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Abstract

For any positive real number γ and any positive integer h, there is N0 such that

the following holds. Let N > N0 be such that N is divisible by h. If G is a tripartite

graph with N vertices in each vertex class such that every vertex is adjacent to at

least (2/3 + γ)N vertices in each of the other classes, then G can be tiled perfectly

by copies of Kh,h,h. This extends the work in [Discrete Math. 254 (2002), 289-

308] and also gives a sufficient condition for tiling by any fixed 3-colorable graph.

Furthermore, we show that the minimum-degree (2/3 + γ)N in our result cannot

be replaced by 2N/3 + h − 2.

1 Introduction

Let H be a graph on h vertices, and let G be a graph on n vertices. Tiling (or pack-

ing) problems in extremal graph theory are investigations of conditions under which G

must contain many vertex disjoint copies of H (as subgraphs), where minimum degree

conditions are studied the most. An H-tiling of G is a subgraph of G which consists of

vertex-disjoint copies of H . A perfect H-tiling, or H-factor, of G is an H-tiling consisting

of ⌊n/h⌋ copies of H . A very early tiling result is implied by Dirac’s theorem on Hamilton

cycles [6], which implies that every n-vertex graph G with minimum degree δ(G) > n/2

contains a perfect matching (usually called 1-factor, instead of K2-factor). Later Corrádi

and Hajnal [4] studied the minimum degree of G that guarantees a K3-factor. Hajnal

and Szemerédi [9] settled the tiling problem for any complete graph Kh by showing that
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every n-vertex graph G with δ(G) > (h − 1)n/h contains a Kr-factor (it is easy to see

that this is sharp). Using the celebrated Regularity Lemma of Szemerédi [23], Alon and

Yuster [1, 2] generalized the above tiling results for arbitrary H . Their theorems were

later sharpened by various researchers [14, 12, 22, 17]. Results and methods for tiling

problems can be found in a recent survey of Kühn and Osthus [18].

In this paper, we consider multipartite tiling, which restricts G to be an r-partite graph.

When r = 2, The König-Hall Theorem (e.g. see [3]) provides necessary and sufficient

conditions to solve the 1-factor problem for bipartite graphs. Wang [24] considered Ks,s-

factors in bipartite graphs for all s > 1, the second author [25] gave the best possible

minimum degree condition for this problem. Recently Hladký and Schacht [10] determined

the minimum degree threshold for Ks,t-factors with s < t.

Let Gr(N) denote the family of r-partite graphs with N vertices in each of its partition

sets. In an r-partite graph G, we use δ̄(G) for the minimum degree from a vertex in one

partition set to any other partition set. Fischer [8] proved almost perfect K3-tilings in

G3(N) with δ̄(G) > 2N/3 and Johansson [11] gives a K3-factor with the less stringent

degree condition δ̄(G) > 2N/3 + O(
√

N).

For general r > 2, Fischer [8] conjectured the following r-partite version of the Hajnal–

Szemerédi Theorem: if G ∈ Gr(N) satisfies δ̄(G) > (r − 1)N/r, then G contains a Kr-

factor. The first author and Szemerédi [20] proved this conjecture for r = 4. Csaba and

Mydlarz [5] recently proved that the conclusion in Fischer’s conjecture holds if δ̄(G) >
kr

kr+1
n, where kr = r + O(log r). On the other hand, Magyar and the first author [19]

showed that Fischer’s conjecture is false for all odd r > 3: they constructed r-partite

graphs Γ(N) ∈ Gr(N) for infinitely many N such that δ̄(Γ(N)) = (r − 1)N/r and yet

Γ(N) contains no Kr-factor. Nevertheless, Magyar and the first author proved a theorem

(Theorem 1.2 in [19]) which implies the following Corrádi-Hajnal-type theorem.

Theorem 1.1 ([19]) If G ∈ G3(N) satisfies δ̄(G) > (2/3)N + 1, then G contains a

K3-factor.

In this paper we extend this result to all 3-colorable graphs. Our main result is on Kh,h,h-

tiling.

Theorem 1.2 For any positive real number γ and any positive integer h, there is N0 such

that the following holds. Given an integer N > N0 such that N is divisible by h, if G is a

tripartite graph with N vertices in each vertex class such that every vertex is adjacent to

at least (2/3+ γ)N vertices in each of the other classes, then G contains a Kh,h,h-factor.

Since the complete tripartite graph Kh,h,h can be perfectly tiled by any 3-colorable graph

on h vertices, we have the following corollary.
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Corollary 1.3 Let H be a 3-colorable graph of order h. For any γ > 0 there exists a

positive integer N0 such that if N > N0 and N is divisible by h, then every G ∈ G3(N)

with δ̄(G) > (2/3 + γ)N contains an H-factor.

The Alon–Yuster theorem [2] says that for any γ > 0 and any r-colorable graph H there

exists n0 such that every graph G of order n > n0 contains an H-factor if n divisible by h

and δ(G) > (1 − 1/r)n + γn (Komlós, Sárközy and Szemerédi [14] later reduced γn to a

constant that depends only on H). Corollary 1.3 gives another proof of this theorem for

r = 3 as follows. Let G be a graph of order n = 3N with δ(G) > 2n/3 + 2γn. A random

balanced partition of V (G) yields a subgraph G′ ∈ G3(N) with δ̄(G′) > δ(G)/3 − o(n) >

(2/3 + γ)N . We then apply Corollary 1.3 to G′ obtaining an H-factor in G′, hence in G.

