular, N is not a member of W_{1}.

Consider the elements $1, N, 2 N-c, \frac{3 N-c-1}{2}, \frac{3 N-c+1}{2}, \frac{9 N-5 c-5}{2}, \frac{9 N-5 c+1}{2}$. Observe that for c of the form $c=9 s+t(0 \leqslant t \leqslant 8)$

$$
\frac{9 N-5 c-5}{2}= \begin{cases}2 & \text { if } t=0 \\ 1 & \text { if } t=4 \\ 3 & \text { if } t=5\end{cases}
$$

Therefore, because $M_{2} \geqslant 6$, both $\frac{9 N-5 c-5}{2}$ and $\frac{9 N-5 c+1}{2}$ are blue. Consequently,

$$
1+\left(\frac{9 N-5 c-5}{2}\right)+c=3\left(\frac{3 N-c-1}{2}\right) \quad \text { implies } \quad\left(\frac{3 N-c-1}{2}\right) \text { is red, }
$$

and

$$
1+\left(\frac{9 N-5 c+1}{2}\right)+c=3\left(\frac{3 N-c+1}{2}\right) \quad \text { implies } \quad\left(\frac{3 N-c+1}{2}\right) \text { is red. }
$$

Now $2 N-c<M_{2}=3 M_{1}-m_{1}-c=3(N-1)-m_{1}-c$, because $m_{1}<N-3$. So $2 N-c$ is also blue. Hence

$$
N+(2 N-c)+c=3 N \quad \text { implies } \quad N \text { is red. }
$$

Now there is the following monochromatic solution to $x_{1}+x_{2}+c=3 x_{3}$:

$$
\left(\frac{3 N-c-1}{2}\right)+\left(\frac{3 N-c+1}{2}\right)+c=3(N) .
$$

Section 3. Negative c

In this section we prove that

$$
\begin{equation*}
r(c)=\left\lceil\frac{3\left\lceil\frac{3-c}{2}\right\rceil-c}{2}\right\rceil, \text { for all } c \leqslant-4 \tag{2}
\end{equation*}
$$

In their paper, Martinelli and Schaal show that this is a lower bound for $r(c)$ (see Lemma 3 of [3]) so it suffices to prove that this is an upper bound. They also note that for negative values of c greater than -4 , the bound given by (2) is too small. It is convenient for us to assume $c<-35$; the reason for this assumption is this value conveniently is enough to guarantee $\frac{5-c}{8}>5$ via Lemma 4 . The reader can verify the conjecture for values $-35 \leqslant c \leqslant-4$ as illustrated in the previous section for positive c.

For the remainder of this section we shall assume that $c<-35$,

$$
N=\left\lceil\frac{3\left\lceil\frac{3-c}{2}\right\rceil-c}{2}\right\rceil,
$$

and $\chi:[1, N] \rightarrow\{$ red, blue $\}$ is a 2 -coloring such that there is no monochromatic solution to $x_{1}+x_{2}+c=3 x_{3}$.

Lemma 3 If $x \geqslant 5,2 x-2-c \leqslant N$, and $x \equiv c(\bmod 2)$, then $\chi(x)=\chi(x-1)=\chi(x-2)$.
Proof. We shall argue by contradiction. First assume, to the contrary, that $\chi(x) \neq$ $\chi(x-1)$. Without loss of generality, $\chi(x)=$ red and $\chi(x-1)=$ blue. By assumption $2 x-2-c \leqslant N$ and $x \equiv c(\bmod 2)$, so the following equations involve integers in the interval $[1, N]$:

$$
\begin{aligned}
(2 x-2-c)+(x-1)+c=3(x-1) & \Rightarrow \quad 2 x-2-c \text { is red. } \\
\left(\frac{3 x-c}{2}\right)+\left(\frac{3 x-c}{2}\right)+c=3 x & \Rightarrow\left(\frac{3 x-c}{2}\right) \text { is blue. } \\
\left(\frac{3 x-c}{2}\right)+\left(\frac{3 x-c}{2}-3\right)+c=3(x-1) & \Rightarrow\left(\frac{3 x-c}{2}-3\right) \text { is red. } \\
(2 x-2-c)+(x+2)+c=3 x & \Rightarrow x+2 \text { is blue. } \\
\left(\frac{3 x-c}{2}-3\right)+\left(\frac{3 x-c}{2}+3\right)+c=3 x & \Rightarrow \quad\left(\frac{3 x-c}{2}+3\right) \text { is blue. }
\end{aligned}
$$

Now the following equation is all blue

$$
\left(\frac{3 x-c}{2}+3\right)+\left(\frac{3 x-c}{2}+3\right)+c=3(x+2)
$$

a contradiction. Therefore, $\chi(x)=\chi(x-1)$.

