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Abstract

A large set of resolvable directed triple systems of order v, denoted by LRDTS(v),
is a collection of 3(v − 2) RDTS(v)s based on v-set X, such that every transitive
triple of X occurs as a block in exactly one of the 3(v − 2) RDTS(v)s. In this
paper, we use DTRIQ and LR-design to present a new product construction for
LRDTS(v)s. This provides some new infinite families of LRDTS(v)s.

1 Introduction

Let X be a v-set. In what follows, an ordered pair of X is always an ordered pair
(x, y), where x 6= y ∈ X. A transitive triple on X is a set of three ordered pairs (x, y),
(y, z) and (x, z) of X, which is denoted by (x, y, z).

A directed triple system of order v, denoted by DTS(v), is a pair (X,B) where B is a
collection of transitive triples on X, called blocks, such that each ordered pair of X occurs
in exactly one block of B. A DTS(v) is called resolvable and is denoted by RDTS(v) if
its blocks can be partitioned into subsets (called parallel classes), each containing every
element of X exactly once.

A large set of directed triple systems of order v, denoted by LDTS(v), is a collection
of 3(v−2) DTS(v)s based on X such that every transitive triple from X occurs as a block
in exactly one of the 3(v − 2) DTS(v)s. Existence results for LDTSs and RDTSs are well
known from [1, 9].

Theorem 1.1 (1)There exists an LDTS(v) if and only if v ≡ 0, 1 (mod 3) and v > 3.
(2)There exists an RDTS(v) if and only if v ≡ 0 (mod 3), v > 3 and v 6= 6.
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A large set of disjoint RDTS(v)s is denoted by LRDTS(v). The existence of LRDTS(v)s
has been investigated by Kang [8], Kang and Lei [10], Kang and Tian [11], Kang and Xu
[12], Kang and Zhao [13], Xu and Kang [17] and Zhou and Chang [22, 23]. By their
research and related results about large sets of Kirkman triple systems [3, 4, 5, 6, 14, 15,
18, 19, 20, 21], we can list the known results as follows.

Theorem 1.2 There exists an LRDTS(v) for the following orders v :
(1) v = 3km, where k > 1 and m ∈ {1, 4, 5, 7, 11, 13, 17, 23, 25, 35, 37, 41, 43, 47, 53, 55,

57, 61, 65, 67, 91, 123} ∪ {22r+125s + 1 : r > 0, s > 0}.
(2) v = 7k + 2, 13k + 2, 25k + 2, 24k + 2 and 26k + 2, where k > 0.
(3) v = 12(t + 1), where t ∈ {0, 1, 2, 3, 4, 6, 7, 8, 9, 14, 16, 18, 20, 22, 24}.
(4) v = 6t + 3, where t ∈ {35, 38, 46, 47, 48, 51, 56, 60}.
(5) v = (3

∏p

i=1(2q
ri

i + 1)
∏q

j=1(4
sj − 1)), where p + q > 1, ri, sj > 1 and prime power

qi ≡ 7 (mod 12).
Also, if there exists an LRDTS(v), then there exists an LRDTS((2 · sk + 1)v) for any

k > 0, s = 7, 13 and v ≡ 0, 3, 9 (mod 12).

A group-divisible design (briefly GDD) is a triple (X,G,B) with the following proper-
ties: (i) X is a finite set of points; (ii) G is a partition of X into subsets called groups; (iii)
B is a set of subsets of X (called blocks) such that a group and a block contain at most
one common point, and any pair of points from distinct groups occur in exactly one block
of B. A GDD (X,G,B) is called resolvable, denoted by RGDD, if there exists a partition
Γ = {P1, P2, · · · , Pr} of B such that each part Pi (called parallel classes) is a partition of
X.

A GDD is called a transversal design if it has exactly k groups of size n and every block
has size k. We denoted such a GDD by TD(k, n). A TD is called resolvable (denoted by
RTD) if it is a RGDD.

A GDD (X,G,B) is called a Steiner triple system if |X| = v and it has v groups of
size 1 and every block has size 3. Such a GDD is denoted briefly by STS(v) (X,B). A
resolvable STS(v) is called a Kirkman triple system and denoted by KTS(v).

