
Locally Restricted Compositions II.

General Restrictions and Infinite Matrices

Edward A. Bender
Department of Mathematics

University of California, San Diego
La Jolla, CA 92093-0112

ebender@ucsd.edu

E. Rodney Canfield∗

Department of Computer Science
University of Georgia
Athens, GA 30602

erc@cs.uga.edu

Submitted: Feb 11, 2009; Accepted: Aug 14, 2009; Published: Aug 21, 2009

AMS Subject Classification: 05A15, 05A16

Abstract

We study compositions ~c = (c1, . . . , ck) of the integer n in which the value ci

of the ith part is constrained based on previous parts within a fixed distance of ci.
The constraints may depend on i modulo some fixed integer m. Periodic constraints
arise naturally when m-rowed compositions are written in a single row. We show
that the number of compositions of n is asymptotic to Ar−n for some A and r and
that many counts can be expected to have a joint normal distribution with means
vector and covariance matrix asymptotically proportional to n. Our method of
proof relies on infinite matrices and does not readily lead to methods for accurate
estimation of the various parameters. We obtain information about the longest run.
In many cases, we obtain almost sure asymptotic estimates for the maximum part
and number of distinct parts.

1 Introduction

Carlitz compositions are compositions in which adjacent parts are distinct. We were led to
this work by proposing a generalization of ordinary and Carlitz compositions which we call
regular, locally restricted compositions. Roughly speaking, locally restricted compositions
are defined by looking at pairs of parts in a moving window and regularity deals with
the recurrence of patterns in a composition. Precise definitions are given in the next two
sections.

Example 1 (Carlitz-type compositions) In [2] we studied compositions in which the
difference between adjacent parts must lie in a set D. Such compositions are locally
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restricted but may not be regular. Additional conditions were imposed on D. For example,
D must contain both positive and negative integers. (If D were the nonnegative integers
we would be studying partitions which, as we shall see later, are not regular.) When D
consists of all nonzero integers, the result is Carlitz compositions [13].

The methods in [2] are inadequate for dealing with more general locally restricted
compositions. One such example are what we call two-rowed Carlitz compositions. A
two-rowed Carlitz composition of n is an array

c1,1 c1,2 · · · c1,k

c2,1 c2,2 · · · c2,k

of positive integers whose parts sum to n, such that vertically and horizontally adjacent
parts are distinct. The parts can be written out in one dimension in column order,
c1,1, c2,1, c1,2, . . .. Those parts in an odd position are required to be different from their
neighbor two positions earlier, and those in an even position are required to be different
from both their two previous neighbors; also, the number of parts is required to be even.
These compositions are regular and locally restricted and so, as a consequence of our
Theorem 3, the counting sequence an satisfies

an ∼ Ar−n, n → ∞. (1)

The proof of Theorem 3 does not seem to provide an efficient method for estimating A or
r. Computations of an through n = 100 suggest the values A

.
= 0.284 · · · and r

.
= 0.590 · · ·.

When two-rowed Carlitz compositions counted by an are sampled randomly, our results
show that many counts have a joint distribution which is asymptotically normal, having
means vector and covariance matrix asymptotically proportional to n. However, we have
no reasonable method for estimating the limits. Examples of such counts are the number
of columns, the number of fives, the number of odd parts, and the number of times
columns three apart are identical.

These concepts and results extend to m-rowed Carlitz compositions, which may require
either adjacent elements in a column to be distinct or all elements in a column to be
distinct.

Another generalization of Carlitz compositions, studied by Munarini, Poneti and
Rinaldi[15], require that adjacent columns differ (rather than adjacent parts). Again,
our results apply when the parts are strictly positive; however, we do not obtain explicit
generating functions as Munarini et al. do. They also allow parts to be zero, but require
that no column be zero. Again, our results apply since the transfer matrix T (x), which
is defined later, still satisfies Theorem 1.

Example 2 (Palindromes) Palindromes are compositions that read the same in both
directions. For two-rowed compositions, the palindromes with k columns may be either
those with ci,j = ci,k+1−j for i = 1, 2 and 1 6 j 6 k or those with c1,j = c2,k+1−j for
1 6 j 6 k. Palindromes are not locally restricted since parts arbitrarily far apart must
be equal. Nevertheless, we can apply our methods to the study of the set of palindromes
in a collection of regular, locally restricted compositions.
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Example 3 (Avoiding or forcing patterns) The notion of a “pattern” in a compo-
sition may be limited to adjacent parts or may allow arbitrarily many intervening parts.
The former is a local condition whereas the latter is not. Our results usually apply to the
local form, both for avoiding, requiring and counting patterns. We have said “usually”
because there is a recurrence condition, which roughly says that any pattern that has
been seen in the interior of a composition can be seen again. For example, partitions can
be described by pattern avoidance, but violate the recurrence condition. The paper [12]
by Kitaev, McAllister and Petersen contains some explicit generating functions for local
patterns. Savage and Wilf [19] study the non-local situation. Heubach, Kitaev and Man-
sour [10] count compositions which avoid certain patterns using recursion formulas for
the generating functions. When the patterns to be avoided each consist of a sequence of
specific, adjacent parts, Myers [16] and Heubach and Kitaev [9] obtain explicit generating
functions containing k × k determinants when there are k sequences to be avoided.

Example 4 (Periodic local constraints) Suppose we have a periodic local constraint;
e.g., a3k+1 < a3k+2 < a3k+3 > a3k+4. In such a situation, one may want to restrict the
number of parts to be some value modulo the period or may not wish to do so. If
Theorem 3 applies (as it does in this example), then the value of r in the theorem will
be the same in all cases, but the value of A may change. This is also true if we shift the
period; e.g., a3k < a3k+1 < a3k+2 > a3k+3.

This follows because the transfer matrix T in Section 2.3 is unchanged but the vectors
s and/or f are changed. The dominant eigenvalue of T determines r.

Lest the reader assume that our results apply only to “reasonable” restrictions, we
hasten to point out they are more general. For example, we might require that every
three adjacent parts sum to a prime unless at least one of the parts is a sum of two cubes,
though why one would want to do this is unclear.

These examples did not discuss the counting of local events. See Theorem 4 at the
end of this section.

We conclude this section with a statement of the main results. As noted earlier,
some of the terminology will not be defined until later sections. Nevertheless, we believe
stating the results now will give the reader the flavor of the paper without the need to
plow through later sections.

Consideration of infinite matrices, essentially infinite-state machines for constructing
all compositions of a prescribed class, led to general conditions implying (1). The main
tool is isolated in Theorem 1, which concerns only infinite matrices, and nothing of a
combinatorial nature. These matrices are associated with generating functions having
the most basic analytic behavior: a single simple pole on the real axis. Theorem 2 asserts
that Theorem 1 is applicable to the enumeration of regular, locally restricted compositions.
We anticipate Theorem 1 will be applicable to counting sequences of other combinatorial
objects, leading to their asymptotic form and asymptotic normality.

The complex, infinite matrices T and vectors v used in this paper are absolutely square
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summable:

||T ||2 =
(

∑

i,j

|Ti,j|2
)1/2

< ∞,
∑

i

|(v)i|2 < ∞.

Define M to be the class of complex, infinite matrices T whose entries are absolutely
square summable, and as usual let ℓ2 denote the class of square summable, complex
vectors. The classes M(Ω) and ℓ2(Ω), where Ω ⊆ C is a domain, will be defined shortly.
These are natural extensions of M and ℓ2 to matrices and vectors whose components are
functions holomorphic in Ω.

Absolute value and weak inequality of matrices and vectors are componentwise:

|T |i,j = |Ti,j| for all i, j and T 6 S means Ti,j 6 Ti,j for all i, j.

Strong inequality T < S means T 6 S and T 6= S.

Definition 1 (Recurrent matrix) The matrix T is recurrent provided that

(1) for each i, j there exists k such that (T k)ij 6= 0 and

(2) for each j1, j2 there exist k, i such that (T k)ij1 6= 0 and (T k)ij2 6= 0.

Theorem 1 (Dominant eigenvalues) Let ρ > 0 and let Tn be a sequence of infinite
matrices. Suppose that the power series

T (x) = xT1 + x2T2 + · · ·

satisfies:

(a)
∑

n |x|n ||Tn|| 2
is convergent for |x| < ρ,

(b) Tn > 0,

(c) T (x0) is recurrent for all x0 ∈ (0, ρ).

Then for each x0 ∈ (0, ρ) the matrix T (x0) has an eigenvalue λ(x0) > 0 which is simple
and strictly larger in absolute value than the other eigenvalues of T (x0). On the interval
(0, ρ) the function λ(x) is analytic and λ′(x) > 0.

Assume further that we have r ∈ (0, ρ), an integer k0, and functions
s(x), f(x) ∈ ℓ2(|x| < ρ) such that:

(d) λ(r) = 1,

(e) s(r), f(r) > 0,

(f) |T (x)k0| < T (|x|)k0 for x 6= ±|x|, 0 < |x| < ρ.
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Then the function

φ(x) = s(x)t
(

∞
∑

k=0

T (x)k
)

f(x)

is analytic for |x| < r, has a simple pole at x = r, and has at most one additional
singularity on the circle of convergence at x = −r.

Precise definitions of locally restricted and regular are in Definitions 4 and 9.

Theorem 2 (Compositions and matrices) Let C be a regular, locally restricted class
of compositions, and let F (x) be the ordinary generating function (ogf) for C. There is
a power series T (x) = xT1 + x2T2 + · · · satisfying hypotheses (a)–(c) of Theorem 1 with
ρ = 1, as well as k0, r, s(x), f(x) satisfying (d)–(f), such that

F (x2) = φ(x) + FNR(x2),

where

φ(x) = s(x)t

(

∞
∑

k=0

T (x)k

)

f(x)

and FNR(x) has radius of convergence at least 1. (FNR(x) is the ogf for a subclass of C.)

Theorem 3 (Asymptotic number of compositions) Let C be a regular, locally re-
stricted class of compositions, and let an be the number of compositions of n in the class
C. Then an ∼ Ar−n for some A > 0 and r < 1. Furthermore an = Ar−n(1 + O(δn)) for
some 0 < δ < 1.

Roughly speaking recurrent events are events that can occur arbitrarily often in C.
Recurrent events are related if a linear combination of their counts is always nearly a
(possibly zero) multiple of the sum of parts. Precise definitions are given in Definitions 14
and 15 of Section 8.

Theorem 4 (Asymptotic normality) Let Cn be the compositions of n in C made into a
probability space with the uniform distribution. Let the random variables Yi(n), 1 6 i 6 κ
count occurrences of recurrent local events. Then E(Yi(n)) = nmi + o(n) where mi > 0.