Now let's assume that $\chi(x) \neq \chi(x-2)$. Without loss of generality, $\chi(x)=$ red $=$ $\chi(x-1)$ and $\chi(x-2)=$ blue. By assumption $x \geqslant 5,2 x-2-c \leqslant N$ and $x \equiv c(\bmod 2)$, so the following equations involve integers in the interval $[1, N]$:

$$
\begin{aligned}
(2 x-2-c)+(x-1)+c=3(x-1) & \Rightarrow \quad 2 x-2-c \text { is blue. } \\
\left(\frac{3 x-c}{2}\right)+\left(\frac{3 x-c}{2}\right)+c=3 x & \Rightarrow\left(\frac{3 x-c}{2}\right) \text { is blue. } \\
(2 x-2-c)+(x-4)+c=3(x-2) & \Rightarrow \quad x-4 \text { is red. } \\
\left(\frac{3 x-c}{2}\right)+\left(\frac{3 x-c}{2}-6\right)+c=3(x-2) & \Rightarrow \quad\left(\frac{3 x-c}{2}-6\right) \text { is red. }
\end{aligned}
$$

Now the following equation is all red

$$
\left(\frac{3 x-c}{2}-6\right)+\left(\frac{3 x-c}{2}-6\right)+c=3(x-4),
$$

a contradiction. Therefore, $\chi(x)=\chi(x-1)=\chi(x-2)$, as desired.
\diamond
In light of Lemma 3, it is natural now to define m this way

$$
m:=\max \{x: 5 \leqslant x \leqslant N \text { and } 2 x-2-c \leqslant N \text { and } x \equiv c(\bmod 2)\} .
$$

It is useful to give a lower bound for m. Observe that if m exists, $m \geqslant 5$ by definition.
Lemma 4 For all $c<-35$, m exists and

$$
m \geqslant \frac{5-c}{8}
$$

Proof. Because of its definition, m is at least 5 and is the maximum integer satisfying $2 m-2-c \leqslant N$ and $m \equiv c(\bmod 2)$. Because we assume $c<-35$, we shall see that m exists. Assuming that the right-hand side of (3) is at least 5 , the definition of m shows that

$$
m= \begin{cases}\left\lfloor\frac{N+c+2}{2}\right\rfloor & \text { if }\left\lfloor\frac{N+c+2}{2}\right\rfloor \equiv c(\bmod 2) \tag{3}\\ \left\lfloor\frac{N+c+2}{2}\right\rfloor-1 & \text { otherwise. }\end{cases}
$$

For values of $c \leqslant-4$, we have the following:

$$
4 N=4\left\lceil\frac{3\left\lceil\frac{3-c}{2}\right\rceil-c}{2}\right\rceil= \begin{cases}12-5 c & \text { if } c \equiv 0(\bmod 4) \\ 9-5 c & \text { if } c \equiv 1(\bmod 4) \\ 14-5 c & \text { if } c \equiv 2(\bmod 4) \\ 11-5 c & \text { if } c \equiv 3(\bmod 4)\end{cases}
$$

From this one can show that

$$
8\left(\frac{N+c+2}{2}\right)= \begin{cases}20-c & \text { if } c \equiv 0(\bmod 4) \\ 17-c & \text { if } c \equiv 1(\bmod 4) \\ 22-c & \text { if } c \equiv 2(\bmod 4) \\ 9-c & \text { if } c \equiv 3(\bmod 4)\end{cases}
$$

Accordingly, to determine whether $\left\lfloor\frac{N+c+2}{2}\right\rfloor \equiv c(\bmod 2)$ there are sixteen cases to consider depending on the residue of c modulo 16 . We show the extremal case, $c \equiv$ $13(\bmod 16)$, and leave the remaining similar cases to the reader.

Assume that $c \equiv 13(\bmod 16)$, say $c=-16 p-3$, for some positive integer p. An easy computation reveals that $N=20 p+6$. Therefore,

$$
\left\lfloor\frac{N+c+2}{2}\right\rfloor=\left\lfloor\frac{4 p+5}{2}\right\rfloor=2 p+2
$$

Note that the floor function caused the fraction to be reduced by a half. Now, to determine m, another reduction is required because $2 p+2$ is even, whereas c is odd. Hence $m=2 p+1$; that is $m=\frac{5-c}{8}$. This residue for c modulo 16 causes the greatest reductions and so determines the lower bound for m. Choosing $c<-35$ guarantees that the right-hand side of (3) is indeed at least 5 as needed.