A large set of Kirkman triple system of order v, denoted by LKTS(v), is a collection
of v − 2 KTS(v)s based on a v-set X, such that each triple from X occurs in exactly one
of the v − 2 KTS(v)s. In a KTS(v), if we replace any triple {x, y, z} by three collections
of transitive triples {(x, y, z), (z, y, x)}, {(y, z, x), (x, z, y)} and {(z, x, y), (y, x, z)}, then
we obtain three RDTS(v)s. It is obvious that the existence of an LKTS(v) implies the
existence of an LRDTS(v). However, this approach can provide only odd orders of v since
the existence of a KTS(v) implies v ≡ 3 (mod 6). The existence of LKTS(v)s, known as
the general Sylvester’s problem of the 15 schoolgirls, has a long history [3]. Some orders
in Theorem 1.2 come from the existence of LKTS(v)s.

The main result of this paper is to give a new product construction for LRDTSs. This
provides some new infinite families of LRDTS(v)s. In Section 2, we give some concepts
such as TRIQ(v), DTRIQ(v) and LR(u), etc. In Section 3, we make use of DTRIQ(v)
and LR(u) to present a new product construction. In Section 4, we give new orders for
LRDTS(v)s.
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2 Definitions

A quasigroup is a pair (X, ◦), where X is a set and (◦) is a binary operation on X such
that the equation a ◦ x = b and y ◦ a = b are uniquely solvable for every pair of elements
a, b in X. The order of a quasigroup (X, ◦) is the size of X.

A quasigroup of order v is called idempotent if the identity x ◦ x = x holds for all x

in X. An idempotent quasigroup of order v is denoted by IQ(v). A quasigroup of order
v is called symmetric if the identity x ◦ y = y ◦ x holds for every pair of elements x, y in
X. An symmetric quasigroup of order v is denoted by SQ(v).

A quasigroup (X, ◦) is called resolvable if all v(v− 1) pairs of distinct elements can be
partitioned into subsets Ti, 1 6 i 6 3(v − 1), such that every {(x, y, x ◦ y) : (x, y) ∈ Ti}
is a partition of X. An idempotent quasigroup IQ(v) is called first transitive if there
exists a group of order v acting transitively on X which forms an automorphism group
of the IQ(v). A first transitive resolvable IQ(v) is denoted by TRIQ(v). A first transitive
resolvable symmetric IQ(v) is denoted by TRISQ(v).

For an idempotent quasigroup (Y, ◦) and for each ordered pair (i, j), i 6= j ∈ {0, 1, 2},
define a collection of transitive triples from {i, j} × Y as follows.

T (i, j) =
⋃

x 6=y∈Y

t(x, y, x ◦ y), where

t(x, y, x◦y) = {((i, x), (i, y), (j, x◦y)), ((i, x), (j, x◦y), (i, y)), ((j, x◦y), (i, x), (i, y))}.
An idempotent quasigroup (Y, ◦) is called second transitive provided that T (i, j) can be
partitioned into three sets T0(i, j), T1(i, j) and T2(i, j) such that

i) the three transitive triples in t(x, y, x ◦ y) belong to T0, T1 and T2, respectively;
ii) if a 6= b ∈ Y , each of the ordered pairs ((i, a), (j, b)) and ((j, b), (i, a)) belongs to

exactly one transitive triple in each of T0(i, j), T1(i, j) and T2(i, j).
An IQ(v) with both first and second transitivity is called doubly transitive and is

denoted by DTRIQ(v). In [22], Zhou and Chang gave the following existence result.

Lemma 2.1 There exists a DTRIQ(v) for any positive integer v ≡ 0, 3, 9 (mod 12).

Transitive IQ has been used to give a tripling construction for large sets of STSs in
Teirlinck [16]. To consider the similar problem for large sets of KTSs and large sets of
RDTSs, we demand that the transitive IQ must have certain property of resolvability.
TRISQ(v) was used to construct LKTSs [20]. DTRIQ(v) was used to construct LRDTSs
[22, 23].