Instead of proving Theorem 1.2, we actually prove the stronger Theorem 1.4 below. Given

γ > 0, we say that G =
(

V (1), V (2), V (3); E
)

∈ G3(N) is in the extreme case with parameter

γ if there are three sets A1, A2, A3 such that Ai ⊆ V (i), |Ai| = ⌊N/3⌋ for all i and

d(Ai, Aj) :=
e(Ai, Aj)

|Ai||Aj|
6 γ

for i 6= j. If G ∈ G3(N) satisfies δ̄(G) > (2/3 + γ)N , then G is not in the extreme case

with parameter γ. In fact, any two sets A and B of size ⌊N/3⌋ from two different vertex

classes satisfy deg(a, B) > γN , for all a ∈ A, and consequently d(A, B) > γ. Theorem 1.2

thus follows from Theorem 1.4, which is even stronger because of its weaker assumption

δ̄(G) > (2/3 − ε)N .

Theorem 1.4 Given any positive integer h and any γ > 0, there exists an ε > 0 and

an integer N0 such that whenever N > N0, and h divides N , the following holds: If

G ∈ G3(N) satisfies δ̄(G) > (2/3− ε)N , then either G contains a Kh,h,h-factor or G is in

the extreme case with parameter γ.

The following proposition shows that the minimum degree δ̄(G) > (2/3 + γ)N in Theo-

rem 1.2 cannot be replaced by 2N/3 + h − 2.

Proposition 1.5 Given any positive integer h > 2, there exists an integer q0 such that

for any q > q0, there exists a tripartite graph G0 ∈ G3(N) with N = 3qh such that

δ̄(G0) = 2qh + (h − 2) and G0 has no Kh,h,h-factor.

The structure of the paper is as follows. We first prove Proposition 1.5 in Section 2. After

stating the Regularity Lemma and Blow-up Lemma in Section 3, we prove Theorem 1.4

in Section 4. We give concluding remarks and open problems in Section 5.
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2 Proof of Proposition 1.5

In a tripartite graph G = (A, B, C; E), the graphs induced by (A, B), (A, C) and (B, C)

are called the natural bipartite subgraphs of G. First we need to construct a balanced

tripartite K3-free graph in which all natural bipartite graphs are regular and C4-free. Our

construction below is based a construction in [25] of sparse regular bipartite graphs with

no C4.

Lemma 2.1 For each integer d > 0, there exists an n0 such that, if n > n0, there exists

a balanced tripartite graph, Q(n, d) on 3n vertices such that each of the 3 natural bipartite

subgraphs are d-regular, C4-free and triangle-free.

Proof. A Sidon set is a set of integers such that sums i + j are distinct for distinct pairs

i, j from the set. Let [n] = {1, . . . , n}. It is well known (e.g., [7]) that [n] contains a Sidon

set of size about
√

n for large n. Suppose that n is sufficiently large. Let S be a d-element

Sidon subset of [n
3
− 1]. Given two copies of [n], A and B, we construct a bipartite graph

P (A, B) on (A, B) whose edges are (ordered) pairs ab, a ∈ A, b ∈ B such that b− a (mod

n) ∈ S. It is shown in [25] (in the proof of Proposition 1.3) that P (A, B) is d-regular with

no C4. Given three copies of [n], A, B and C, let Q be the union of P (A, B), P (B, C)

and P (C, A). In order to show that Q is the desired graph Q(n, d), we need to verify that

Q is K3-free. In fact, if a ∈ A, b ∈ B, and c ∈ C form a K3, then there exist i, j, k ∈ S

such that

b ≡ a + i, c ≡ b + j, a ≡ c + k (mod n),

which implies that i + j + k ≡ 0 mod n. But this is impossible for i, j, k ∈ [n
3
− 1]. �

Proof of Proposition 1.5. We will construct 9 disjoint sets A
(i)
j with i, j ∈ {1, 2, 3}.

The union A
(i)
1 ∪ A

(i)
2 ∪ A

(i)
3 defines the ith vertex-class, while the triple (A

(1)
j , A

(2)
j , A

(3)
j )

defines the jth column.

Construct G0 as follows: For i = 1, 2, 3, let |A(i)
1 | = qh−1, |A(i)

2 | = qh and |A(i)
3 | = qh+1.

Let the graph in column 1 be Q(qh − 1, h − 3) (as given by Lemma 2.1), the graph in

column 2 be Q(qh, h − 2) and the graph in column 3 be Q(qh + 1, h − 1). If two vertices

are in different columns and different vertex-classes, then they are also adjacent. It is

easy to verify that δ̄(G0) = 2qh + (h − 2).

Suppose, by way of contradiction, that G0 has a Kh,h,h-factor. Since there are no triangles

and no C4’s in any column, the intersection of a copy of Kh,h,h with a column is either a

star, with all leaves in the same vertex-class, or a set of vertices in the same vertex-class.