Let ~Z(n) = n−1/2
(

~Y (n) − E(~Y (n))
)

. If the Yi(n) are unrelated, then ~Z(n) converges in

distribution to a k-dimensional normal.

With further restrictions on the Yi(n), it would be possible to extend this central limit
theorem to a local limit theorem, but we have not worked out the details.

Let the random variable Mn (resp. Dn) be the largest part (resp. number of distinct
parts) in a locally restricted composition of n selected uniformly at random. We show that
Mn 6 (1+o(1)) log1/r(n) almost surely and that often Mn ∼ Dn ∼ log1/r(n) almost surely.
See Section 9 for details and further results. That section can be read after Section 2.

Suppose k copies of ~p are adjacent in a composition. This is a run of ~p. If it does not
have ~p on either side, it is a maximal run and its length is k.
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Theorem 5 (Run lengths) If a locally restricted composition can have arbitrarily long
runs of ~p, then the length of the longest run of ~p is almost surely asymptotic to

log1/r(n)

Σ(~p)
where Σ(~p) is the sum of the parts in ~p. (2)

Let R be a set of ~p such that the restricted compositions can have arbitrarily long runs of
~p. Then,

(a) The longest run in a random composition will almost surely be due to a composition
~p ∈ R for which Σ(~p) is a minimum.

(b) If R is finite, the run with the greatest number of parts will almost surely be due to
a composition ~p ∈ R for which the average part size, Σ(~p)/len(~p), is a minimum.

The last part of the theorem implies that for many local restrictions the longest run
is almost surely repetitions of the part 1 and the length of that run is almost surely
asymptotic to log1/r(n). To see that some restriction on R is needed in (b), consider
unrestricted compositions and let R be those compositions where the number of parts is
a power of 2, pk = 2 if k is a power of 2 and pk = 1 otherwise. It follows from (2) that as
n → ∞ the longest run in the sense of (b) will involve longer and longer compositions in
R. The theorem is proved in Section 10, which can be read after Sections 2 and 9.

We thank the referee for suggesting that we consider runs.

2 Basic Concepts: Compositions

Let N denote the natural numbers {1, 2, . . .}, N0 denote N∪{0}, and Z denote the integers
{· · · ,−1, 0, 1, · · ·}.

Definition 2 (Composition notation) A composition of the integer n into k parts is
a k-tuple of strictly positive integers summing to n; that is, (c1, . . . , ck), ci ∈ N, such that
∑k

i=1 ci = n. We write compositions in vector notation, ~c. The sum n and number of
parts k are denoted Σ(~c) and len(~c), respectively. We adopt the convention that ci = 0
when i 6 0 or i > k. The empty composition, ~e, is the only composition of 0, and has no
parts. Thus Σ(~e) = 0, len(~e) = 0 and ci = 0 for all i.

2.1 Local Restrictions

We impose additional constraints on compositions that can be tested by looking in a
moving window at parts of the composition. The desired constraints are encoded in a
“local restriction function” as described in the next two definitions.

Definition 3 (Local restriction function) Let m, p ∈ N. A local restriction function
of type (m, p) is a function

Φ : {0, 1, . . . , m − 1} × (N0)
p+1 → {0, 1}
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with Φ(i; 0, . . . , 0) = 1 for all i. The integers m and p are called, respectively, the modulus
and span of Φ.

Definition 4 (Class of compositions determined by Φ) Let Φ be a local restriction
function. The class of compositions determined by Φ is

CΦ = {~c : ~c is a composition, and Φ(i mod m; ci, ci−1, . . . , ci−p) = 1 for i ∈ Z}.
A class C of compositions is locally restricted if C = CΦ for some local restriction func-
tion Φ.

Example 5 (Encoding properties) It might appear that the condition ci > 0 could
be encoded in Φ, but this is not the case—separate two compositions by a string of zeroes
whose length exceeds the span: ~c, 0, . . . , 0, ~d.

On the other hand divisibility conditions on the number of parts can be encoded
because of the zeroes at the ends of a composition: If Φ(i; 0, a1, . . . , ap) = 0 whenever
a1 > 0 and i /∈ S, then len(~c) + 1 modulo m is in S for all nonempty ~c ∈ CΦ.

The zeroes also allow the encoding of special conditions at the beginning and end.
For example, Φ(i; 0, a1, . . . , ap) = 0 whenever a1 6= k ensures that the last part in a
composition is k.

Example 6 (Adjacent differences) Let D ⊆ Z, and consider the class C of composi-
tions ~c = (c1, c2, . . . , ck) such that ci − ci−1 ∈ D for 1 < i 6 k. We may take m = 1 and
Φ(0; j, k) = 1 if and only if jk = 0 or j − k ∈ D.

Example 7 (m-rowed Carlitz compositions) Suppose our composition consists of m
rows, say bi,j where 1 6 i 6 m and 1 6 j 6 ℓ (m is fixed but ℓ is not). Adjacent parts
are required to be different: bi,j 6= bi−1,j for i > 1 and bi,j 6= bi,j−1 for j > 1. We convert
it to a standard composition by writing the parts in column order:

b1,1, b2,1, . . . , bm,1, b1,2, . . . , bm,ℓ = c1, . . . , cmℓ.

The modulus and span of Φ are m and the local restrictions are of three types. First
there are those to force the number of parts to be a multiple of m. It suffices to set
Φ(i; 0, a1, . . . , am) = 0 when i = 1 and a1 6= 0. Second there are those to force adjacent
parts in row to be different: for all i, Φ(i; a0, . . . , am) = 0 when a0 = am 6= 0. Finally
there are those to force adjacent parts in the same column to be different. It suffices to
set Φ(i; a0, . . . , am) = 0 when i 6= 0 and a0 = a1 6= 0.

Example 8 (Distance d compositions) These are compositions having the property
that within every window of width d or less there is no repeated part. (Of course, this
means no repeated positive part; the imaginary leading and trailing zeros must be exempt
from the no-repeat rule.) The case d = 1 are traditional compositions; the case d = 2
Carlitz compositions. It is straightforward to construct a Φ with modulus 1 and span
d−1. Our theorems apply, but we are unable to obtain generating functions or effectively
estimate constants when d > 2. It would be interesting to have a direct combinatorial
approach to the generating function in the case d = 3.
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Given a local restriction function Φ with span p and modulus m, it is clear that there is
an equivalent (meaning defining the same class of compositions) local restriction function
with any larger span desired. Likewise, there are equivalent local restriction functions
whose modulus is any multiple of m. Consequently, for any class CΦ, one may assume
that Φ has equal span and modulus.

We will generally assume that modulus = span

and denote the common value by m.

2.2 The Digraph DΦ and Recurrent Subcompositions

We shall define a digraph DΦ, naturally associated with Φ, with the property that certain
directed paths in DΦ correspond bijectively with the compositions in CΦ.

Let Φ be a local restriction function with modulus and span m. Define a word to be
an m-tuple of integers. We distinguish compositions and words notationally by the use
of bold: ~c denotes a composition, and ~c denotes a word. We say that a word ~ν appears
in the composition ~c if for some i ≡ 0 mod m we have ci+j = νj for 1 6 j 6 m. (In this
definition it may be necessary to observe the convention about the meaning of ci when
i > len(~c).) For example, when m = 2 the words in c1c2c3c4c5 are 00, c1c2, c3c4 and c50.
Note that if zero appears in a word in ~c, then numbers to its right are also zero.

Define the vertex set V (DΦ) to be all words which appear in some ~c ∈ CΦ. Define
the edge set E(DΦ) to be all ordered pairs (~ν, ~τ) of words which can be adjacent in some
composition. The precise definition is the following.

Definition 5 (The digraph DΦ) Let Φ be a local restriction function whose span and
modulus equal m. The vertex set V (DΦ) of DΦ consists of all words ~ν of length m which
appear in some composition of CΦ. The edge set E(DΦ) is all pairs (~ν, ~τ) such that

Φ(i, τi, τi−1, . . . , τ1, νm, . . . , νm−i+1) = 1 for 1 6 i 6 m; (3)

in other words, ~ν~τ can appear in a composition in CΦ. We allow loops in DΦ. (In fact,
DΦ always contains the edge (~0,~0).)

Notice that (3) is the same as saying that if the 2m long sequence ν1, . . . νm, τ1, . . . , τm

were part of a composition, starting at a position which is congruent mod m to 1, then
the local restriction function Φ is satisfied when only ~ν and ~τ are within the span.

Definition 6 (Path in DΦ) A (~ν, ~τ)-path is a path π in the digraph DΦ such that

• the initial and final vertices of π are ~ν and ~τ , respectively;

• π includes at least one edge;

• the vertex ~0 is not an interior vertex of π.
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The set of all (~ν, ~τ)-paths is denoted PathΦ(~ν, ~τ ). We allow repeated vertices and edges
in paths. (In graph theory what we are calling a path here is often referred to as a walk.)

It is easily seen that there is a bijection between PathΦ(~0,~0) and CΦ: The path
~0, ~ν1, . . . , ~νk,~0 corresponds to the composition obtained by concatenating the ~νi. In par-
ticular, the path ~0,~0 corresponds to the empty composition. We may think of ~ν1, . . . , ~νk

as a kind of “super” composition with parts in N × N
m−1
0 . The local restrictions of CΦ

become adjacent restrictions for the parts of these super compositions.

Definition 7 (Recurrent vertex in DΦ) A vertex ~ν ∈ V (DΦ) is recurrent if ~ν 6= ~0
and PathΦ(~ν, ~ν) 6= ∅. Since vertices are words, we also speak of recurrent words.

It can be checked that a vertex ~ν is recurrent if and only if there is a composition ~c ∈ CΦ in
which the word ~ν appears at least twice. If a vertex ~ν is recurrent, then there are obviously
paths in PathΦ(~ν, ~ν) which contain ~ν arbitrarily often and so there are compositions~c ∈ CΦ

containing the word ~ν arbitrarily often.

2.3 The Transfer Matrix and Generating Function

We assume that V (DΦ) contains recurrent vertices. Recall that ~0 is not considered a
recurrent vertex.

Let an be the number of compositions of n belonging to CΦ, and let F (x) be the ogf
(ordinary generating function) of the numbers an:

F (x) =
∑

n>0

anxn =
∑

~c∈CΦ

xΣ(~c).

Let FNR(x) be the ogf for those compositions containing no recurrent words, and let FR(x)
be the ogf for those compositions containing at least one recurrent word. Thus, F (x) =
FR(x) + FNR(x). In the compositions counted by FR(x) one may speak unambiguously
of the first recurrent word and the last recurrent word in the composition. (These might
be the same.)