In [14], Lei introduce a kind of combinatorial design named LR-design, denoted by
LR(u). An LR(u) is a collection {(X,Aj

k) : 1 6 k 6
u−1

2
, j = 0, 1}, where each (X,Aj

k)

is a KTS(u) based on u-set X and {Aj
k(h); 1 6 h 6

u−1
2
} is a resolution (collection of

parallel classes) of Aj
k with the properties.

i)

u−1

2⋃
k=1

A0
k(1) =

u−1

2⋃
k=1

A1
k(1) = A forms a KTS(u) over X too;

ii) Any triple from X is contained in

u−1

2⋃
k=1

1⋃
j=0

Aj
k.

Lei [14] and Ji and Lei [7] obtained some existence results for LR(u).
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Lemma 2.2 [14, 7] There exists an LR(u) for u = 3n, 2 · 13n + 1 and 2 · 7n + 1, where
n > 1.

Recently, using these auxiliary designs and their existence, Chang et al. [22, 23] proved
the following conclusions.

Lemma 2.3 [22] If there exist both a DTRIQ(v) and an LRDTS(v), then there exists an
LRDTS(3v).

Lemma 2.4 [23] If there exist an LRDTS(v), a DTRIQ(v) and an LR(u), then there
exists an LRDTS(uv).

Next, we introduce the concept of complete mapping in a finite group. We follow the
definition in Denes and Keedwell [2].

A complete mapping of a group (G, ·), is a bijection mapping x → θ(x) of G upon
G, such that the mapping η(x) = x · θ(x) is also a bijection mapping of G upon G. The
following existence results were stated in [2].

Lemma 2.5 [2] If G is an arbitrary group of order n = 4k + 2, then G has no complete
mapping. If G is an abelian group of order n 6= 4k + 2, then G does have a complete
mapping.

Let X = {0, 1, · · · , v − 1} and (X, ◦) be an idempotent quasigroup with a sharply
transitive automorphism group G written multiplicatively. It is easy to see that there is
a unique g ∈ G such that g(x) = y for every pair of elements x, y in X. Let the first row
of (X, ◦) be of the following ordered triples:

(0, h(0), h∗(0)), h ∈ G.

Then h 7→ h∗ is a bijection between G, denoted by Φ. Hence, (g(0), gh(0), gh∗(0)), g, h ∈ G

forms the quasigroup (X, ◦).
Then (g, gh, gh∗), g, h ∈ G is a latin square on G, which implies that

{(gh, gh∗) : g, h ∈ G} = G × G.

So, we have
{h(h∗)−1 : h ∈ G} = G (1)

Note that the mapping Φ : h 7→ (h∗)−1 is also a bijection between G. By the definition of
complete mapping and formula (1), Φ is a complete mapping of G. Next we record the
result as follows.

Lemma 2.6 If there exists a transitive IQ with G as a sharply transitive automorphism
group, then G has a complete mapping.
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3 A new product construction for LRDTS

Let X = {0, 1, · · · , v − 1} and (X, ◦) be an idempotent quasigroup with a sharply
transitive automorphism group G = {σ0, σ1, · · · , σv−1}. By Lemma 2.6, G has a complete
mapping, say, Φ−1. Let σ∗ = Φ(σ) for σ ∈ G. Then, by the definition of complete
mapping, we have

{σ(σ∗)−1 : σ ∈ G} = G (2)

Theorem 3.1 If there exist an LRDTS(3v), a DTRIQ(v) and an LR(u), then there
exists an LRDTS(uv).

Proof. Suppose that X is a set of size u with a linear order “ < ” (i.e. for any x 6= y,
x, y ∈ X, either x < y or y < x). We have an LR(u) over X with the following collection
of u − 1 KTS(u)

{(X,Al
k) : 1 6 k 6

u − 1

2
, l = 0, 1}

which with following properties:
(i) Let the resolution of Al

k be Γl
k = {Al

k(h) : 1 6 h 6
u−1

2
}, and

u−1

2⋃

k=1

A0
k(1) =

u−1

2⋃

k=1

A1
k(1) = A,

(X,A) is a KTS(u).
(ii) For any triple T = {x, y, z} ⊂ X, x 6= y 6= z 6= x, there exist k, l such that T ∈ Al

k.
Furthermore, suppose that Y is a set of size v. So we have a DTRIQ(v) over Y .

Let (Y, ◦) be a DTRIQ(v), G = {σ0, σ1, · · · , σv−1} be the transitive automorphism group
of (Y, ◦). We will construct an LRDTS(uv) on the point set X × Y . The construction
proceeds in 2 steps.