So, each copy of Kh,h,h has at most h vertices in column 3. A Kh,h,h-factor has exactly

3q copies of Kh,h,h and so the factor has at most 3qh vertices in column 3. But there are

3qh + 3 vertices in column 3, a contradiction. �
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3 The Regularity Lemma and Blow-up Lemma

The Regularity Lemma and the Blow-up Lemma are main tools in the proof of Theo-

rem 1.4. Let us first define ε-regularity and (ε, δ)-super-regularity.

Definition 3.1 Let ε > 0. Suppose that a graph G contains disjoint vertex-sets A and B.

1. The pair (A, B) is ε-regular if for every X ⊆ A and Y ⊆ B, satisfying |X| >

ε|A|, |Y | > ε|B|, we have |d(X, Y ) − d(A, B)| < ε.

2. The pair (A, B) is (ε, δ)-super-regular if (A, B) is ε-regular and deg(a, B) > δ|B|
for all a ∈ A and deg(b, A) > δ|A| for all b ∈ B.

The celebrated Regularity Lemma of Szemerédi [23] has a multipartite version (see survey

papers [15, 16]), which guarantees that when applying the lemma to a multipartite graph,

every resulting cluster is from one partition set. Given a vertex v and a vertex set S in a

graph G, we define deg(v, S) as the number of neighbors of v in S.

Lemma 3.2 (Regularity Lemma - Tripartite Version) For every positive ε there is

an M = M(ε) such that if G = (V, E) is any tripartite graph with partition sets V (1), V (2),

V (3) of size N , and d ∈ [0, 1] is any real number, then there are partitions of V (i) into

clusters V
(i)
0 , V

(i)
1 , . . . , V

(i)
k for i = 1, 2, 3 and a subgraph G′ = (V, E ′) with the following

properties:

• k 6 M ,

• |V (i)
0 | 6 εn for i = 1, 2, 3,

• |V (i)
j | = L 6 εn for all i = 1, 2, 3 and j > 1,

• degG′(v, V (i′)) > degG(v, V (i′)) − (d + ε)N for all v ∈ V (i) and i 6= i′,

• all pairs (V
(i)
j , V

(i′)
j′ ), i 6= i′, 1 6 j, j′ 6 k, are ε-regular in G′, each with density

either 0 or exceeding d.

We will also need the Blow-up Lemma of Komlós, Sárközy and Szemerédi [13].

Lemma 3.3 (Blow-up Lemma) Given a graph R of order r and positive parameters

δ, ∆, there exists an ε > 0 such that the following holds: Let N be an arbitrary positive

integer, and let us replace the vertices of R with pairwise disjoint N-sets V1, V2, . . . , Vr.

We construct two graphs on the same vertex-set V =
⋃

Vi. The graph R(N) is obtained

by replacing all edges of R with copies of the complete bipartite graph KN,N and a sparser

graph G is constructed by replacing the edges of R with some (ε, δ)-super-regular pairs. If

a graph H with maximum degree ∆(H) 6 ∆ can be embedded into R(N), then it can be

embedded into G.
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4 Proof of Theorem 1.4

In this section we prove Theorem 1.4. First we sketch the proof.

We begin by applying the Regularity Lemma to G, partitioning each vertex class into ℓ

clusters and an exceptional set. Next we define the cluster graph Gr (whose vertices are

the clusters of G and where clusters from different partition classes are adjacent if the pair

is regular with positive density), which is 3-partite and such that δ̄(Gr) is almost 2ℓ/3.

In Step 1, we use the so-called fuzzy tripartite theorem of [19], which states that either

Gr is in the extreme case (hence G is in the extreme case) or Gr has a K3-factor. Having

assumed that Gr has a K3-factor S = {S1, . . . , Sℓ}, in Step 2 we move a small amount of

vertices from each cluster to the exceptional sets such that in each Sj, all three pairs are

super-regular and the three clusters have the same size, which is a multiple of h. If we

now were to apply the Blow-up Lemma to each Sj , then we would obtain a Kh,h,h-factor

covering all the non-exceptional vertices of G.

So we need to handle the exceptional sets before applying the Blow-up Lemma. Step 3 is a

step of preprocessing: we set some copies of Kh,h,h aside such that in Step 5 we can modify

them by replacing 5h vertices from S1 with 5h vertices from an Sj, j > 2. The vertices

in these copies of Kh,h,h are not now in their original clusters. Since these copies of Kh,h,h

are from triangles of Gr that are not necessarily in S, we may need to move vertices from

other clusters to the exceptional sets to keep the balance of the three clusters in each Sj .