Definition 8 (Transfer matrix associated with Φ) Let Φ be a local restriction func-
tion, and let ~ν1, ~ν2, . . . be an ordered listing of all recurrent vertices in V (DΦ), fixed once
and for all. Define the transfer matrix T (x) associated with Φ by

(T (x))ij =

{

xΣ(~νi)+Σ(~νj) if (~νi, ~νj) ∈ E(DΦ),
0 otherwise.

(4)

By induction we find that for all k > 1

(T (x)k)ij = xΣ(~νi)+Σ(~νj)
∑

π

x2Σ(~c1)+···+2Σ(~ck−1), (5)

in which the sum is over all paths

π = (~νi,~c1, . . . ,~ck−1, ~νj)
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belonging to PathΦ(~νi, ~νj) and containing k edges.
Define the start vector s(x) by:

(s(x))i = xΣ(~νi)
∑

π

x2Σ(~c1)+···+2Σ(~cℓ), (6)

where the sum is over all paths

π = (~0,~c1, . . . ,~cℓ, ~νi)

belonging to PathΦ(~0, ~νi) that contain only one recurrent vertex, the endpoint ~νi. In like
manner the finish vector f(x) is defined by

(f(x))j = xΣ(~νj)
∑

π

x2Σ(~c1)+···+2Σ(~cℓ), (7)

where the sum is over all paths

π = (~νj ,~c1, . . . ,~cℓ,~0)

belonging to PathΦ(~νj,~0) that contain only one recurrent vertex, the initial vertex ~νj .
Every path in DΦ that contains a recurrent vertex may be uniquely parsed into the

list of vertices (µ1, ν, µ2), where the (possibly empty) parts µ1 and µ2 contain no recurrent
vertices and ν begins and ends with a recurrent vertex and may consist of just a single
vertex. Keeping in mind the definition of FR(x) and the combinatorial interpretation (5)
of (T (x)k)ij, we conclude that

FR(x2) = s(x)t
∞
∑

k=0

T (x)k f(x). (8)

Note that FR(x2) counts each part of a composition twice, so to speak. It is not hard to
arrange for a similar formula in which we obtain FR(x) on the left side, but the definition
of T (x) arising in that construction fails to have the desirable feature (from the functional
analysis viewpoint) that its entries are square summable. We rely on this latter property
to assure that the operator T (x) is compact.

Definition 9 (Regularity) Let C = CΦ be a locally restricted class of compositions, for
which Φ has both span and modulus equal to m. We say that Φ is regular provided:

(R1) The directed graph within DΦ spanned by the recurrent vertices contains at least two
vertices and is strongly connected. (Recall that ~0 is not recurrent.)

(R2) Given any two recurrent vertices ~ν1, ~ν2 ∈ V (DΦ) there is always a third recurrent
vertex ~ν3 and an integer k such that both PathΦ(~ν3, ~ν1) and PathΦ(~ν3, ~ν2) contain a
path of length k.
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(R3) There is an integer k > 0 and (possibly equal) recurrent vertices ~ν1 and ~ν2 such that

gcd{m − n : m, n ∈ S} = 1,

where

S =
{

n : n = Σ(~c1) + · · · + Σ(~ck−1) for some ~ν1,~c1, . . . ,~ck−1, ~ν2 ∈ PathΦ(~ν1, ~ν2)
}

.

(Thus k is the length of the path.)

(R4) There exists a constant K such that any path π in DΦ of length more than K contains
at least one recurrent vertex.

If Φ is regular, we say that CΦ is regular.

These are the compositions discussed in the theorems of Section 1. The locally re-
stricted compositions discussed in earlier examples are regular, provided the differences
D in Example 1 are appropriately restricted.

Example 9 (Comments on Definition 9) Partitions fail to satisfy (R1) because there
are no recurrent vertices. Consider the composition where the first part is arbitrary and
other parts must equal 1. The local restrictions allow (0, a), (a, 1) and (1, 0) where a is
arbitrary. Again (R1) fails because there is only one recurrent vertex, namely 1. The
number of compositions in this case is linear in n. Conditions in the definition guarantee
that the number of compositions grows exponentially.

More than one Φ may give rise to the same C. It is natural to assume that regularity
depends only on C and not on the particular choice of Φ. This is not the case. Let C be
compositions such that ci = i modulo 2 for all i. Setting Φ(i, a0, 0, . . . , 0) to the parity
of a0 forces the first part of a composition to be odd. Setting Φ(i, a0, a1, . . .) to be the
parity of a0 + a1 when both are nonzero forces the parts to alternate in parity. If m is
even, (R2) is satisfied. If m is odd, (R2) is not satisfied.

Condition (R2) is used in the proof of Lemma 2(e), which says that all eigenvalues
of the infinite matrix T (x) are strictly smaller in absolute value than the largest, which
equals the spectral radius of T (x), for each positive x. This is essential to insuring that
F (x) have only one singularity on its circle of convergence.

Lemma 1 (Regularity) Suppose Φ shows that CΦ is a regular locally restricted class
and Φ has span and modulus m.

(i) (R2) is equivalent to the gcd of the cycle lengths being 1.

(ii) If (R3) is true for k and k′ > k, then it is true for k′.

(iii) For t > 0, define Φt of span and modulus tm by Φt(i mod tm; ci, . . . , ci−tm) = 1 if
and only if Φ(j modm; cj , . . . , cj−m) = 1 for all i− (t−1)m 6 j 6 i. If Φ is regular,
then Φt is regular and CΦt = CΦ.
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Proof: Proof of (i). Suppose the gcd of the cycle lengths is k > 1. Choose 0 < i < k
and ~ν1 and ~ν2 on the same cycle a distance i apart. If ℓi is the length of a path in
PathΦ(~ν3, ~νi), it is easily seen that ℓ1 and ℓ2 differ by i modulo k. Thus (R2) does not
hold.

Suppose the gcd of the cycle lengths is 1. Pick any ~ν3. Since the gcd of the cycle
lengths is 1, PathΦ(~ν3, ~νi) contains a path of length k for all sufficiently large k.

Proof of (ii). We can find ~ν0 such that there is a path ~ν0π~ν1 from ~ν0 to ~ν1 of length
k′ − k. If we prepend ~ν0π to every path in PathΦ(~ν1, ~ν2) and compute a set S ′ of part
sums, the elements will differ from elements in S by a constant. Since S ′ is a subset of
the set of part sums that would be produced from PathΦ(~ν0, ~ν2), the gcd is still 1.

Proof of (iii). We limit our attention to the recurrent vertices of DΦ. Each recurrent
vertex in DΦt is the sequence of recurrent vertices on a path of length in t−1 in DΦ. The
converse is true because (i) guarantees that, for any sufficiently large multiple M of m
(and hence some multiple of tm), such a sequence will appear at offset M in some ~c ∈ CΦ.
Hence the recurrent vertices of DΦt are precisely those produced from paths of length t−1
through recurrent vertices of DΦ. Thus (R4) and (R1) hold for DΦt . Furthermore, by (i)
for DΦ, the gcd of the cycle lengths in DΦt is 1, and so by (i) for DΦt , (R2) holds for DΦt .
To prove (R3), we need to adjust k so that the sequence ~c1, . . . ,~ck−1 can be thought of as
a sequence of vertices in DΦt . This will be the case if k − 1 is divisible by t. By (ii) we
can increase k so that this is true.

Proposition 1 Let CΦ be a regular locally restricted class, T (x) the associated transfer
matrix. Let F (x) =

∑

anxn and FNR(x) the ogfs for all compositions in CΦ and for the
nonrecurrent ones, respectively. Then:

(a) The radius of convergence of F (x) lies in the interval [1/2, 1).

(b) T (x) is recurrent for 0 < x < 1. (See Definition 1 for “recurrent matrix”.)

(c) There exists k such that |T (x)k| < T (|x|)k for all 0 < x < 1 and x 6= ±|x|.

(d) FNR(x) has radius of convergence at least 1.

Proof of Proposition 1 : Proof of (a). Since the number of unrestricted compositions
of n is 2n−1, it follows that an 6 2n−1 and so F (x) has radius of convergence at least 1/2.

Let ν1, ν2, k, and S be as in (R3). Note that CΦ must contain a composition of the
form

~c = A, ~ν1, B, ~ν2, C, ~ν1, D,

where A, B, C and D are (possibly empty) concatenations of words. The set S must
contain two distinct integers n1 and n2. (Else, the difference set contains only 0, and does
not have gcd 1.) Thus we have paths ~ν1, Ei, ~ν2 with Σ(Ei) = ni for i = 1, 2. Let

Wi = ~ν1, Ei, ~ν2, C
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and note that Σ(Wi) = ni + f where f = Σ(ν1) + Σ(ν2) + Σ(C). All concatenations
A, Wǫ1, Wǫ2, . . . , Wǫa, ν1, D with each ǫh ∈ {1, 2} are valid compositions. Any such con-
catenation containing µ W1’s and µ W2’s will be a composition of K1 + µK2 where

K1 = Σ(A) + Σ(~ν1) + Σ(D) and K2 = n1 + n2 + 2f.

Thus

aK1+µK2
>

(

2µ

µ

)

for all µ ∈ N. For any fixed 1 < c < 2 the binomial coefficient on the right is larger than
cµ for large µ. It follows that the radius of convergence of F (x) is at most (1/c)1/K2 .

Proof of (b). Let 0 < x < 1. The (i, j) entry of T (x)k is nonzero if and only if there
is a path of length k from ~νi to ~νj . Referring to Definition 1, in Section 1, condition (1)
for T (x) to be recurrent is exactly property (R1), and condition (2) is exactly (R3).

Proof of (c). For a power-series g(z) =
∑

n gnzn with nonnegative coefficients it
is well known that |g(z)| < g(|z|) if and only if the ratio of two nonzero terms is not a
positive real. In other words, for some m and n, gmgn 6= 0 and zm−n /∈ (0,∞). It follows
that |g(z)| < g(|z|) for all z /∈ [0,∞) if and only if

gcd{n1 − n2 : n1, n2 ∈ {n : gn > 0}} = 1.

The matrix inequality |T (x)k| < T (|x|)k says that we must have the latter condition for
g(x) = ((T (x))k)ij , some i, j. Applying (R3) to (5) we obtain (c).

Proof of (d). Since no path among nonrecurrent words can contain more than K
words, and since each word contains m integers, the number of nonrecurrent compositions
of n is O(nKm), and so the radius of convergence of FNR(x) is at least 1.

3 Basic Concepts: Infinite Matrices

To avoid having concepts spread out, we repeat some of the notation introduced in Sec-
tion 1.