We assume that $c<-35$, since this value conveniently is enough to guarantee $\frac{5-c}{8}>5$ via Lemma 4 ; that is, $m \geqslant 6$ since m is an integer.

Corollary 2 Assume $c<-35$. The interval $[1, m]$ is monochromatic.
Proof. Apply induction on j to prove that $m-2 j-1$ and $m-2 j-2$ have the same color as m. The basis case, $j=0$, states that $m-1$ and $m-2$ have the same color as m, which is a consequence of Lemma 3. Assume now that $j>0$ and that $m, m-1, \ldots, m-2 j$ are all monochromatic. Because $m \equiv c(\bmod 2)$, it follows that $m-2 j \equiv c(\bmod 2)$. Therefore, if $m-2 j \geqslant 5$, then Lemma 3 applies and shows that $m-2 j, m-2 j-1, m-2 j-2$ all have the same color. Thus, $m, m-1, \ldots, 4$ all have the same color, say red. It suffices to show that $1,2,3$ are also red. Because $m \geqslant 6$, we have for $i=3,2,1$ in this order,

$$
\begin{aligned}
(3+i)+(2 i-c)+c=3(i+1) & \Rightarrow \quad 2 i-c \text { is blue. } \\
(i)+(2 i-c)+c=3(i) & \Rightarrow \quad i \text { is red. }
\end{aligned}
$$

The monochromatic interval $[1, m]$ forces another large monochromatic interval as the next lemma shows.

Lemma 5 Define $M=3-c-m$. The interval $[M, N]$ is monochromatic with color opposite the color given to elements of the interval $[1, m]$.

Proof. Set $W=[1, m]$. Consider the set

$$
S:=\{t: x+t+c=3 y \text { for some } x, y \in W\} .
$$

Observe that because Corollary 2 guarantees that the interval W is monochromatic, the elements of S must all have color opposite the color given to elements in W. So it suffices to show that S contains the interval $[M, N]$.

Notice that $M \in S$ because $1, m \in W$ and, by definition, $m+M+c=3(1)$. Suppose now that $t \in S$ via $x+t+c=3 y$ for some $1 \leqslant x, y \leqslant m$. We shall prove that $t+1 \in S$, provided that $t<N$.

If $x-1 \in W$, then $(x-1)+(t+1)+c=3 y$ shows that $t+1 \in S$. Otherwise $x \in W$ and $x-1 \notin W$ implies that $x=1$. We may assume now that $x=1$, so in particular, by assumption $x+2 \in W$ since $m \geqslant 5$. If $y+1 \in W$, then $(x+2)+(t+1)+c=3(y+1)$ shows that $t+1 \in S$. Otherwise $y \in W$ and $y+1 \notin W$ implies that $y=m$. Therefore, $1+t+c=3 m$; that is, $t=3 m-c-1$. Lemma 4 shows $m \geqslant \frac{5-c}{8}$, so

$$
\begin{aligned}
t & =3 m-c-1 \\
& \geqslant 3\left(\frac{5-c}{8}\right)-c-1 \\
& =\frac{7-11 c}{8} \\
& >N .
\end{aligned}
$$

Now we are ready to prove the Martinelli-Schaal conjecture for $c<-35$.
Theorem 2 Assume $c<-35$ and $N=\left\lceil\frac{3\left\lceil\frac{3-c}{2}\right\rceil-c}{2}\right\rceil$. Any 2-coloring of the integers in the interval $[1, N]$ produces a monochromatic solution to $x_{1}+x_{2}+c=3 x_{3}$. It follows that $r(c)=N$.

Proof. For values of $c \leqslant-4$, recall that

$$
4 N=4\left\lceil\frac{3\left\lceil\frac{3-c}{2}\right\rceil-c}{2}\right\rceil= \begin{cases}12-5 c & \text { if } c \equiv 0(\bmod 4) \\ 9-5 c & \text { if } c \equiv 1(\bmod 4) \\ 14-5 c & \text { if } c \equiv 2(\bmod 4) \\ 11-5 c & \text { if } c \equiv 3(\bmod 4)\end{cases}
$$

Corollary 2 guarantees the interval $[1, m]$ is monochromatic, say red. Lemma 5 ensures the interval $[M, N]$, where $M=3-c-m$, is monochromatic of the opposite color, blue.