For each exceptional vertex v, we will remove a copy of Kh,h,h which contains v and 2h−1

vertices from some cluster-triangle Sj (we call this inserting v into Sj). If this is done

arbitrarily, the remaining vertices of some Sj may not induce a Kh,h,h-factor. In Step 4,

we group exceptional vertices into h-element sets such that all h vertices in one h-element

set can be inserted into the same Sj. As a result, two clusters in some Sj may have sizes

that differ by a multiple of h. We then remove a few more copies of Kh,h,h such that the

sizes of the three clusters of each Sj are the same and divisible by h. Unfortunately up

to 5h vertices in each exceptional set may not be removed by this approach. In Step 5

we first insert the remaining exceptional vertices into an arbitrary Sj , j > 2, and then

transfer extra vertices from Sj to S1. As a result, three clusters in all Sj, j > 1 have the

same size, which is divisible by h. At the end of Step 5, we apply the Blow-up Lemma to

each Sj to complete the Kh,h,h-factor of G. This ends the proof sketch.

Note that our proof follows the approach in [19], which has a different way of handling

exceptional vertices from the bipartite case [25]. Although a Kh,h,h-tiling is more complex

than a K3-tiling, our proof is not longer than the non-extreme case in [19] because we

take advantage of results from [19].

Let us now start the proof. We assume that N is large, and without loss of generality,

assume that γ ≪ 1
h
. We find small constants d1, ε, and ε1 such that (actual dependencies

result from Lemmas 4.1, 4.4, 4.7, and 3.3):

ε1 ≪ 2ε = d1 ≪ γ. (1)
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For simplicity, we will refrain from using floor or ceiling functions when they are not

crucial.

Begin with a tripartite graph G =
(

V (1), V (2), V (3); E
)

with
∣

∣V (1)
∣

∣ =
∣

∣V (2)
∣

∣ =
∣

∣V (3)
∣

∣ = N

such that δ̄(G) > (2/3− ε)N . Apply the Regularity Lemma (Lemma 3.2) with ε1 and d1,

partitioning each V (i) into ℓ clusters V
(i)
1 , . . . , V

(i)
ℓ of size L 6 ε1N and an exceptional set

V
(i)
0 of size at most ε1N . Later in the proof, the exceptional sets may grow in size, but

will always remain of size O(ε1N). We call the vertices in the exceptional sets exceptional

vertices.

Let G′ be the subgraph of G defined in the Regularity Lemma. We define the reduced

graph (or cluster graph) Gr to be the 3-partite graph whose vertices are clusters V
(i)
j

j > 1, i = 1, 2, 3, and two clusters are adjacent if and only if they form an ε1-regular pair

of density at least d1 in G′. We will use the same notation V
(i)
j for a set in G and a vertex

in Gr. Let U (1), U (2), U (3) denote three partition sets of Gr. We know that |U (i)| = ℓ.

We observe that δ̄(Gr) > (2/3 − 2d1)ℓ. In fact, consider a cluster C ∈ U (i) and a vertex

x ∈ C, the number m of clusters in U (i′) (i′ 6= i) that are adjacent to C satisfies

(

2

3
− ε

)

N − (d1 + ε1)N 6 degG(v, V (i′)) − (d1 + ε1)N 6 degG′(x, V (i′)) 6 mL.

Since N > Lℓ and ε + ε1 6 d1, we have m > (2/3 − ε − d1 − ε1) ℓ > (2/3 − 2d1)ℓ.

Assume that G is not in the extreme case with parameter γ. We claim that Gr is not in

the extreme case with parameter γ/3. Suppose instead, that there are subsets Si ⊂ U (i),

i = 1, 2, 3, of size ℓ/3 with density at most γ/3. Let Ai denote the set of all vertices

of G contained in a cluster of Si. Then N(1 − ε1)/3 6 |Ai| = Lℓ/3 6 N/3 because

Lℓ > (1 − ε1)N . The number of edges of G between Ai and Ai′, i 6= i′, is at most

eG(Ai, Ai′) 6 eG′(Ai, Ai′) + |Ai|(d1 + ε1)N 6
γ

3

(

ℓ

3

)2

L2 + (d1 + ε1)
N2

3
6

2γ

3

(

N

3

)2

,

provided that 9(d1 + ε1) 6 γ. After adding at most ε1N/3 vertices to each Ai, we obtain

three subsets of V (1), V (2), V (3) of size N/3 with pairwise density at most (2γ/3 + ε1) 6 γ

in G.

Step 1: Find a K3-factor in Gr

We apply the following result (Theorem 2.1 in [19]) to the reduced graph Gr with α = γ/3

and β = 2d1.

Lemma 4.1 (Fuzzy tripartite theorem [19]) For any α > 0, there exist β > 0 and

ℓ0, such that the follows holds for all ℓ > ℓ0. Every balanced 3-partite graph R ∈ G3(ℓ) with

δ̄(R) > (2/3 − β)ℓ either contains a K3-factor or is in the extreme case with parameter

α.
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Since Gr is not in the extreme case with parameter γ/3, it must contain a K3-factor

S = {S1, S2, . . . , Sℓ}. After relabeling, we assume that Sj =
{

V
(1)
j , V

(2)
j , V

(3)
j

}

for all

j. In Gr, we call these fixed triangles S1, . . . , Sℓ columns and consider U (1), U (2), U (3) as

rows.

Step 2: Make pairs in Sj super-regular

For each Sj , remove a vertex v from a cluster in Sj and place it in the exceptional set if

v has fewer than (d1 − ε1)L neighbors in one of the other clusters of Sj. By ε1-regularity,

there are at most 2ε1L such vertices in each cluster. Remove more vertices if necessary to

ensure that each non-exceptional cluster is of the same size and the size is divisible by h.