We work in the complex Hilbert space ℓ2, the set of countably infinite, complex column
vectors whose entries are absolutely square summable. Elements of ℓ2 are denoted v, w,
etc., and ||v|| denotes the ℓ2 norm of the vector v:

||v||2 =
∞
∑

k=1

|(v)k|2.

For a vector v, we use (v)k for the k-th component, and vk denotes a sequence of vectors.
For infinite matrices T , Tij denotes the (i, j) entry of the matrix. Absolute value is
componentwise, namely v = |w| means (v)k = |(w)k|. Notations vt and T t indicate the
transpose of a vector and a matrix; v∗, T ∗ the adjoints (i.e. conjugate transposes). There
are three types of inequalities:
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• v > w means that (v)k > (w)k for all k;

• v > w means that v > w and v 6= w;

• v ≫ w means that (v)k > (w)k for all k.

The same inequality notation is used for matrices.
An operator A is a continuous (equivalently, bounded) linear transformation on ℓ2.

We use the standard operator norm

||A|| = sup
||v||=1

||Av||.

With respect to this norm, the operators on ℓ2 form a Banach space. If an operator A is
bijective, then the linear transformation A−1 is bounded and hence also an operator. Such
an operator A is called invertible. The set of all z ∈ C such that z−A is invertible is called
the resolvent set of A, and is denoted ρ(A). (In an expression like z − A that requires
the scalar z to be interpreted as an operator, the intended meaning is the product zI.) A
complex number z such that z − A is not invertible is called a spectral value for A. The
set of all spectral values is called the spectrum of A, and is denoted σ(A). The spectrum
of A includes all eigenvalues of A, and (generally) other values, too. The spectral radius
of A, denoted spr(A), is defined by

spr(A) = lim
n→∞

‖An‖1/n = inf ‖An‖1/n.

(The limit exists, and equals the infimum as indicated.) We always have

∅ 6= σ(A) ⊆ {z : |z| 6 spr(A)},

and
spr(A) = max{|λ| : λ ∈ σ(A)}.

An operator A is called compact if the image of every bounded sequence vk contains
a convergent subsequence. An infinite, bounded sequence in a finite dimensional space
always contains a convergent (i.e., Cauchy) subsequence, and so, if the image of operator
A is finite dimensional, then A is compact. The compact operators retain in the infinite
dimensional setting many of the nice properties of finite dimensional operators. In par-
ticular, the nice spectrum properties are a natural extension to compact infinite matrices
of the well-known Perron-Frobenius theorem for finite matrices. When A is compact and
λ is a nonzero element of σ(A), then λ is an eigenvalue, and the associated eigenspace is
finite dimensional. The spectrum σ(A) is countable, and the only possible accumulation
point is 0.

The symbol T always denotes an infinite, complex matrix. All such matrices in this
paper belong to the class M:
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Definition 10 (The class M) The class M is the set of all infinite, complex matrices
T such that

∞
∑

i=1

∞
∑

j=1

|Tij |2 < ∞.

This class appears in the literature as Hilbert-Schmidt operators. Some of the basic facts
about the class M are collected in the next proposition.

Proposition 2 (Properties of M) (i) If v ∈ ℓ2 and T ∈ M, then Tv ∈ ℓ2, and

||Tv|| 6

(

∞
∑

i=1

∞
∑

j=1

|Tij|2
)1/2

||v|| def
= ||T ||2 ||v||.

Thus, acting from the left, T is an operator on the Hilbert space ℓ2, and

||T || 6 ||T ||2.

(ii) If S, T ∈ M then S + T, ST ∈ M.

(iii) If vn is an infinite, bounded sequence in ℓ2 and T ∈ M, then Tvn contains a
convergent subsequence; thus, T is a compact linear operator on the Hilbert space ℓ2.

Proof: The proofs of (i) and (ii) are straightforward using the Cauchy-Schwartz inequality.
For (iii), let Tn agree with T in the upper left n×n corner, and be zero elsewhere. Clearly,
(T − Tn) ∈ M; and, since the image of Tn is finite dimensional, Tn is compact. Above we
have seen that for any S ∈ M, ||S|| 6 ||S||2. From

||T − Tn||2 6 (||T − Tn||2)2 =
∑

max(i,j)>n

|Tij |2,

we have ||T −Tn|| → 0. Since the compact operators are a closed subspace of the bounded
operators ([11], page 158), it follows that T is compact.

The results and definitions that we need from functional analysis are stated in terms of
operators, not infinite matrices. Without further comment, we interpret an infinite matrix
T ∈ M as an operator in the obvious manner. Thus, for an infinite matrix T ∈ M all
the notations ||T ||, σ(T ), ρ(T ), and spr(T ), as well as the notion of being compact, as
defined earlier for operators, are meaningful. Under this identification of infinite matrices
T ∈ M with operators, the sum, scalar multiple, and product of two matrices correspond
as expected with the usual sum, scalar multiple, and composition of the operators.

We use the same conventions regarding absolute value as were stated earlier for vectors:
T = |S| means Tij = |Sij |. Similarly, the relations >, >,≫ can be applied to infinite
matrices. The boldface zero, 0, is used for the zero vector; the standard 0 is used for both
the scalar zero and the zero matrix. We use the following version of the Krein-Rutman
theorem. See, for example, [5] (Theorem 19.2) or [14].
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Proposition 3 (The Krein-Rutman Theorem) Let T be compact and T > 0. If
spr(T ) > 0, then spr(T ) is an eigenvalue for T and there is a corresponding eigenvector
v which satisfies v > 0.

Remark 1 For any operator T there is always a spectral value λ with |λ| = spr(T ). If
T > 0, then a generalization of Pringsheim’s argument, applied to the function (1−zT )−1,
shows that spr(T ) itself is a spectral value. Because T is compact and spr(T ) > 0,
the spectral value spr(T ) is in fact an eigenvalue. The essential additional information
provided by the Krein-Rutman theorem is that there is an eigenvector v corresponding
to this eigenvalue which satisfies v > 0. When we later attribute an assertion to the
Krein-Rutman theorem, Proposition 3 is the result we have in mind.

Let Ω ⊂ C be a domain, (an open, connected set). The functions analytic (or holo-
morphic) on Ω are a subset of the functions F : Ω → C. If we replace the range C with
a Banach space X, then most of the definitions and theorems of complex analysis carry
over, leading to the notion of vector-valued and operator-valued holomorphic functions.

Definition 11 (Holomorphic function with range a Banach space) Let X be a
Banach space. A function F : Ω → X is holomorphic provided that the limit

lim
∆x→0

F (x + ∆x) − F (x)

∆x

exists. We shall say that T (x) is holomorphic on Ω, or is a holomorphic family for x ∈ Ω.

As pointed out by Kato ([11], p.10), such familiar results as the Cauchy integral formula,
Taylor and Laurent expansions, and Liouville’s Theorem, all hold in this more general
setting, and can be proven in the same manner.

We define M(Ω) to be a class of infinite matrices whose entries are holomorphic
functions, and which satisfy the condition for membership in M uniformly on compact
subsets. It will be seen in the next Proposition that such matrices are holomorphic
families.

Definition 12 (M(Ω)) Let Ω ⊆ C be a domain. Define M(Ω) to be the set of infinite
matrices T (x) such that each entry Tij(x) is holomorphic in Ω, and such that for every
compact K ⊆ Ω there exists C with

∞
∑

i=1

∞
∑

j=1

|Tij(x)|2 6 C for all x ∈ K.

The set ℓ2(Ω) is defined similarly.

Proposition 4 (a) If T ∈ M(Ω), then T (x) is a holomorphic family of operators for
x ∈ Ω, and the derivative T ′(x) may be taken component-wise.

(b) If v,w ∈ ℓ2(Ω) and T ∈ M(Ω), then wtv is holomorphic on Ω, and wtT, Tv ∈
ℓ2(Ω).
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(c) If S, T ∈ M(Ω) then S + T, ST ∈ M(Ω).

(d) Let T ∈ M(Ω) and v ∈ ℓ2(Ω). If z0 ∈ Ω, then T (z0), |T (z0)| ∈ M and v(z0) ∈ ℓ2.

Proof: Again, most of the proof is standard and omitted. A key ingredient in the proof of
(b) and (c) is that if a sequence of holomorphic functions converges uniformly on compact
subsets of Ω, then the limit is holomorphic. We prove part (a). Let z0 ∈ Ω. Choose ρ > 0
sufficiently small that

K = {|z − z0| 6 ρ} ⊆ Ω,

and let Γ be the boundary of K oriented in the counterclockwise direction. Let B be the
infinite matrix of derivatives, Bij(x) = T ′

ij(x). For |h| 6 ρ/2,

(T (z0 + h) − T (z0) − hB(z0))ij =
h2

2πi

∮

Γ

Tij(w)

(w − z0 − h)(w − z0)2
dw.

By Cauchy-Schwartz

∣

∣

∣

∣

∮

Γ

Tij(w)

(w − z − h)(w − z)2
dw

∣

∣

∣

∣

2

6

∮

Γ

|Tij(w)|2 |dw|
∮

Γ

1

|w − z0 − h|2|w − z0|4
|dw|.

Hence,

∣

∣

∣
(T (z0 + h) − T (z0) − hB(z0))ij

∣

∣

∣

2

6
|h|4
4π2

2πρ

(ρ/2)2(ρ)4

∮

Γ

|Tij(w)|2 |dw|.

Since K is compact, we have C such that

∑

i

∑

j

|Tij(w)|2 6 C for w ∈ K.

By (i) of Proposition 2,

||T (z0 + h) − T (z0) − hB(z0)||2 6
|h|4
4π2

(8πρ−5) (2πρ)C = 4Cρ−4|h|4.

Thus,

lim
h→0

T (z0 + h) − T (z0)

h
= B(z),

and (a) is proven.

For further background information the reader may consult a text such as [4], [5], [6],
[8], or [11].
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4 Two Lemmas from Functional Analysis

In this section we prove the two lemmas which are used in the proof of Theorem 1. The
following proposition will be used in the proof of the first.

Proposition 5 Let ρ > 0, T ∈ M, T > 0, and z be a real vector. Define the set of
integers N by

N = {i : (z)i < 0}.
If Tz 6 ρz and N 6= ∅, then

ρ2
6
∑

i∈N

∑

j∈N

(Tij)
2.

Proof: Because Tij > 0, for i ∈ N we have

0 > (ρz)i > (Tz)i =
∞
∑

j=1

Tij(z)j >
∑

j∈N

Tij(z)j.

So,

ρ2
∑

i∈N

(z)2
i 6

∑

i∈N

(

∑

j∈N

Tij(z)j

)2

6
∑

i∈N

(

(
∑

j∈N

T 2
ij) (
∑

j∈N

(z)2
j)
)

= (
∑

i∈N

∑

j∈N

T 2
ij) (
∑

j∈N

(z)2
j).