Step 1: For any {x, y, z} ⊆ X, {x, y, z} ∈ A =

u−1

2⋃
k=1

A0
k(1).

(1). If {x, y, z} ∈ A0
1(1), we have an LRDTS(3v) on the point set {x, y, z} × Y . Let

its block set be {B
{x,y,z}
i,m : 1 6 i 6 v − 2, m = 0, 1, 2}

⋃
{Bl

j,m({x, y, z}) : 0 6 j 6

v − 1, l = 0, 1, m = 0, 1, 2}, and each B
{x,y,z}
i,m can be partitioned into parallel classes

B
{x,y,z}
i,m (n), 1 6 n 6 3v − 1, each Bl

j,m({x, y, z}) can be partitioned into parallel classes

Bl
j,m({x, y, z}, n), 1 6 n 6 3v − 1.

(2). If {x, y, z} 6∈ A0
1(1), i.e. {x, y, z} ∈ A0

k(1) for some k, 2 6 k 6
u−1
2

, x < y < z, let

P
{x,y,z}
j,s = {(x, a), (y, σs(a)), (z, σjσ

∗
s (a)) : a ∈ Y },

P
{x,y,z}
0,j,s = {(u, v, w), (w, v, u) : {u, v, w} ∈ P

{x,y,z}
j,s },

P
{x,y,z}
1,j,s = {(u, w, v), (v, w, u) : {u, v, w} ∈ P

{x,y,z}
j,s },

P
{x,y,z}
2,j,s = {(w, u, v), (v, u, w) : {u, v, w} ∈ P

{x,y,z}
j,s },
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where σs, σj ∈ G and let

A
{x,y,z}
m,j =

⋃

σs∈G

P
{x,y,z}
m,j,s , m = 0, 1, 2.

So we have: (1) For x′ 6= y′ ∈ {x, y, z}, a, b ∈ Y, each of the order pair ((x, a), (y, b)) and

((y, b), (x, a)) belongs to exactly one triple of A
{x,y,z}
m,j ; (2) A

{x,y,z}
m,j and A

{x,y,z}
m′,j′ are disjoint

for (m, j) 6= (m′, j′).
Since (Y, ◦) is a DTRIQ(v), for any ordered pair (a, b) ∈ Y ×Y (a 6= b) and any σ ∈ G,

we get an element a ◦ b in Y such that σ(a) ◦ σ(b) = σ(a ◦ b). For 0 6 j 6 v − 1, define

six permutations on Y , namely α
(s)
j , β

(s)
j (s ∈ Z3) as follows:

α
(0)
j = σj , α

(1)
j = σ0σ

∗
j σ

−1
j , α

(2)
j = (σ0σ

∗
j )

−1 = (α
(1)
j α

(0)
j )−1,

β
(0)
j = σv−1σ

∗
j , β

(1)
j = σj(σv−1σ

∗
j )

−1, β
(2)
j = σ−1

j = (β
(1)
j β

(0)
j )−1.

Here, if π is a permutation of Y , we denote by πTm(u, v) the transitive triples obtained
by replacing each occurrence of (u, a) with (u, π(a)) (and keeping those occurrences with
the first component “u” unchanged). Using the six permutations defined above, for each
m ∈ {0, 1, 2} and j ∈ {0, 1, · · · , v − 1}, define

C0
j,m = α

(0)
j Tm(x, y) ∪ α

(1)
j Tm(y, z) ∪ α

(2)
j Tm(z, x),

C1
j,m = β

(0)
j Tm(x, y) ∪ β

(1)
j Tm(y, z) ∪ β

(2)
j Tm(z, x),

and
Bl

j,m({x, y, z}) = P
{x,y,z}
m,v−l,j

⋃
Cl

j,m,

where 0 6 j 6 v − 1, m = 0, 1, 2, l = 0, 1 and v − l = 0, v − 1 .
Furthermore, ({x, y, z} × Y,Bl

j({x, y, z})), 0 6 j 6 v − 1, l = 0, 1, is an RDTS(3v).
Let each Bl

j,m({x, y, z}) can be partitioned into parallel classes Bl
j,m({x, y, z}, n), 1 6 n 6

3v − 1.
(For any triple T of X ×Y , T is form as ((x, a), (x, b), (x, c)) or ((x, a), (x, b), (y, c)) or

((x, a), (y, b), (x, c)) or ((y, a), (x, b), (x, c)) or ((x, a), (y, b), (z, c)) with {x, y, z} ∈ A, then
T appears in Step 1.)