The Slicing Lemma states the well-known fact that regularity is maintained when small

modifications are made to the clusters:

Proposition 4.2 (Slicing Lemma, Fact 1.5 in [19]) Let (A, B) be an ε-regular pair

with density d, and, for some α > ε, let A′ ⊂ A, |A′| > α|A|, B′ ⊂ B, |B′| > α|B|.
Then (A′, B′) is an ε′-regular pair with ε′ = max{ε/α, 2ε}, and for its density d′, we have

|d′ − d| < ε.

Applying Proposition 4.2 with α = 1−2ε1, any pair of clusters which was ε1-regular with

density at least d1 is now (2ε1)-regular with density at least d1 − ε1 (because ε1 < 1/4).

Furthermore, each pair in the cluster-triangles Sj is (2ε1, d1 − 3ε1)-super-regular. Each of

the three exceptional sets are now of size at most ε1N + ℓ(2ε1L) 6 3ε1N .

Remark: Because all the pairs in Sj are super-regular and the complete tripartite graph

on
(

V
(1)
i , V

(2)
i , V

(3)
i

)

contains a Kh,h,h-factor, the Blow-up Lemma says that Sj also con-

tains a Kh,h,h-factor.

Step 3: Create red copies of Kh,h,h

In this step we show that certain triangles exist in Gr which link each cluster to the one

in S1 from the same partition class. The purpose of this linking is to be able to handle a

small discrepancy of sizes among the three clusters that comprise Sj in Step 5.

Definition 4.3 In a tripartite graph R =
(

U (1), U (2), U (3); E
)

, one vertex x ∈ U (1) (the

cases of x ∈ U (2) or U (3) are defined accordingly) is reachable from another vertex

y ∈ U (1) in R by using at most 2k triangles, if there is a chain of triangles T1, . . . , T2k

with Tj =
{

T
(1)
j , T

(2)
j , T

(3)
j

}

and T
(i)
j ∈ U (i) for i = 1, 2, 3 such that the following occurs:

1. x = T
(1)
1 and y = T

(1)
2k ,
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1

1
T

2
T

3
T

4

CC’V
(1)

T

Figure 1: An illustration of how cluster V
(1)
1 is reachable from a cluster C.

2. T
(2)
2j−1 = T

(2)
2j and T

(3)
2j−1 = T

(3)
2j , for j = 1, . . . , k, and

3. T
(1)
2j = T

(1)
2j+1, for j = 1, . . . , k − 1.

Figure 1 illustrates that V
(1)
1 is reachable from another cluster C by using four triangles.

The Reachability Lemma (Lemma 2.6 in [19]) says that every cluster of S1 is reachable

from any other cluster in the same class by using at most four triangles in Gr. Note

that these triangles are not necessarily the fixed triangles Sj . The statement of the

Reachability Lemma in [19] refers to the reduced graph, but its proof, in fact, proves the

following general statement:

Lemma 4.4 (Reachability Lemma) For any α > 0, there exist β > 0 and ℓ0, such

that the following holds for all ℓ > ℓ0. Let R ∈ G3(ℓ) be a balanced 3-partite graph with

δ̄(R) > (2/3 − β)ℓ. Then either each vertex is reachable from every other vertex in the

same class by using at most four triangles or R is in the extreme case with parameter α.

Let C 6= V
(1)
1 be a cluster in U (1) and let T1, T2 or T1, T2, T3, T4 be cluster-triangles

which witness that V
(1)
1 is reachable from C by using at most 2k triangles for some

k ∈ {1, 2}. Note that T1 ∩ U (1) = S
(1)
1 and either both k = 1 and T2 ∩ U (1) = C or k = 2,

T2 ∩ U (1) = T3 ∩ U (1) = C ′ and T4 ∩ U (1) = C.

We need a special case of a well-known embedding lemma in [15], which says that three

reasonably large subsets of three clusters that form a triangle induce a copy of Kh,h,h.

Proposition 4.5 (Key Lemma, Theorem 2.1 in [15]) Let ε, d be positive real num-

bers and h, L be positive integers such that (d− ε)2h > ε and ε(d− ε)L > h. Suppose that

X1, X2, X3 are clusters of size L and any pair of them is ε-regular with density at least

d. Let Ai ⊆ Xi, i = 1, 2, 3 be three subsets of size at least (d − ε)L. Then (A1, A2, A3)

contains a copy of Kh,h,h.

If k = 1, then we pick a vertex v ∈ C and apply Proposition 4.5 to find a copy of

Kh,h,h, called H ′, in the cluster triangle T1 such that H ′ ∩ V (2) and H ′ ∩ V (3) are in the
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neighborhood of v. If k = 2, then we first pick a vertex v ∈ C and apply Proposition 4.5

to find a copy of Kh,h,h, called H ′′, in the cluster triangle T3 such that H ′′ ∩ V (2) and

H ′′ ∩ V (3) are in the neighborhood of v. Next we pick a vertex v′ ∈ H ′′ ∩ V (1) (call it

special) and apply Proposition 4.5 to find a copy of Kh,h,h, called H ′, in the cluster triangle

T1 such that H ′ ∩ V (2) and H ′ ∩ V (3) are in the neighborhood of v′.