Since N 6= ∅, we may divide both sides by the positive quantity
∑

i∈N (z)2
i to obtain the

desired conclusion.

For any scalar Λ and operator T we have the inclusions

{0} ⊆ ker(ΛI − T ) ⊆ ker((ΛI − T )2) ⊆ · · · .

If Λ 6= 0 and T is compact, then there is a smallest n = nΛ such that ker((ΛI − T )i) =
ker((ΛI − T )i+1) for i > n.

Definition 13 (Simple eigenvalue) We say that Λ 6= 0 is a simple eigenvalue provided
dim(ker(ΛI − T )) = 1 and nΛ = 1.

To verify that an eigenvalue is simple, one must show that the space of eigenvectors
for Λ is spanned by a single vector v 6= 0, and that no vector w satisfies the relation
(ΛI − T )w = v.

Lemma 2 (Eigenvalues of recurrent matrices) Let T ∈ M be recurrent and satisfy
T > 0. Then
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(a) T is compact;

(b) λ = spr(T ) > 0 is an eigenvalue of T ;

(c) the space of eigenvectors associated with λ is spanned by a vector v ≫ 0;

(d) the eigenvalue λ is simple;

(e) if µ 6= λ is an eigenvalue, then |µ| < λ;

(f) if T > |B|, then spr(T ) > spr(B).

Proof: Part (a). This has been established earlier in Proposition 2 (iii).
Part (b). Let ℓ be such that (T ℓ)i,i 6= 0 for some i. Then

lim
n→∞

‖T n‖1/n = lim
k→∞

‖T ℓk‖1/kℓ
> lim

k→∞

((

T ℓk
)

i,i

)1/kℓ

> lim
k→∞

((

(T ℓ)i,i

)k)1/kℓ

=
(

(T ℓ)i,i

)1/ℓ

> 0.

By the Krein-Rutman Theorem (Proposition 3), λ = spr(T ) is an eigenvalue with an
eigenvector v that satisfies v > 0.

Part (c). To see that v ≫ 0, suppose to the contrary that (v)i = 0. Let j be such
that (v)j > 0 and let ℓ be such that (T ℓ)ij > 0. Then

λℓ(v)i = (T ℓv)i > (T ℓ)ij(v)j > 0,

a contradiction. For the rest of the proof of the lemma, v refers to this vector. We want
to show that ker(λI − T ) = Span(v). Let w ∈ ker(λI − T ). Since this implies that
Rew, Imw ∈ ker(λI − T ), we may assume without loss that w is real. If w = 0 we are
done. So assume, again without loss, that (w)i > 0 for some i. Then

t = max{x ∈ R>0 : xw 6 v}

is well defined. If v = tw, we are done, so assume to the contrary that v > tw. Since
v − tw ∈ ker(λI − T ), it follows as it did for v a moment ago that, in fact, v − tw ≫ 0.
For each ǫ > 0 define k(ǫ) to be the smallest index i such that (v − (t + ǫ)w)i < 0. It
must be the case that k(ǫ) → ∞ as ǫ → 0, since otherwise we find (v− tw)i = 0 for some
i, a contradiction. But Proposition 5 applies to ρ = λ and z = v − (t + ǫ)w, showing

λ2
6

∑

i,j∈Nǫ

(Tij)
2

6
∑

i,j>k(ǫ)

(Tij)
2. (9)

Since λ > 0 and k(ǫ) → ∞, this is a contradiction.
Part (d). We want to show that the eigenvector v ≫ 0 is simple. We have seen in

Part (c) that the space of eigenvectors associated with λ is one dimensional, so for λ not
to be simple we would have a vector w such that (λI−T )w = v. Passing to the real part,
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we may assume w is real. By adding a sufficiently large multiple of v, which belongs to
ker(λI − T ), we may assume that (w)i > 0 for some i. Define t > 0 and k(ǫ) exactly as
in the previous part of the proof. Letting z = v − tw we have, since 0 6 z,

0 6 Tz = Tv − tTw = λv − t(v + λw) = λz − tv.

If t > 0, it follows from 0 ≪ v that 0 ≪ z. If t = 0, then 0 ≪ v = z. In either case,
0 ≪ z, and again we must have k(ǫ) → ∞. For ǫ > 0

T (z− ǫw) = λ(z − ǫw) − (t + ǫ)v,

and so T (z − ǫw) ≪ λ(z − ǫw). Hence, the pair ρ = λ and z = z − ǫw = v − (t + ǫ)w
satisfy the hypotheses of Proposition 5, leading again to the contradiction (9).

Part (e). The adjoint T ∗ satisfies the same conditions as T : T ∗ ∈ M, T ∗ > 0, and
T ∗ recurrent. Also, spr(T ∗) = spr(T ). It follows that T ∗z = λz for some z ≫ 0. We use
this z here and in the proof of (f). Let µ be a nonzero eigenvalue for T , different from λ.

Since λ = spr(T ), |µ| 6 λ and we can assume µ is not a positive real number. Let
w be an eigenvector for µ. Without loss of generality, the first nonzero component of w
is a positive real. We cannot have w > 0 for then Tw = µw would imply that µ > 0.
Suppose (w)j1 > 0 and (w)j2 6= 0 is not a positive real. By property (R2) there exist
ℓ, i such that (T ℓ)i,j1 > 0 and (T ℓ)i,j2 > 0. Thus |T ℓw| < T ℓ|w| by considering the ith
component. We have

λℓz∗|w| = z∗T ℓ|w| > z∗|T ℓw| = z∗|µℓw| = |µ|ℓz∗|w|.

Since z ≫ 0, it follows that z∗|w| > 0 and so λℓ > |µ|ℓ.
Part (f). We first consider B > 0. From 0 6 B < T it follows that Bn 6 T n for all

n, and then ||Bn|| 6 ||T n||. So, at least, spr(B) 6 spr(T ). Suppose that we have equality,
so that λ is an eigenvalue of B as well as T . By Krein-Rutman, B has an eigenvector
w > 0 associated with λ. We have

z∗(T − B)w = (z∗T )w − z∗(Bw) = (λ − λ)z∗w = 0.

Since z ≫ 0, it follows that (T − B)w = 0. By this and the definition of w, Tw =
Bw = λw and so w is an eigenvector of T . Hence w ≫ 0. Since z∗(T − B)w = 0, it
follows that T − B = 0, contradicting T > B. Hence, the assumption of equality leads
to a contradiction, and we have spr(B) < spr(T ). For general B, we simply observe that
‖Bn‖1/n 6 ‖|B|n‖1/n, and so spr(B) 6 spr(|B|).

Let T be a compact operator on a Hilbert space V and let Λ ∈ σ(T ) − {0}. If V =
M ⊕N , a direct sum of closed, T -invariant subspaces, then σ(T ) = σ(T |M)∪σ(T |N). It is
a theorem of F. Riesz [17], see also p.178 of [18], that there is a unique such decomposition
with the additional property that σ(T |M) = {Λ} and σ(T |N) = σ(T )−{Λ}. We say that
the decomposition separates Λ from the rest of the spectrum σ(T ). Suppose that E is a
bounded idempotent (i.e. projection) which commutes with T and satisfies

T = ΛE + B, EB = BE = 0, spr(B) < |Λ| and rank(E) = 1. (10)
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Then M = image(E), N = ker(E) is the unique Riesz decomposition which separates Λ
from the rest of σ(T ); moreover, the spectral value Λ is a simple eigenvalue and strictly
larger than all other spectral values of T in absolute value. The converse is also true: if
V = M ⊕ N is the Riesz decomposition which separates a simple eigenvalue Λ from the
rest of the spectrum, and if Λ is the unique spectral value of maximum absolute value,
then the projection E determined from this decomposition by image(E) = M, ker(E) = N
commutes with T and satisfies (10). The role of the next lemma is to say that if T = T (x0),
with T (x) holomorphic, has a decomposition with the properties (10), then the same is
true of T (x) locally. In this lemma, and henceforth, we say that a matrix (or operator) U
is real if 〈ei, Uej〉 is real for all i, j; equivalently, v > 0 =⇒ Uv > 0. For Ω ⊆ C, Re(Ω)
denotes the real elements of the set Ω.

Lemma 3 Let Ω ⊆ C be a domain, and T (x) ∈ M(Ω). Assume for a certain point
x0 ∈ Ω that Λ ∈ σ(T (x0)) − {0}, and that all other spectral values of T (x0) are strictly
smaller in absolute value than |Λ|. Then there exists δ > 0 such that in the neighborhood
N = {|x − x0| < δ|}

T (x) = Λ(x)E(x) + B(x);

and

(a) All four functions T , Λ, E and B are holomorphic in N

(b) Λ = Λ(x0)

(c) E(x)2 = E(x) and rank(E(x)) = 1

(d) B(x)E(x) = E(x)B(x) = 0

(e) spr(B(x)) < |Λ(x)|.

Moreover, if T (x) is real for x ∈ Re(Ω), then the same is true of E(x).

Proof: Let T = T (x0), and let Λ, E, B satisfy (10). Because T is compact and Λ 6= 0, it
is isolated from other spectral values. Let Γ be a positively oriented, circular arc in the
complex z-plane which encloses Λ, encloses no other spectral values for T , and lies itself
entirely in ρ(T ). By formula (13), p.418 of [18], or page 180 of [11], the operator E is
given by the integral

E =
1

2πi

∮

Γ

dz

z − T
.

By a standard compactness argument, there exists δ sufficiently small that

|x − x0| < δ =⇒ Γ ⊆ ρ(T (x)).

Then

E(x) =
1

2πi

∮

Γ

dz

z − T (x)
(11)
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is holomorphic on N , E(x)2 = E(x), and E(x) commutes with T (x). (One way to see
that E(x) is holomorphic is to note that it is the uniform limit on compact subsets of N
of the finite Riemann sums defining the integral.)

By taking δ smaller still, if necessary, we may assume that ||E(x)−E|| < 1 throughout
N . By Lemma 4.10, p.34 [11], rank(E(x)) = 1 for all x ∈ N . In fact, the similarity
condition

E = U(x)−1E(x)U(x)

holds with U(x) an invertible linear operator on ℓ2. By examining the proof of Kato’s
Lemma 4.10 [11], we see that U(x) is holomorphic, and we have the explicit formula

U(x) = Û(x)

∞
∑

n=0

(−1)n

(−1/2

n

)

R(x)n,

where

R(x) = 1 − Û(x)V̂ (x),

Û(x) = E(x)E + (1 − E(x))(1 − E),

V̂ (x) = EE(x) + (1 − E)(1 − E(x)).

