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Abstract

Let D be a directed graph of order n. An anti-directed Hamilton cycle H in D

is a Hamilton cycle in the graph underlying D such that no pair of consecutive arcs
in H form a directed path in D. We prove that if D is a directed graph with even
order n and if the indegree and the outdegree of each vertex of D is at least 2

3n then
D contains an anti-directed Hamilton cycle. This improves a bound of Grant [7].
Let V (D) = P ∪Q be a partition of V (D). A (P,Q) vertex-oriented Hamilton cycle

in D is a Hamilton cycle H in the graph underlying D such that for each v ∈ P ,
consecutive arcs of H incident on v do not form a directed path in D, and, for each
v ∈ Q, consecutive arcs of H incident on v form a directed path in D. We give
sufficient conditions for the existence of a (P,Q) vertex-oriented Hamilton cycle in
D for the cases when |P | >

2
3n and when 1

3n 6 |P | 6
2
3n. This sharpens a bound

given by Badheka et al. in [1].

1 Introduction

Let G be a graph with vertex set V (G) and edge set E(G). For a vertex v ∈ V (G), the
degree of v in G, denoted by deg(v, G) is the number of edges of G incident on v. Let
δ(G) = minv∈V (G){deg(v, G)}. Let D be a directed graph with vertex set V (D) and arc set
A(D). For a vertex v ∈ V (D), the outdegree (respectively, indegree) of v in D denoted by
d+(v, D) (respectively, d−(v, D)) is the number of arcs of D directed out of v (respectively,
directed into v). Let δ0(D) = minv∈V (D){min{d+(v, D), d−(v, D)}}. The graph underlying

D is the graph obtained from D by ignoring the directions of the arcs of D. A directed

Hamilton cycle H in D is a Hamilton cycle in the graph underlying D such that all pairs of
consecutive arcs in H form a directed path in D. An anti-directed Hamilton cycle H in D
is a Hamilton cycle in the graph underlying D such that no pair of consecutive arcs in H
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form a directed path in D. Note that if D contains an anti-directed Hamilton cycle then
|V (D)| must be even. Let D be a directed graph, and let V (D) = P ∪ Q be a partition
of V (D). A (P, Q) vertex-oriented Hamilton cycle in D is a Hamilton cycle H in the
graph underlying D such that for each v ∈ P , consecutive arcs of H incident on v do not
form a directed path in D, and, for each v ∈ Q, consecutive arcs of H incident on v form
a directed path in D. Note that if D contains a (P, Q) vertex-oriented Hamilton cycle
then |P | must be even. The idea of a (P, Q) vertex-oriented Hamilton cycle generalizes
the ideas of a directed Hamilton cycle and an an anti-directed Hamilton cycle, because
a directed Hamilton cycle in D is a (∅, V (D)) vertex-oriented Hamilton cycle in D and
an anti-directed Hamilton cycle in D is a (V (D), ∅) vertex-oriented Hamilton cycle in D.
We refer the reader to ([1,2,5]) for all terminology and notation that is not defined in this
paper.

The following classical theorems by Dirac [3] and Ghouila-Houri [6] give sufficient
conditions for the existence of a Hamilton cycle in a graph G and for the existence of a
directed Hamilton cycle in a directed graph D respectively.

Theorem 1 [3] If G is a graph of order n > 3 and δ(G) >
n
2
, then G contains a Hamilton

cycle.

Theorem 2 [6] If D is a directed graph of order n and δ0(D) >
n
2
, then D contains a

directed Hamilton cycle.

The following theorem by Grant [7] gives a sufficient condition for the existence of an
anti-directed Hamilton cycle in a directed graph D.

Theorem 3 [7] If D is a directed graph with even order n and if δ0(D) >
2
3
n+

√

nlog(n)
then D contains an anti-directed Hamilton cycle.

In his paper Grant [7] conjectured that the theorem above can be strengthened to assert
that if D is a directed graph with even order n and if δ0(D) >

1
2
n then D contains

an anti-directed Hamilton cycle. Mao-cheng Cai [10] gave a counter-example to this
conjecture. However, the following theorem by Häggkvist and Thomason [8] proves that
Grant’s conjecture is asymptotically true.

Theorem 4 [8] There exists an integer N such that if D is a directed graph of order

n > N and δ0(D) > (1
2

+ n− 1

6 )n then D contains an n-cycle with arbitrary orientation.