Color all of the vertices in H ′ and in H ′′ (if it exists) red and the vertex in C orange. Note

that the special vertex in H ′′ (if existent) is colored red. If a vertex is not colored, we

will heretofore call it uncolored. Repeat this 5h times for each cluster not in S1. In this

process all but a constant number of vertices in each cluster remain uncolored since h is

a constant and Gr consists of a constant number (that is, 3ℓ) of clusters. This is why we

can repeatedly apply Proposition 4.5 ensuring that all the red copies of Kh,h,h and orange

vertices are vertex-disjoint.

At the end, each cluster not in S1 has 5h orange vertices (the clusters in S1 have no orange

vertex). Each cluster has at most 3(ℓ − 1)(5h)(h) < 15ℓh2 red vertices because there are

3(ℓ− 1) clusters not in S1, the process is iterated 5h times for each of them and a cluster

gets at most h vertices colored red with each iteration.

Remark: This preprocessing ensures that we may later transfer at most 5h vertices from

any cluster C to S1 in the following sense: Without loss of generality, suppose C is a

cluster in V (1). In the case when k = 2 (see Figure 1), identify an orange vertex v ∈ C

and its corresponding red subgraphs H ′ and H ′′, including the special vertex v′ ∈ C ′. (The

case where k = 1 is similar but simpler.) Recolor v red and uncolor a vertex u ∈ H ′∩V
(1)
1 .

The red vertices still form two copies of Kh,h,h, one is H ′−{u}+{v′}, and the other one is

H ′′−{v′}+{v}. The number of non-red vertices is decreased by one in C but is increased

by one in V
(1)
1 . We will do this in Step 5.

We now move some uncolored vertices from clusters to the corresponding exceptional

set such that the three clusters in the same column (some Sj) have the same number

of uncolored vertices. In other words, three clusters in any Sj are balanced in terms of

uncolored vertices. (Note that this number is always divisible by h because the numbers

of red vertices and orange vertices are divisible by h.) Thus, at most 15ℓh2 vertices

can be removed from a cluster. The three exceptional sets have the same size, at most

3ε1N + 15ℓ2h2 6 4ε1N . Each cluster still has at least (1 − 2ε1)L − 15ℓh2 > (1 − 3ε1)L

uncolored vertices.

Step 4: Reduce the sizes of exceptional sets

At present the exceptional sets V
(i)
0 , i = 1, 2, 3, are all of the same size, which is at most

4ε1N and divisible by h. Suppose this size is at least 6h. We will remove some copies of

Kh,h,h from G such that |V (i)
0 | 6 5h eventually.

First, we say a vertex v ∈ V
(i)
0 belongs to a cluster V

(i)
j if deg(v, V

(i′)
j ) > d1L for all i′ 6= i.

Using the minimum-degree condition, for fixed i′ 6= i, the number of clusters V
(i′)
j such
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that deg(v, V
(i′)
j ) < d1L is at most

(1/3 + ε)N

(1 − 3ε1)L − d1L
6

(1/3 + ε)ℓ

(1 − 3ε1 − d1)(1 − ε1)
. (2)

Using (1), the expression in (2) is at most (1/3 + d1)ℓ. Thus, v is adjacent to at least

d1L uncolored vertices in at least (2/3− d1)ℓ clusters in V (i′) for some i′ 6= i. Hence, each

vertex in V
(i)
0 belongs to at least (1/3 − 2d1)ℓ clusters.

If a vertex v ∈ V
(i)
0 belongs to a cluster V

(i)
j , then we may insert v into V

(i)
j (or loosely

speaking, insert v into Sj) in the following sense. We permanently remove a copy of Kh,h,h

from G which consists of v, h−1 vertices from V
(i)
j and h vertices from each of V

(k)
j , k 6= i.

Proposition 4.5 guarantees the existence of this Kh,h,h.

In order to maintain the size of each cluster as a multiple of h, we will bundle exceptional

vertices into h-element sets and handle all h vertices from an h-element set at a time as

follows.

Claim 4.6 Given a subset Y ⊆ V
(i)
0 of at least 3h vertices and a subset U ′ ⊆ U (i) of at

least (1 − d1)ℓ clusters, there are h vertices of Y that belong to the same cluster C from

U ′.

Proof. Suppose instead, that at most h−1 vertices of Y belongs to each cluster C ∈ U ′.

From earlier calculations and the assumption |U ′| > (1 − d1)ℓ, we know that each vertex

of Y belongs to at least (1/3 − 3d1)ℓ clusters. By double counting the number of pairs

(v, C) such that v ∈ Y belongs to a cluster C ∈ U ′, we have

3h

(

1

3
− 3d1

)

ℓ 6 (h − 1)ℓ, (3)

which implies that 9hd1 > 1, contradicting d1 ≪ 1. �

Starting from Y = V
(i)
0 and U ′ = U (i), we apply Claim 4.6 four times to find four disjoint

h-element subsets W
(i)
1 , . . . , W

(i)
4 of V

(i)
0 whose vertices belong to clusters C

(i)
1 , . . . , C

(i)
4 ,

respectively. The reason why we need four h-element sets can be seen below when we apply

Lemma 4.7. We can ensure that C
(i)
1 , . . . , C

(i)
4 are different by letting U ′ = U (i) \ {C(i)

j′ :

j′ < j} when we select C
(i)
j .