Since Λ is a simple eigenvalue, image(E) equals the span of a single eigenvector. Let
v be such an eigenvector. We have Ev = v, and by the above similarity relation

E(x)U(x)v = U(x)E(x)v = v.

Thus U(x)v ∈ image(E(x)). If δ is sufficiently small, U(x)v is nonzero for x ∈ N , and
since the image of E(x) is one-dimensional, the nonzero vector U(x)v spans it. Also, for
any z ∈ ρ(T (x)), T (x) commutes with (z−T (x))−1, and so by the above integral formula,
E(x) commutes with T (x). We have then

T (x)U(x)v = T (x)E(x)U(x)v

= E(x)T (x)U(x)v

= an element of the image of E(x)

= Λ(x)U(x)v

for some well-defined scalar Λ(x). This gives us the eigenvalue function Λ(x), with
Λ(x0) = Λ. We wish to show that Λ(x) is holomorphic in N . We know that U(x0)
is the identity operator, and that U(x0)v = v is nonzero. Thus, for some j, the inner
product 〈U(x0)v, ej〉 is nonzero. With δ small, the same is true throughout N , and the
formula

Λ(x) =
〈T (x)U(x)v, ej〉

〈U(x)v, ej〉
,

shows that Λ(x) is indeed holomorphic in N .
Now define B(x) by

B(x) = T (x) − Λ(x)E(x).
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It is immediate that B(x) is holomorphic, since all three of T (x), Λ(x), E(x) are. The
previous part of the proof has shown that is possible to define Λ(x) in such a way that

T (x)E(x) = Λ(x)E(x).

Because E(x) and T (x) commute, the same is true for E(x) and B(x). Since

E(x)B(x) = E(x) (T (x) − Λ(x)E(x)) E(x) = T (x)E(x) − Λ(x)E(x) = 0,

we have B(x)E(x) = E(x)B(x) = 0. This proves parts (a)–(d). We come now to (e).
Since σ(T (x0)) = {Λ} ∪ σ(B(x0)), the hypothesis that Λ is larger in absolute value than
all other spectral values tells us

spr(B(x0)) < |Λ| = |Λ(x0)|.

Since x 7→ |Λ(x)| is continuous on N and x 7→ spr(B(x)) is upper semicontinuous, asser-
tion (e) follows for δ sufficiently small.

Assume now that T (x) is real for x ∈ Re(Ω). The last step of the proof is to show that
the same is true of E(x). Let zj = e2πij/d, the d-th roots of unity and let wj = (zj+1+zj)/2,
the midpoints between the zj’s. Consider the integral formula (11). For x real, T (x) is
real, and

(w − T (x))−1 = (w − T (x))−1.

It follows that for even integral d

d−1
∑

j=0

(zj+1 − zj)(wj − T (x))−1, zd ≡ z0,

is a pure imaginary, because for each term in the sum its negative conjugate is also
present. But

∫

Γ
(z − T (x))−1dz is the limit as d → ∞ of the latter Riemann sums; thus

the integral is a pure imaginary, and after multiplication by (2πi)−1 we see that E(x) is
real, as claimed.

5 Proof of Theorem 1

We begin with a lemma that extends the first part of Theorem 1 slightly by allowing
constant terms.

Lemma 4 Let ρ > 0 and let Un be a sequence of infinite matrices. Suppose that the power
series

U(x) = U0 + xU1 + x2U2 + · · ·
satisfies:

(a)
∑

n |x|n ||Un|| 2
is convergent for |x| < ρ,
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(b) Un > 0,

(c) U(x0) is recurrent for all x0 ∈ (0, ρ).

Then for each x0 ∈ (0, ρ) the matrix U(x0) has an eigenvalue λ(x0) > 0 which is simple
and strictly larger in absolute value than the other eigenvalues of U(x0). On the interval
(0, ρ) the function λ(x) is analytic and strictly increasing.

Proof: For each x0 in the real interval (0, ρ) the matrix U(x0) satisfies the hypotheses of
Lemma 2. Hence, spr(U(x0)) is a positive, simple eigenvalue which is strictly larger than
the absolute value of all other eigenvalues of U(x0). Denote this eigenvalue by λ(x0), so
that the function λ(x) is defined on the interval (0, ρ). Hypothesis (c) implies that not all
Un are zero, and so, in view of (b), U(x0) > 0 for all x0 ∈ (0, ρ). Moreover, for x1 < x2,
we have U(x1) < U(x2). By Lemma 2(f), λ(x1) < λ(x2), and so the function λ(x) is
increasing.

We wish to prove next that the function λ(x) is continuous. Hypothesis (a) implies
U(x) ∈ M(|x|<ρ), and so by Proposition 4(i) U(x) is holomorphic in the domain |x| < ρ.
The family U(x) satisfies the hypotheses of Lemma 3 with Ω = {|x| < ρ} and x0 any
point in the real interval (0, ρ). Hence, for each such x0 we have a neighborhood N of
x0 and functions Λ(x), E(x), B(x) analytic in N which satisfy the conclusions (a)–(e) of
Lemma 3. We claim that Λ(x) = λ(x) for x belonging to Re(N ).

Indeed, since Λ(x) ∈ σ(U(x)), we have

|Λ(x)| 6 spr(U(x)) = λ(x), when x ∈ Re(N ).

If for some x ∈ Re(N ) it were the case that λ(x) 6= Λ(x), then λ(x) would be a spectral
value for U(x) which differs from Λ(x) and whose absolute value is at least |Λ(x)|, con-
tradicting conclusion (e) of Lemma 3. Thus, as claimed, Λ(x) = λ(x) for x ∈ Re(N ), and
so not only is λ(x) continuous at each x0 ∈ (0, ρ), but in fact analytic.

We now turn our attention to the proof of Theorem1. In the proof, λ(x) denotes the
eigenvalue of T (x).

By setting U0 = 0 in Lemma 4, we obtain part of the theorem. Now apply the lemma
to U(x) = T (x)/x and let its largest eigenvalue be µ(x) > 0, Then µ(x) is increasing,
λ(x) = xµ(x), and λ′(x) = µ(x) + xµ′(x) > µ(x).

For the rest of the proof, assume that r, k0, s(x), f(x) satisfy the hypotheses (d)–(f) of
Theorem 1. Define

S(x) =
∞
∑

k=0

T (x)k.

The sum converges uniformly on compact subsets of spr(T (x)) < 1 and defines an analytic
function on the latter open set. In particular, S(x) is analytic in |x| < r. For any x0

satisfying |T (x0)|k0 < T (r)k0 we have

spr(T (x0)
k0) 6 spr(|T (x0)

k0|) 6 spr(|T (x0)|k0) < spr(T (r)k0) = 1.
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By hypothesis (f) of Theorem 1, then, S(x) is holomorphic near each x on the circle
|x| = r, with the possible exceptions of x = r and x = −r. Thus φ(x) = s(x)tS(x)f(x),
too, is holomorphic for |x| < r, with x = ±r the only possible singularities.

By Lemma 3 we have a neighborhood N of x = r in which

T (x) = λ(x)E(x) + B(x)

with all four functions holomorphic in N , E(x)2 = E(x), E(x)B(x) = B(x)E(x) = 0,
and λ(x) = spr(T (x)) for x ∈ Re(N ). It follows by induction that for k > 1,

T (x)k = λ(x)kE(x) + B(x)k (12)

in N . Assume N sufficiently small that spr(B(x)) < 1 for x ∈ N . Then, in the intersection
N ∩ {|x| < r}

S(x) =
λ(x)

1 − λ(x)
E(x) + (I − B(x))−1.

This gives

φ(x) =
g(x)

1 − λ(x)
+ h(x) (13)

with g(x) = λ(x)s(x)tE(x)f(x) and h(x) = s(x)t(I − B(x))−1f(x). Initially we have
proven (13) for x ∈ N ∩ {|x| < r}. However, both g(x) and f(x) are holomorphic
throughout N . Thus the right side of (10) is holomorphic in the punctured neighborhood
N − {r}. To complete the proof that φ(x) has a simple pole at x = r, we need to show
that g(r) 6= 0 and λ′(r) 6= 0.

From equation (12) and λ(r) = 1, for all k > 1,

E(r) = T (r)k − B(r)k.

Now the matrices B(r)k are summable, so in particular ||B(r)k|| → 0 for k → ∞. Suppose
we show there exist i, j > 1 and η > 0 such that for k sufficiently large

(T (r)k)ij > η. (14)

Let i1, j1, ℓ, m satisfy

(s(r))i1 > 0, (f(r))j1 > 0, (T (r)ℓ)i1i > 0, (T (r)m)jj1 > 0,

and let k be so large that (T (r)k−ℓ−m)ij > η. Then

s(r)tT (r)kf(r) > (s(r))i1 (T (r)ℓ)i1i (T (r)k−ℓ−m)ij (T (r)m)jj1(f(r))j1 > η′ > 0.

Since

g(r) = λ(r)s(r)tE(r)f(r)

= s(r)tT (r)kf(r) − s(r)tB(r)kf(r)

= s(r)tT (r)kf(r) + o(1)
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as k → ∞, we may conclude that g(r) 6= 0, as needed.
So, let us prove assertion (14). Let v ≫ 0 be an eigenvector corresponding to the

eigenvalue 1 and spanning image(E). Let j be such that in the decomposition

ej = αv + w, with w ∈ ker(E)

the scalar α is nonzero. By taking the inner product of both sides of the latter with v,
we see that α > 0. For an arbitrary integer i we have

(T k)ij = 〈ei, T
kej〉

= α(v)i + 〈ei, B
kw〉

= α(v)i + o(1),

and the proof of (14) is complete. This completes the proof of Theorem 1.

6 Proof of Theorem 2

Let C = CΦ and DΦ be the digraph associated with Φ. Define T (x) to be the transfer
matrix for DΦ as given in (4). Define s(x) and f(x) by (6) and (7). When T (x) is written
as a power series, it is seen that the coefficient Tn of xn is a (0, 1)-matrix, with (Tn)ij = 1
if and only if (~νi, ~νj) ∈ E(DΦ) and Σ(~νi) + Σ(~νj) = n. Since the number of such edges
is bounded by the number of compositions of n into 2m parts, (m is the common value
of the span and modulus of Φ), we see ||Tn||2 = O(nm), and hypothesis (a) of Theorem 1
is confirmed for ρ = 1. Hypothesis (b) is clear, since, as just indicated, each Tn is a
(0, 1)-matrix. Hypothesis (c) is follows from Proposition 1(b).