We point out here that if D is an oriented graph (i.e. a digraph for which at most one of
the arcs (u, v) and (v, u) can be in A(D)) Häggkvist and Thomason [9] have obtained the
following result.

Theorem 5 [9] For every ǫ > 0, there exists N(ǫ) such that if D is an oriented graph

of order n > N(ǫ) and δ0(D) > ( 5
12

+ ǫ)n then D contains an n-cycle with arbitrary

orientation.

In Section 2 of this paper we prove the following improvement of Theorem 3 by Grant [7].
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Theorem 6 If D is a directed graph with even order n and if δ0(D) >
2
3
n then D contains

an anti-directed Hamilton cycle.

In Section 3 of this paper we turn our attention to (P, Q) vertex-oriented Hamilton cycles.
In [1] the following theorem giving a sufficient condition for the existence of a (P, Q)
vertex-oriented Hamilton cycle was proved. For the sake of completeness we include the
proof of this theorem in Section 3.

Theorem 7 [1] Let D be a directed graph of order n and let V (D) = P ∪Q be a partition

of V (D). If |P | = 2j for some integer j > 0, and δ0(D) >
n
2

+ j , then D contains a

(P, Q) vertex-oriented Hamilton cycle.

Let D be a directed graph and let D′ be the spanning directed subgraph of D consisting
of all arcs uv ∈ A(D) for which vu ∈ A(D). Let G′ be the graph underlying D′. We
note that if δ0(D) >

3
4
n, then δ(G′) >

n
2
, and hence Theorem 1 implies that G′ contains

a Hamilton cycle. Thus, if δ0(D) >
3
4
n and |P | is even, then D trivially contains a (P, Q)

vertex-oriented Hamilton cycle for any partition V (D) = P ∪ Q of V (D).
In Section 3 of this paper we prove the following two theorems that give sufficient

conditions for the existence of a (P, Q) vertex-oriented Hamilton cycle that are sharper
than the one given in Theorem 7 for the cases when |P | >

2
3
n and when 1

3
n 6 |P | 6

2
3
n.

Theorem 8 Let D be a directed graph of order n > 4 and let V (D) = P ∪Q be a partition

of V (D). If |P | = 2j >
2
3
n for some integer j > 0, and δ0(D) >

n
2

+ j

2
, then D contains

a (P, Q) vertex-oriented Hamilton cycle.

Theorem 9 Let D be a directed graph of order n > 4 and let V (D) = P ∪Q be a partition

of V (D). If |P | = 2j for some integer j > 0 with 1
3
n 6 2j 6

2
3
n and δ0(D) >

2
3
n , then

D contains a (P, Q) vertex-oriented Hamilton cycle.

2 Proof of Theorem 6

A partition of a set S with |S| being even into S = X ∪ Y is an equipartition of S if

|X| = |Y | = |S|
2

. We will use the following theorem by Moon and Moser [11].

Theorem 10 [11] Let G be a bipartite graph of even order n, with equipartition V (G) =
X ∪ Y . If x ∈ X, y ∈ Y , xy /∈ E(G), and, deg(x) + deg(y) > n

2
, then G contains a

Hamilton cycle if and only if G + xy contains a Hamilton cycle.

For a bipartite graph G of order n, with partition V (G) = X ∪ Y , the closure of G
is defined as the supergraph of G obtained by iteratively adding edges between pairs of
nonadjacent vertices x ∈ X and y ∈ Y whose degree sum is greater than n

2
.

For an equipartition of V (D) into V (D) = X∪Y , let B(X → Y ) be the bipartite directed
graph with vertex set V (D), equipartition V (D) = X ∪ Y , and with (x, y) ∈ A(B(X →
Y )) if and only if x ∈ X, y ∈ Y , and, (x, y) ∈ A(D). Let B(X, Y ) denote the bipartite
graph underlying B(X → Y ). It is clear that B(X, Y ) contains a Hamilton cycle if and
only if B(X → Y ) contains an anti-directed Hamilton cycle. The following lemma will
imply Theorem 6.
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Lemma 1 If D is a directed graph with even order n and if δ0(D) >
2
3
n then there exists

an equipartition of V (D) into V (D) = X ∪ Y , such that |{v ∈ V (D) : deg(v, B(X, Y )) >
1
3
n}| > n

2
.