We consider four cases according to the residue of c modulo 4 .
Case 1: $c \equiv 0(\bmod 4)$.
Consider the elements $1, N, N-1, N-2$. Now

$$
\begin{gathered}
\left(\frac{12-5 c}{4}\right)+\left(\frac{12-5 c}{4}\right)+c=3\left(2-\frac{c}{2}\right) \Rightarrow 2-\frac{c}{2} \text { is red, } \\
\left(\frac{12-5 c}{4}-1\right)+\left(\frac{12-5 c}{4}-2\right)+c=3\left(1-\frac{c}{2}\right) \Rightarrow 1-\frac{c}{2} \text { is red, } \\
\text { so }\left(2-\frac{c}{2}\right)+\left(1-\frac{c}{2}\right)+c=3 \cdot 1 \text { is all red. }
\end{gathered}
$$

We need to verify that $M \leqslant N-2$. We have $M=3-c-m$ and, by Lemma $4, m \geqslant \frac{5-c}{8}$, so $M=3-c-m \leqslant 3-c+\frac{c-5}{8}=\frac{19-7 c}{8}$. Now $\frac{19-7 c}{8} \leqslant 1-\frac{5 c}{4}=N-2$ if and only if $c \leqslant-\frac{11}{3}$, so $M \leqslant N-2$.
CASE 2: $c \equiv 1(\bmod 4)$.
We need only look at 1 and N :

$$
\begin{gathered}
\left(\frac{9-5 c}{4}\right)+\left(\frac{9-5 c}{4}\right)+c=3\left(\frac{3-c}{2}\right) \Rightarrow\left(\frac{3-c}{2}\right) \text { is red, and } \\
\left(\frac{3-c}{2}\right)+\left(\frac{3-c}{2}\right)+c=3 \cdot 1 \text { is all red. }
\end{gathered}
$$

Case 3: $c \equiv 2(\bmod 4)$.
Consider the red element 1 and blue elements $N, N-1, N-3$. Then

$$
\begin{gathered}
\left(\frac{14-5 c}{4}-1\right)+\left(\frac{14-5 c}{4}-3\right)+c=3\left(1-\frac{c}{2}\right) \Rightarrow 1-\frac{c}{2} \text { is red, } \\
\begin{array}{c}
\left(\frac{14-5 c}{4}\right)+\left(\frac{14-5 c}{4}-1\right)+c=3\left(2-\frac{c}{2}\right) \Rightarrow 2-\frac{c}{2} \text { is red, and so } \\
\left(1-\frac{c}{2}\right)+\left(2-\frac{c}{2}\right)+c=3 \cdot 1 \text { is all red. }
\end{array} \text {. }
\end{gathered}
$$

It is easily verified in a manner similar to Case 1 that $M \leqslant N-3$.
Case 4: $c \equiv 3(\bmod 4)$.
Consider the red element of 1 and blue elements $N, N-1$. We have

$$
\begin{gathered}
\left(\frac{11-5 c}{4}\right)+\left(\frac{11-5 c}{4}-1\right)+c=3\left(\frac{3-c}{2}\right) \Rightarrow \frac{3-c}{2} \text { is red, and } \\
\left(\frac{3-c}{2}\right)+\left(\frac{3-c}{2}\right)+c=3 \cdot 1 \text { is all red. }
\end{gathered}
$$

Again, it is easy to verify in a manner similar to Case 1 that $M \leqslant N-1$.

Section 4. $x_{1}+x_{2}+c=k x_{3}$

In this section we briefly address the function $r(c, k)$ which is defined (for every positive integer k and every integer c) to equal the smallest integer n, provided that it exists, such that every 2 -coloring of $[1, n]$ has a monochromatic solution to $x_{1}+x_{2}+c=k x_{3}$. Martinelli and Schaal prove the lower bound

$$
\begin{equation*}
r(c, k) \geqslant\left\lceil\frac{2\left\lceil\frac{2+c}{k}\right\rceil+c}{k}\right\rceil \text {, for all } c, k>0 \tag{4}
\end{equation*}
$$

This lower bound is achieved for infinitely many values of c and k as the next proposition shows.