Let s(x), f(x) be defined by (6) and (7). The number of paths π in the sum defining
s(x) is O(nKm), constant K coming from property (R4) of regularity, and so s(x) ∈
ℓ2(|x| < 1) as claimed. Similarly for f(x). By the mere existence of recurrent states νi

we know that s(x), f(x) > 0 for all 0 < x < 1, hypothesis (e). The integer k0 needed to
verify hypothesis (f) is supplied from Proposition 1(c). The desired relationship, F (x2) =
φ(x) + FNR(x2), follows from (8), and the fact that FNR(x) has radius of convergence 1
is given in Proposition 1(d).

It remains only to show that there exists r such that λ(r) = 1. By Proposition 1(a)
the radius of convergence for F (x2) is some r2, r2 < 1. Because an > 0, x = r2 is itself a
singularity for F (x2). Because the radius of convergence of FNR(x2) is 1, it must be the
case that φ(x) has radius of convergence r. It is clear that λ(x) → 0 as x → 0. Thus, if
there is no root for the equation λ(x) = 1 in the range 0 < x < 1, we must have λ(r) < 1.
But then φ(x) is regular in a neighborhood of x = r, as shown in the proof of Theorem 1,
a contradiction. This completes the proof of Theorem 2.

Remark 2 Suppose that for any two recurrent vertices νi, νj there exists k such that all
four entries of the 2× 2 (i, j) principle subminor of T (x)k are nonzero. This is a stronger
form of recurrence, and implies properties (R1) and (R2). Moreover, the same subminor
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of T (x)kℓ will dominate xβℓ times the 2 × 2 matrix containing four entries 2ℓ. Hence, if
(2xβ) > 1, T (x) has spectral radius greater than 1. Using all compositions (2n−1) for a
lower bound, this gives

1

2
6 r 6

(

1

2

)1/β

.

This stronger form of recurrence is available in all our examples. Since we can prove the
existence of r without it (although without the above upper bound), we decided to use
the weaker properties (R1) and (R2).

7 Proof of Theorem 3

Theorem 3 is an immediate corollary of Theorems 1 and 2 when used with this simple
observation:

Fact. Let F (x) be a power series and r > 0. Suppose that F (x2) has radius of convergence√
r, and that the only singularity of F (x2) on

{|z| =
√

r} ∩ {Re(z) > 0}

is a simple pole at z =
√

r. Then the radius of convergence of F (x) is r, and the only
singularity of F (x) on its circle of convergence is a simple pole at x = r.

8 Definitions and Proofs for Theorem 4

Definition 14 (Recurrent local event) A local event is a subset E of

{0, 1, . . . , m − 1} × N
m+1
0

for some sufficiently large m. If {(i mod m), ci, . . . , ci+m} ∈ E, we say that E occurs at
position i in the composition ~c, with the usual convention that we pad the composition out
with zeros. The event E is recurrent if, for some recurrent ~µ and ~ν, (~µ, ~ν) is an edge of
DΦ such that E occurs in the composition ~µ, ~ν with 1 6 i 6 m. (That is, the “window”
in E lies entirely within ~µ, ~ν.)

Example 10 (Recurrent local events) The requirement that a part belong to a spec-
ified subset of N is a local event for most C. Equal columns at distance two in 2-rowed
Carlitz compositions are a local event. A strict local maximum is local event. In this case
we take m > 3 and

E =
{

{0, 1, . . . , m − 1}, ℓ1, ℓ2, . . . , ℓm

}

,

where ℓi ∈ N0 and ℓ1 < ℓ2 > ℓ3. Suppose the conditions on C allow arbitrarily long strings
of equal parts and we look for local maxima without the strictness condition. In this case,
no finite window suffices since we must know the relative size of the parts that border an
arbitrarily long string of equal parts.
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Suppose we are keeping track of κ local events We introduce variables ~y into the
formula FR(x) = s(x)

∑

T (x)kf(x) to keep track of the random variables as follows.
T (x, ~y)µ,ν will have the same power of x as before. The power of yi will be the number of
times local event Ei occurs in µ, ν, with the first part occurring in µ. The vectors s and
f are adjusted to keep track of the occurrences of events near the start and end of the
compositions.

As with x, the resulting function is holomorphic in ~y. Inverting λ(x, ~y) = 1 gives
x = r(~y) a function holomorphic in ~y and Theorem 3 becomes an(~y) ∼ A(~y)r(~y)−n for
holomorphic A.

Definition 15 (Unrelated events) With a power series f(~y) in κ variables associate
a set P(f) ⊂ Rκ of vectors one for each nonzero term as follows. Associate a vector ~m
with each nonzero term C~m

∏

ymi
i . Let V(f) ⊆ Rκ be the vector space spanned over R by

the differences of vectors in P(f). Given κ recurrent local events Ei, introduce variables
y1, . . . , yκ in the transfer matrix T to count them. If there are i, j, k, n such that

V
(

k
∑

p=1

[xn](T p)ij

)

= R
κ, (15)

we say that the events are unrelated.

Remark 3 This may not sound like the concept roughly stated before Theorem 4: What
does V have to do with the counts being nearly linearly independent? If V were not the
whole space, we would have some ~w such that ~w ·~k were nearly a constant multiple of n for
all counts ~k of compositions of n; a fact we will not prove since it is not needed. Rather, it
explains why the precise definition of unrelated is close to the imprecise definition before
Theorem 4.

Make Cn, those ~c ∈ C with Σ(~c) = n, into a probability space by using the uniform

distribution. Introduce random variables ~Y (n) that count various recurrent local events.
As we shall see,

E(~Y (n)) = n~m + o(n) for some ~m ≫ ~0 and cov(~Y (n)) = nB + o(n),

where computing the means vector ~m and covariance matrix B seems impossible since
they require partial derivatives of an eigenvalue we can only crudely estimate. A standard
result tells us that ~Y (n) is asymptotically normal provided B is nonsingular. The need to
prove nonsingularity of B without recourse to calculating its value motivates Definition 15.

8.1 Three Lemmas

Lemma 5 (Non-overlapping paths) For this lemma, we call two paths σ1, σ2 in DΦ

non-overlapping if, whenever π is a path in DΦ containing σ1 and σ2, σ1 and σ2 never
partially overlap.
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Suppose CΦ is regular and locally restricted and that π1, π2 ∈ PathΦ(~ν1, ~ν2) are not
necessarily distinct. Then there are (possibly single vertex) paths α~ν1 and ~ν2ω (i.e. α
and/or ω may be empty) such that the two paths απiω are non-overlapping.

Proof: Since there are at least two recurrent vertices by Definition 9(R1), it follows from
(R2) that the recurrent vertices contain at least two cycles (including loops). Let σ be a
cycle in DΦ of shortest length (possibly just a loop). Let ~µ be a vertex not on σ. Let α
be a path that goes from ~µ to σ, then traverses σ many more times than σ appears in the
πi, then goes to ~µ and, finally, goes to ~ν1, but does not include, ~ν1. Let ω be a path that
goes from ~ν2 to ~µ, then to σ and finally traverses σ more than α does.

Lemma 6 (Distribution of a recurrent event) Let the random variable Y (n) be the
number of occurrences of some recurrent local event E in Cn. Then

(i) E(Y (n)) ∼ mn for some m > 0 and

(ii) the random variable Z(n) = Y (n)−E(Y (n))

n1/2
converges in distribution to either a point

distribution or a normal N (0, σ).

Proof: The proof of the central limit theorem (Theorem 1) of [3] actually shows a bit

more than claimed, namely, that E(~Y ) = n~m + o(n) and cov(~Y ) = nB + o(n) as n → ∞,

regardless of whether or not B is nonsingular. We apply it here to the case when ~Y has
a single component.

Let λ(x, y) be the eigenvalue of the transfer matrix, where x keeps track of sum of
parts and y keeps track of the the occurrences of the recurrent event. To study the
asymptotic distribution of Y (n), we must solve 1 = λ(r(y), y) for y near 1. By Lemma 4,
λ is holomorphic and is increasing for x and y positive reals. By Theorem 1, λ′(x, 1) > 0
and so 1 = λ(r(y), y) has a holomorphic solution near y = 1 and, by the previous sentence,
is decreasing for positive reals. By Lemma 2(f), λ(x, y) is not a constant function of y
and so r(y) is not constant. Recall that “mean shifting” [1] looks at the distribution of

Pr(Y (n)=k) =
an,ks

k

∑

k an,ksk
.

One gets E(Y (n)) = m(s)n + o(n) where m(s) = sr′(s)/r(s). By the definition of Y (n),
m(s) is clearly an increasing function of s. Consider s ∈ (1 − δ, 1). Since r(y) is noncon-
stant, we must have r′(s) 6= 0 somewhere in (1 − δ, 1) and so m(s) > 0 for this s. Claim
(i) follows from monotonicity of m(s). Claim (ii) follows from the opening paragraph of
the proof.

Lemma 7 Let X, Y1, Y2, . . . , Yk be random variables. A value is assigned X as follows.
First choose 1 6 i 6 k with probability pi. Then let X be the value of Yi. It follows that
var(X) >

∑k
i=1 pivar(Yi).

Proof: We have var(X) =
∑k

i=1 piE((Yi−E(X))2). Since the minimum value of E((Z−t)2)
occurs at t = E(Z), the result follows.
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8.2 Proof of Theorem 4

As remarked in the proof of Lemma 6, the proof of the central limit theorem (Theorem 1)

of [3] actually shows a bit more than claimed, namely, that E(~Y ) = n~m + o(n) and

cov(~Y ) = nB + o(n) as n → ∞, regardless of whether or not B is nonsingular.
By Lemma 6(i), ~m ≫ ~0. It remains to prove that B is nonsingular.
Suppose B is singular and let ~w 6= ~0 be such that B ~w = ~0. Define the random variable

X = ~w · ~Y . Then
var(X) = n~wtB ~w + o(n) = o(n).

By (15) there exists

~p = ~m1 − m2
~b ∈

(

k
∑

p=1

[xn](T p)ij

)

such that ~w·~p 6= 0. Let ~ν1, ~ν2 correspond to the indices i, j of T . Let πi ∈ PathΦ(~ν1, ~ν2) give
rise to the counts ~mi. Apply Lemma 5 to obtain two non-overlapping paths σi = απiω.
Note that σi gives rise to some count ~mi +~k, where ~k does not depend on i because π1 and
π2 have been extended by using the same paths and events are local. Hence the difference
of these counts is still ~p.

Apply Lemma 6 to conclude that, for some δ and ǫ and all sufficiently large n, at least
a fraction ǫ of the compositions of n contain at least δn copies of σ1. To do this, one
needs to increase the modulus m since a local event’s span is limited by the modulus and
we are looking for σ1 which has a multiple of m parts. Lemma 1(iii) justifies this.