We now insert W
(i)
j into C

(i)
j for i = 1, 2, 3 and j = 1, 2, 3, 4 by removing in total 12h

copies of Kh,h,h. All of these copies of Kh,h,h are removed permanently, they will be a part

of the final Kh,h,h-factor of G. As a result, each C
(i)
j has h more vertices than the other

two clusters in the same column (unless accidentally more than one C
(i)
j fall into the same

column).

The Almost-covering Lemma (Lemma 2.2 in [19]) can help us to balance the sizes of each

column:
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Lemma 4.7 (Almost-covering Lemma [19]) For any α > 0, there exist β > 0 and

m0, such that the following holds for all m > m0. Let R ∈ G3(m) be a balanced 3-partite

graph with δ̄(R) > (2/3−β)m. Suppose that T0 is a partial K3-tiling in R with |T | < m−3.

Then, either

1. there exists a partial K3-tiling T ′ with |T ′| > |T | but |T ′ \ T | 6 15, or

2. R is in the extreme case with parameter most α.

Let G̃ be a new 3-partite graph obtained from adding four new vertices to each vertex

class of Gr. The new 12 vertices are clones of the clusters C
(i)
j for i = 1, 2, 3, j = 1, 2, 3, 4,

and we denote them by C̃
(i)
j . The clones have the same adjacency in Gr as their originals.

Let m = ℓ + 4 be the size of vertex classes in G̃. We have δ̄(G̃) > (1/3− 3d1)m following

from δ̄(Gr) > (1/3 − 2d1)ℓ.

We apply Lemma 4.7 to G̃ with α = γ/3, β = 3d1, and T = {S1, . . . , Sℓ} (then |T | <

m− 3). The new graph G̃ is almost the same as Gr, provided ℓ is large enough, which we

guaranteed when we applied the Regularity Lemma. Thus, G̃ is not in the extreme case

(otherwise Gr is in the extreme case). Lemma 4.7 thus provides a larger partial triangle-

cover T ′ with |T ′ \ T | 6 15. For each triangle T ∈ T ′ \ T , we permanently remove a

copy of Kh,h,h from the uncolored vertices of T . For each cluster C that is not covered

by the larger T ′, take an arbitrary set of h uncolored vertices from C and place it into

the exceptional set. As result, all the clusters covered by T ′ ∩ T experience no changes

while all other clusters lose h uncolored vertices; therefore the three clusters in each Sj

remain balanced. The net change in each V
(i)
0 is the same for all i and each loses at least

h vertices because |T ′| > |T |.
We repeat the process of creating W

(i)
j , C

(i)
j , G̃, and enlarging T = {S1, . . . , Sℓ} in G̃ by

Lemma 4.7 until the number of vertices remaining in each exceptional set is less than 6h.

There is one caveat: If too many vertices are removed from the clusters of Sj , then we

will not be able to apply the Blow-up Lemma later. Therefore, we introduce the following

notion: If in the entire process, at least d1L/3 (uncolored) vertices are removed from a

cluster C of Sj, then both C and Sj are called dead (otherwise live). The dead clusters

will be not considered until Step 5, after all the exceptional vertices have been removed.

The number of dead cluster-triangles is not very large. To see this, there are three ways

for vertices to leave a cluster. First, they are placed in a Kh,h,h with a vertex from the

exceptional set, so each vertex class V (i) loses at most
∑3

i=1 |V
(i)
0 |h vertices in this way.

Second, each time when we apply Lemma 4.7, there are at most 15 triangles in T ′ \ T
and there are a total of 15h vertices lost to 15 copies of Kh,h,h. Third, there are at most 3

clusters not covered by T ′ and they could lose 3h vertices to the exceptional sets. Since we

apply Lemma 4.7 at most |V (i)
0 |/h times, the total number of vertices that leave clusters

is at most

3|V (i)
0 |h +

(

|V (i)
0 |/h

)

(15h + 3h) = |V (i)
0 |(3h + 18) 6 4ε1N(3h + 18).
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The number of dead cluster triangles is at most

4ε1N(3h + 18)

(d1/3)L
6

36(h + 6)ε1

d1(1 − ε1)
ℓ <

d1

2
ℓ.

because ε1 ≪ d1.

Because the number of dead clusters is not large, in the subgraph induced by live clusters,

each cluster is still reachable from every other cluster in the same partition class. Each

vertex in V
(i)
0 belongs to at least (1/3 − 3d1)ℓ live clusters. By letting U ′ be the set of

available live clusters, we still have |U ′| > (1 − d1)ℓ when applying Claim 4.6. After

removing the edges incident with dead Sj’s, the minimum-degree condition in G̃ is still

δ̄(G̃) > (2/3 − 3d1)m and Lemma 4.7 can still be applied.