Proof. For a vertex v ∈ V (D), let n1(v) be the number of equipartitions of V (D)
into V (D) = X ∪ Y for which deg(v, B(X, Y )) >

1
3
n and let n2(v) be the number of

equipartitions of V (D) for which deg(v, B(X, Y )) < 1
3
n. We will show that n1(v) > n2(v)

for each v ∈ V (D) which in turn clearly implies the conclusion in the lemma.
Since n is even, we have that n ≡ 0 mod 6 or n ≡ 2 mod 6 or n ≡ 4 mod 6. We give

the proof for the case in which n ≡ 2 mod 6; the other cases can be proved similarly.
Hence, assume that |V (D)| = n = 6k + 2 for some positive integer k. Let v be a

vertex in V (D). Now, δ0(D) >
2
3
n implies that d+(v, D) > 4k + 2, and since we wish

to argue that n1(v) > n2(v), we can assume that d+(v, D) = 4k + 2. Note that this
implies that deg(v, B(X, Y )) > k +2 for every equipartition of V (D) into V (D) = X ∪Y .
Now, n1(v) is the number of equipartitions of V (D) into V (D) = X ∪ Y for which
2k + 2 6 deg(v, B(X, Y )) 6 3k + 1, and, n2(v) is the number of equipartitions of V (D)
into V (D) = X ∪ Y for which k + 2 6 deg(v, B(X, Y )) < 2k + 1. Hence, because v may
be in X or Y , we have that

n1(v) = 2

k
∑

i=1

(

4k + 2

2k + i + 1

)(

2k − 1

k − i

)

,

and that,

n2(v) = 2

k
∑

i=1

(

4k + 2

2k + 2 − i

)(

2k − 1

k + i − 1

)

.

Since
(

4k+2
2k+i+1

)(

2k−1
k−i

)

>
(

4k+2
2k+2−i

)(

2k−1
k+i−1

)

for each i = 1, 2, . . . , k, we have that n1(v) > n2(v)
and this completes the proof of the lemma.

Proof of Theorem 6. As given by Lemma 1, consider an equipartition of V (D)
into V (D) = X ∪ Y such that |{v ∈ V (D) : deg(v, B(X, Y )) >

1
3
n}| > n

2
. Let

Z = {v ∈ V (D) : deg(v, B(X, Y )) >
1
3
n} and let X∗ = X ∩ Z with |X∗| = k > 0,

and let Y ∗ = Y ∩Z with |Y ∗| >
n
2
− k + 1. Let B+(X, Y ) denote the closure of B(X, Y ).

Note that since δ0(D) >
2
3
n, we have that deg(v, B(X, Y )) > n

6
for each vertex v. Hence,

deg(v, B+(X, Y )) = n
2

for each v ∈ X∗ ∪ Y ∗. Therefore, deg(v, B+(X, Y )) >
n
2
− k + 1

for each v ∈ X and deg(v, B+(X, Y )) > k for each v ∈ Y . Now, Theorem 10 implies that
B+(X, Y ) contains a Hamilton cycle and hence B(X, Y ) contains a Hamilton cycle. This
in turn implies that D contains an anti-directed Hamilton cycle.

3 Proofs of Theorems 7, 8 and 9

In [1] the following Type 1 reduction was used to prove Theorem 7.
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Type 1 reduction. Let D be a directed graph and let V (D) = P ∪ Q be a partition
of V (D). Let p and p′ be distinct vertices in P and let q ∈ Q such that pq ∈ A(D) and
qp′ ∈ A(D). A Type 1 reduction applied to D with respect to the vertices p, q, and p′

produces a directed graph D1 from D with V (D1) = (V (D) − {p, q, p′}) ∪ {q1} and with
E(D1) obtained from A(D) as follows: Delete arcs vp ∈ A(D) for each v ∈ V (D), delete
arcs p′v ∈ A(D) for each v ∈ V (D), delete all arcs incident on q, replace arc pv ∈ A(D)
by an arc q1v for each v ∈ V (D), and, replace arc vp′ ∈ A(D) by an arc vq1 for each
v ∈ V (D). Let P1 = P − {p, p′} and Q1 = (Q − {q}) ∪ {q1}. Clearly, if D1 contains a
(P1, Q1) vertex-oriented Hamilton cycle then D contains a (P, Q) vertex-oriented Hamil-
ton cycle that includes the arcs pq and qp′.

For the sake of completeness we include the proof of Theorem 7 here.