Step 2: For any {x, y, z} ⊆ X, x < y < z, {x, y, z} 6∈ A, (i.e. there exist k, l such that

{x, y, z} ∈ Al
k \ Al

k(1)) define A
{x,y,z}
m,j like Step 1.

Define
Cm,i = (

⋃

{x,y,z}∈A\A0

1
(1)

A
{x,y,z}
m,i )

⋃
(

⋃

{x,y,z}∈A0

1
(1)

B
{x,y,z}
i,m ).

It is not difficult to check that each (X × Y, Cm,i), 1 6 i 6 v − 2, m = 0, 1, 2, is an
RDTS(uv) with the following parallel classes:

Cm,i(n) =
⋃

{x,y,z}∈A0

1
(1)

B
{x,y,z}
i,m (n), 1 6 n 6 3v − 1;
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Cm,i(k, s) =
⋃

{x,y,z}∈A0

k
(1)

{(u, v, w) : {u, v, w} ∈ P
{x,y,z}
m,i,s }, 2 6 k 6

u − 1

2
, 0 6 s 6 v − 1.

Cm,i(k, s) =
⋃

{x,y,z}∈A0

k
(1)

{(w, v, u) : {u, v, w} ∈ P
{x,y,z}
m,i,s }, 2 6 k 6

u − 1

2
, 0 6 s 6 v − 1.

Furthermore, these 3(v − 2) RDTSs are obviously disjoint.
Define

Dl
m,k,j = (

⋃

{x,y,z}∈Al
k
(1)

Bl
j,m({x, y, z}))

⋃
(

⋃

{x,y,z}∈Al
k
\Al

k
(1)

A
{x,y,z}
m,j ),

where 1 6 k 6
u−1

2
, 0 6 j 6 v − 1, m = 0, 1, 2, l = 0, 1. It is not difficult to check that

each (X × Y,Dl
m,k,j) is an RDTS(uv) with the following parallel classes:

Dl
m,k,j(n) =

⋃

{x,y,z}∈Al
k
(1)

Bl
j,m({x, y, z}, n), 1 6 n 6 3v − 1,

Dl
m,k,j(h, s) =

⋃

{x,y,z}∈Al
k
(h)

{(u, v, w) : {u, v, w} ∈ P
{x,y,z}
m,j,s }, 2 6 h 6

u − 1

2
, 0 6 s 6 v − 1.

D
l

m,k,j(h, s) =
⋃

{x,y,z}∈Al
k
(h)

{(w, v, u) : {u, v, w} ∈ P
{x,y,z}
m,j,s }, 2 6 h 6

u − 1

2
, 0 6 s 6 v − 1.

And these 3(u − 1)v RDTSs are disjoint. We obtain a total of 3(uv − 2) disjoint
RDTS(uv), a large set. This completes the proof.

4 New orders

From Lemma 2.1, 2.2 and Theorem 3.1, we can obtain the following conclusion.

Theorem 4.1 For v ≡ 0, 3, 9 (mod 12), if there exists an LRDTS(3v), then there exists
an LRDTS(v ·

∏
mi>0

(2·7mi +1)
∏

ni>0

(2·13nj +1)), where mi and nj are non-negative integers.

For example, from Theorem 1.2, for s ∈ {57, 93, 132, 240, 255}, the existence of LRDTS
(s) is unknown. But the existence of LRDTS(3s) is known. And from Lemma 2.1, there
exists a DTRIQ(s). Thus, from Theorem 4.1, we get the following result.

Theorem 4.2 There exists an LRDTS(v) for v = s ·
∏

mi>0

(2 · 7mi + 1)
∏

nj>0

(2 · 13nj + 1),

where s ∈ {57, 93, 132, 240, 255}, mi and nj are non-negative integers.

Remark: The smallest order of v (unknown before this paper) obtained from Theorem 4.2
is 1395, 1980, 3600, 3825, · · · in turn.
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