Proposition 1 If m is a positive integer, $k=2 m+1$ and $c=m(2 m+1)^{2}$, then

$$
\begin{aligned}
r(c, k) & =\left\lceil\frac{2\left\lceil\frac{2+c}{k}\right\rceil+c}{k}\right\rceil \\
& =(m+1)(2 m+1)
\end{aligned}
$$

Proof. Let $k=2 m+1, c=m(2 m+1)^{2}$ and $r=(m+1)(2 m+1)$. Because of the lower bound (4), it suffices to prove that every 2 -coloring of $[1, r]$, using colors red and blue say, results in a monochromatic solution to $x_{1}+x_{2}+c=k x_{3}$. Without loss of generality, r is red. We now prove by induction on j, for $j=0, \ldots, m$ that if $r-j$ is red, then $r-(j+1) k$ is blue and $r-(j+1)$ is red. If $r-j$ is red, then for these values of k, c, and r :

$$
\begin{aligned}
(r-(j+1) k)+r+c=k(r-j) & \Rightarrow \quad(r-(j+1) k) \text { is blue. } \\
(r-(j+1) k)+(r-k)+c=k(r-(j+1)) & \Rightarrow \quad(r-(j+1)) \text { is red. }
\end{aligned}
$$

It follows that $r-m$ and $r-(m+1)$ are both red. Therefore, we have a monochromatic solution to $x_{1}+x_{2}+c=k x_{3}$:

$$
(r-m)+(r-(m+1))+c=k r .
$$

Finally we illustrate an infinite number of values of c and k for which the bound (4) is not sharp.
Proposition 2 If $m \geqslant 2$ is a positive integer, $k=2 m+1$ and $c=m(2 m+1)^{2}+1$, then

$$
\begin{aligned}
r(c, k) & >\left\lceil\frac{2\left\lceil\frac{2+c}{k}\right\rceil+c}{k}\right\rceil \\
& =(m+1)(2 m+1) .
\end{aligned}
$$

Proof. Let $k=2 m+1, c=m(2 m+1)^{2}+1=m k^{2}+1$ and $r=k(m+1)=2 m^{2}+3 m+1$. Consider this 2 -coloring of $[1, r]$ into red (R) and blue (B) :

$$
\begin{aligned}
& R=\left\{1, \ldots, 2 m^{2}+m-2\right\} \cup\left\{2 m^{2}+m\right\} \cup\left\{2 m^{2}+3 m+1\right\} \\
& B=\left\{2 m^{2}+m-1\right\} \cup\left\{2 m^{2}+m+1, \ldots, 2 m^{2}+3 m\right\}
\end{aligned}
$$

We must prove that there are no monochromatic $x_{1}, x_{2}, x_{3} \in[1, r]$ that satisfy

$$
\begin{equation*}
x_{1}+x_{2}+m(2 m+1)^{2}+1=(2 m+1) x_{3} . \tag{5}
\end{equation*}
$$

If $x_{3} \leqslant 2 m^{2}+m$, then $k x_{3} \leqslant c$ and therefore $x_{1}+x_{2}<0$, which clearly has no solution in $[1, r]$. So we may assume that $x_{3}>2 m^{2}+m$.
CASE 1: $x_{3} \in R$
Because $x_{3}>2 m^{2}+m$, we have $x_{3}=2 m^{2}+3 m+1$, so from (5) we find $x_{1}+x_{2}=$ $4 m^{2}+4 m$ which has no solution in R.
CASE 2: $x_{3} \in B$
Since $x_{3} \leqslant 2 m^{2}+3 m$, from (5) we find $x_{1}+x_{2} \leqslant 4 m^{2}+2 m-1$ which implies, if $x_{1}, x_{2} \in B$, that $x_{1}=x_{2}=2 m^{2}+m-1$. But these values for x_{1} and x_{2} do not produce, from (5), a value of x_{3} in B.

References

[1] Bialostocki, A. and Schaal, D. On a variation of Schur numbers, Graphs Combin. 16 (2000), no. 2, 139-147.
[2] Harborth, H. and Maasberg, S., All two-color Rado numbers for $a(x+y)=b z$, Discrete Math. 197/198 (1999), 397-407.
[3] Martinelli, B. and Schaal, D., On generalized Schur numbers for $x_{1}+x_{2}+c=k x_{3}$, Ars Combinatoria 85 (2007), 33-42.
[4] Sabo, D., Schaal, D. and Tokaz, J., Disjunctive Rado numbers for $x_{1}+x_{2}+c=x_{3}$, Integers 7 (2007), A29, 5 pp. (electronic).
[5] Schur, I., Über die Kongruenz $x^{m}+y^{m} \equiv z^{m}(\bmod p)$, Jahresber. Deutsch. Math. Verein. 25 (1916), 114-117.