For a composition ~c, define χ(~c) to be the composition obtained by replacing all
occurrences of σ2 with σ1. Partition the compositions of n into sets Si as follows.

• If the total number of copies of σ1 in χ(~c) is less than δn, place ~c in S1.

• Partition those compositions ~c for which χ(~c) has at least δn copies of σ1 into

equivalence classes where χ(~c) = χ(~d) defines equivalence.

We now apply Lemma 7. When i 6= 1, the random variable Yi has a binomial distribution
on at least δn items and so has variance at least δn/4. Since the probability that ~c ∈ S1

is at most (1 − ǫ)n, it follows that var(X) > ǫδn/4, contradicting the earlier result that
its variance was o(n). This contradiction completes the proof of the nonsingularity of B.

9 The Largest Part and Number of Distinct Parts

Let Φ be a local restriction function with modulus and span m. (See Sections 2.1 and 2.2
for definitions and notation.) Let the random variable Mn (resp. Dn) be the largest part
(resp. number of distinct parts) in a locally restricted composition of n selected uniformly
at random. We begin with upper bounds on Mn and Dn. Since Dn 6 Mn, it suffices
to bound Mn. Consider compositions of n that contain the part p. We now overcount
such compositions. All of them can be constructed by choosing 0 6 t 6 n − p, forming
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compositions ~a of t and ~b of n − t − p, and then considering the composition ~c = ~a, p, ~b.
We allow ~a to end in any fashion whatsoever and ~b to begin in any fashion whatsoever
(the vectors s and f of (8)). According to Example 4, this alters the constant factor in the
asymptotics but does not change the exponential growth rate. Many of the compositions
~c produced in this manner will be illegal and compositions with k copies of p will be
produced k times; however, none of this matters since we are interested in an overcount.
It follows that the number of compositions of n with largest part exceeding L is bounded
by

∑

p>L

n−p
∑

t=0

(C1r
−t)(C2r

−(n−t−p)) < C1C2r
−nn

∑

p>L

rp < C3nrL−n.

If nrL = o(1), it follows that Mn 6 L almost surely. Hence, for any function g(n) → ∞,

Mn 6 log1/r(n) + g(n) almost surely.

Unlike the upper bounds, our proof of lower bounds requires the construction of valid
compositions and hence requires more information about Φ. In fact, it was shown in [2]
that, in some situations, one can have Mn = Θ((log n)1/2) almost surely.

Let ~ν be a recurrent vertex in DΦ. By Theorem 4 there is a δ > 0 such that a
composition of n almost surely contains more than δn copies of ~ν. For each n, let this set
of compositions be Sn and let Sn(p) be the subset containing no part of size p.

For each p ∈ N, let π = PathΦ(~ν, ~ν) be a composition containing p for which Σ(π)
is a minimum. Let w(p) = Σ(π) − Σ(~ν). If no such π exists, set w(p) = ∞. We can
construct compositions containing p by choosing a composition in Sn(p) and replacing
one occurrence of ~ν with π. This gives us at least δn compositions of n + w(p). Using
Theorem 3 we obtain

δn|Sn(p)| < (A + δ)r−(n+w(p))

for all sufficiently large n. Thus

|Sn(p)| <
A + δ

δnrw(p)
.

For P ⊂ N, the probability that a composition in Sn contains no parts in P is at most

miss(P) =
A + δ

n

∑

p∈P

r−w(p). (16)

The plan is to choose P depending on n so that (16) goes to zero as n → ∞. To get a
lower bound on Mn, we choose P to contain one large part since almost surely Mn is at
least as large as this part. To get a lower bound on Dn, we choose |P| as large as possible
since almost surely Dn > |P|. Because of the variety of possibilities, we simply describe
some results.

(a) Suppose w(p) = p+O(1) for all p. Then (16) and the upper bounds obtained earlier
give Mn ∼ Dn ∼ log1/r(n) almost surely.
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(b) This is easily extended to the case when w(pi) = pi + o(1) for an infinite sequence
of increasing parts satisfying pi+1/pi → 1.

(c) If one still has w(pi) = pi + o(1) but has only that pi+1/pi is bounded as i → ∞,
then the lower bounds on Mn and Dn become θ(log n).

(d) If limitations on differences between nearby parts lead to w(p) = O(pα), one obtains
lower bounds on Mn and Dn of O((log n)1/α). This arose with α = 2 in [2] when
the set of allowed adjacent differences was finite.

(e) If some condition on pi+1/pi such as that in (c) is added to (d), we get Θ((log n)1/α).

The ideas in this section are adaptations of the material in Sections 7 and 8 of [2].

10 Longest Runs

Considerable information has been obtain by Grabner et al. [7] about runs in unrestricted
compositions. Their method uses explicit generating functions, which we lack in the
general case. Consequently, we obtain the cruder results contained in Theorem 5.

Let ~p be a sequence of parts that can form arbitrarily long runs. Given a locally
restricted composition of n selected uniformly at random, let Rn(~p) be the maximum run
length of ~p in n. Let p = Σ(~p).

We begin with an upper bound for Rn(~p) following the method in the previous section,
again by overcounting. All compositions containing a run of length at least k can be
constructed by choosing 0 6 t 6 n− kp, forming compositions ~a of t and ~b of n− kp− t,
and then considering the composition ~c = ~a, (~p, )k~b. We allow ~a to end in any fashion

whatsoever and ~b to begin in any fashion whatsoever. The total number of compositions
constructed is

n−kp−t
∑

t=0

(C1r
−t)(C2r

−(n−kp−t)) < C3r
−n(nrkp). (17)

If nrkp = o(1), it follows that Rn(~p) < k almost surely. Hence, for any function g(n) → ∞,

Rn(~p) 6
log1/r(n)

Σ(~p)
+ g(n) almost surely. (18)

We now obtain lower bounds, again following the method of the previous section. Let
~ν, δ and Sn be as there: ~ν is recurrent, a composition of n almost surely has δn copies of
~ν, and Sn is that set of compositions of n. Let Sn(k) be the subset that does not contain
a run of ~p of length at least k.

Let πk = PathΦ(~ν, ~ν) contain a run of ~p of length k. Choose πk so that Σ(πk) is
minimal. When k is sufficiently large, we can insert m additional copies of ~p into π
to obtain an m longer run of ~p. (Recall that m is the modulus and span of the local
restriction.) Thus sk = Σ(πk) − Σ(~ν) grows linearly with growth rate Σ(~p). Thus sk <
a + kΣ(~p).
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For each composition in Sn(k) replace each ~ν in turn with πk, obtaining at least
δn|Sn(k)| distinct compositions of n + sk containing a run of length at least k. Since this
cannot exceed the total number of compositions, it is bounded by (A + δ)r−(n+sk) and so

|Sn(k)| <
A + δ

δnrn+sk
<

Br−n

nrkΣ(~p)

for some B. Thus Sn(k) will be a negligibly small fraction of all compositions provided

k <
log1/r(n)

Σ(~p)
− g(n)

for some g(n) → ∞. Combining this with (18), we obtain

Rn(~p) ∼
log1/r(n)

Σ(~p)
almost surely,

which is the first part of Theorem 5.
We now turn to (a) in the theorem. Let L be the minimum of Σ(~p) over R. We

sum (17) over all ~p with Σ(~p) > L, not just those in R. Group terms by the value p of
Σ(~p). Since there are less than 2p compositions of p, an upper bound on the number of
compositions of n containing a run of length at least k of anything with Σ > L is

∑

p>L

2pC3r
−n(nrkp) = C3r

−n n
∑

p>L

(2rk)p < C4r
−n n(2rk)L+1. (19)

Fix δ > 0 so that (1− 2δ)(L +1) > L. Let k = (1− δ)
(

(log1/r(n))/L
)

and let n be large.

The right side of (19) is bounded above by

C4r
−n n

(

2

n(1−δ)/L

)L+1

< C4r
−n n

n(1−2δ)(1+L)/L
= o(an),

the last by Theorem 5. We know that the smallest case almost certainly has a run of
length asymptotic to (log1/r(n))/L. This completes the proof of (a).

The proof of (b) is easier than that for (a). Let µ(~p) = Σ(~p)/len(~p), the average part
size in ~p. By the first part of the theorem,

len(~p) Rn(~p) ∼
log1/r(n)

µ(~p)
almost surely, (20)

Let µ0 be the minimum of µ over R and let µ1 be the smallest value of µ in R that is
not equal to µ0. The bound in (17) can be written C3r

−n(nrkµ), where k is the number
of parts in the run. Thus we get a bound of C3|R|r−n(nrkµ1) for a run using any ~p with
µ(~p) > µ0. When this is combined with (20) for µ(~p) = µ0, part (b) follows easily.
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11 Palindromes

For locally restricted palindromes, we assume that Φ is invariant under reversal, obtaining
results as for regular locally restricted compositions. In this case,

a(x) = s(x)t
∞
∑

k=0

T (x)k (21)

Is essentially the generating function for the first half of the palindrome evaluated at x2.
Each composition ~c counted in a(x)~nu followed by a symmetric connecting composition ~d
of at most 2m − 1 parts and then by ~cr, the reversal of ~c. Thus the components of a(x)

are multiplied by generating functions for the various ~d’s and summed to produce the
generating function for palindromes. If the value of Φ varies with its first argument, this
effect must be taken into account when ~d is chosen so that ~cr is acceptable at its position.
This could be annoying. Regardless, it is the sum in (21) that determines the asymptotics
and so one obtains the same result as for general locally restricted compositions.

With m-rowed compositions, there are at least two possible definitions of palindrome:
The reversal of

a1,1 a1,2 · · · a1,k

a2,1 a2,2 · · · a2,k

· · · · · · · · · · · ·
am,1 am,2 · · · am,k

may be

a1,k · · · a1,2 a1,1

a2,k · · · a2,2 a2,1

· · · · · · · · · · · ·
am,k · · · am,2 am,1

or

am,k · · · am,2 am,1

· · · · · · · · · · · ·
a2,k · · · a2,2 a2,1

a1,k · · · a1,2 a1,1

.

Both can be dealt with in the manner described in the previous paragraph.
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Corrigendum – submitted Oct 7, 2010

The material on page 31 from the displayed equation preceding (16) through equation
(16) is presented incorrectly; however, this does not affect the validity of the conclusions
drawn from this material. Here is a corrected version of that portion of the paper.

|Sn(p)| <
A + δ

δnrn+w(p)
.

Note that |Sn| > (A − δ)r−n for sufficiently large n. For P ⊂ N, the probability that a
composition in Sn omits at least one of the parts in P is at most

miss(P) =
A + δ

δ(A − δ)

∑

p∈P

r−w(p). (22)
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