At the end each cluster (live or dead) has at least (1− 3ε1)L− d1L/3 uncolored vertices.

Each of the three clusters in any Sj has the same number of uncolored vertices, and this

number is always divisible by h.

Step 5: Insert the remaining exceptional vertices and apply the Blow-up

Lemma

At this stage, the exceptional sets V
(i)
0 , i = 1, 2, 3 are all of the same size, divisible by h

and at most 5h (because it is less than 6h). Consider a vertex x ∈ V
(1)
0 and insert x into a

live cluster V
(1)
j to which x belongs (as shown in Step 4, x belongs to at least (1/3−3d1)ℓ

live clusters). As a result, V
(1)
j loses h−1 vertices while V

(2)
j and V

(3)
j each loses h vertices.

To balance Sj , we move a vertex from V
(1)
j to V

(1)
1 following the remark in Step 3. As a

result, V
(1)
j loses one orange vertex, and V

(1)
1 gains an extra uncolored vertex. Repeat this

to all the vertices in V
(1)
0 ∪ V

(2)
0 ∪ V

(3)
0 . All Sj, j > 1, have the same number of non-red

vertices among its three clusters. The same holds for S1 because |V (1)
0 | = |V (2)

0 | = |V (3)
0 |.

In addition, the number of non-red vertices in each cluster is at least (1 − d1/2)L, and

always a multiple of h.

Then, uncolor all the remaining orange vertices and remove all red copies of Kh,h,h from

G. Since each cluster now has at least (1 − d1/2)L vertices, by the Slicing Lemma, any

pair of clusters in Sj is (ε1/2)-regular. Furthermore, each vertex in one cluster of Sj is

adjacent to at least (d1 − ε1)L− d1L/2 vertices in any other cluster of Sj . Hence all pairs

in Sj are (ε1/2, d1/3)-super-regular. We finally apply the Blow-up Lemma to each Sj to

complete the Kh,h,h-factor of G.

5 Concluding Remarks

• We could reduce the error term γN in Theorem 1.2 to a constant C = C(h) by

showing that if G ∈ G3(N) is in the extreme case with sufficiently small γ and
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δ̄(G) > 2N/3 + C, then G contains a Kh,h,h-factor. Unfortunately, the methods

involve a detailed case analysis which is too long to be included in this paper.

However, we can summarize them as follows. Given a positive integer h, let f(h)

be the smallest m for which there exists an N0 such that every balanced tripartite

graph G ∈ G3(N) with N > N0, h divides N , and δ̄(G) > m contains a Kh,h,h-factor.

Suppose that N = (6q + r)h with 0 6 r 6 5. Then, from Proposition 1.5 and a

manuscript [21] which details the proof of the extreme case:

f(h) = 2N
3

+ h − 1, if r = 0;

h
⌈

2N
3h

⌉

+ h − 2 6 f(h) 6 h
⌈

2N
3h

⌉

+ h − 1, if r = 1, 2, 4, 5;
2N
3

+ h − 1 6 f(h) 6 2N
3

+ 2h − 1, if r = 3.

We have no conjecture as to whether the upper or lower bound is correct.

• The task of obtaining a tight minimum pairwise degree condition for Kr-factors in

Gr(N) becomes more challenging for larger r. The r = 2 case is very easy – we either

consider a maximum matching or apply the König-Hall theorem. The r = 3, 4 cases

become hard – [19] and [20] both applied the Regularity Lemma. At present a tight

Hajnal–Szemerédi-type result is out of reach (though an approximate version was

given by Csaba and Mydlarz [5]).

• We believe one can prove a similar result as Theorem 1.2 for tiling 4-colorable

graphs in 4-partite graphs by adopting the approach of [20] and the techniques in

this paper. In general, suppose that we know that every r-partite graph G ∈ Gr(n)

with δ̄(G) > cn contains a Kr-factor. Then applying the Regularity Lemma, one

can easily prove that for any ε > 0 and any r-colorable H , every G ∈ Gr(n) with

δ̄(G) > (c + ε)n contains an H-tiling that covers all but εn vertices (this is similar

to an early result of Alon and Yuster [1]). However, it is not clear how to reduce

the number of leftover vertices to a constant, or zero (to get an H-factor). As seen

from the present manuscript, a minimum degree condition for Kr-factors does not

immediately gives a similar degree condition for Kr(h)-factors, where Kr(h) is the

complete r-partite graph with h vertices in each partition set.

• Theorem 1.2 gives a near tight minimum degree condition δ̄ > (2/3 + o(1))N for

Kh,h,h-tilings. However, the coefficient 2/3 may not be best possible for other 3-

colorable graphs, e.g., K1,2,3. In fact, when tiling a general (instead of 3-partite)

graph with certain 3-colorable H , the minimum degree threshold given by Kühn and

Osthus [17] has coefficient 1−1/χcr(H) instead of 2/3, where χcr(H) is the so-called

critical chromatic number. It would be interesting to see if something similar holds

for tripartite tiling.
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and its applications in graph theory. Theoretical aspects of computer science (Tehran,

2000), 84–112, Lecture notes in Comput. Sci., 2292, Springer, Berlin, 2002.
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