Proof of Theorem 7. If j = 0, then P = ∅ and δ0(D) >
n
2
. Theorem 2 implies that D

contains a directed Hamilton cycle which is a (∅, V (D)) vertex-oriented Hamilton cycle
in D. Now suppose that j > 1. Let p and p′ be distinct vertices in P . It is easy to
see that there exists q ∈ Q such that pq ∈ A(D) and qp′ ∈ A(D). We now apply a
Type 1 reduction to D with respect to the vertices p, q, and p′ to obtain the directed
graph D1 with partition of V (D1) into V (D1) = P1 ∪ Q1, where P1 = P − {p, p′} and
Q1 = (Q−{q})∪ {q1}. Now, |V (D1)| = n− 2, |P1| = 2j − 2, and since δ0(D) >

n
2

+ j we

have that δ0(D1) > (n
2

+ j)− 2 = n−2
2

+ 2j−2
2

. So, we can apply a Type 1 reduction to D1

to get the directed graph D2 with partition V (D2) into V (D2) = P2 ∪ Q2, where P2 and
Q2 are obtained from P1 and Q1 in a manner similar to the one by which P1 and Q1 were
obtained from P and Q. Iterating this procedure a total of j times yields a directed graph
Dj with Pj = ∅ and Qj = V (Dj) with |V (Dj)| = n− 2j and δ0(Dj) >

n
2

+ j − 2j = n−2j

2
.

Now, Theorem 2 implies that Dj contains a directed Hamilton cycle which in turn implies
that D contains a (P, Q) vertex-oriented Hamilton cycle.

To prove Theorems 8 and 9 we will use the following Type 2 reduction.

Type 2 reduction. Let D be a directed graph and let V (D) = P ∪ Q be a partition of
V (D). Let p and p′ be distinct vertices in P with pp′ ∈ A(D). A Type 2 reduction applied
to D with respect to the vertices p and p′ produces a directed graph D2 from D with
V (D2) = (V (D)− {p, p′}) ∪ {q2} and with E(D2) obtained from A(D) as follows: Delete
arcs vp ∈ A(D) for each v ∈ V (D), delete arcs p′v ∈ A(D) for each v ∈ V (D), replace arc
pv ∈ A(D) by an arc q2v for each v ∈ V (D), and, replace arc vp′ ∈ A(D) by an arc vq2 for
each v ∈ V (D). Let P2 = P −{p, p′} and Q2 = Q∪{q2}. Clearly, if D2 contains a (P2, Q2)
vertex-oriented Hamilton cycle then D contains a (P, Q) vertex-oriented Hamilton cycle
that includes the arc pp′.

Proof of Theorem 8. Let D be a directed graph of order n. Let V (D) = P ∪ Q
be a partition of V (D) with |P | = 2j >

2
3
n for some integer j > 0. Let D[P ] be the

directed subgraph of D induced by vertices in P , and let G(P ) be the simple graph
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underlying D[P ]. Since δ0(D) >
n
2

+ j

2
, 2j >

2
3
n, and, |Q| = n − 2j, we have that

δ(G(P )) > (n
2

+ j

2
) − (n − 2j) > j. Hence, Theorem 1 implies that G(P ) contains a

Hamilton cycle and hence a perfect matching M . Let (pi, p
′
i), i = 1, 2, . . . , j be the j arcs

in D[P ] corresponding to the edges in M . We now successively apply j Type 2 reductions
to D with respect to the vertices pi and p′i for i = 1, 2, . . . , j. Let D∗ be the directed
graph obtained from D after these j Type 2 reductions. Then, |V (D∗| = n − j and since
δ0(D) >

n
2

+ j

2
, we have that δ0(D∗) > (n

2
+ j

2
) − j = n−j

2
. Now, Theorem 2 implies that

D∗ contains a directed Hamilton cycle which in turn implies that D contains a (P, Q)
vertex-oriented Hamilton cycle.
We will need the following Lemma [4] in the proof of Theorem 9.

Lemma 2 [4] Let G be a graph of order n and let β(G) be the maximum cardinality of a

matching in G. Then β(G) > min{δ(G), ⌊n
2
⌋}.

Proof of Theorem 9. Let D be a directed graph of order n. Let V (D) = P ∪ Q be
a partition of V (D) with |P | = 2j for some integer j > 0 and with 1

3
n 6 2j 6

2
3
n. Let

2j = 1
3
n + k, 0 6 k 6

1
3
n. Let D[P ] be the directed subgraph of D induced by vertices in

P , and let G(P ) be the simple graph underlying D[P ]. Since δ0(D) >
2
3
n and |Q| = n−2j,

we have that δ(G(P )) >
2
3
n − (n − 2j) = 2j − 1

3
n = k. Since 2j 6

2
3
n, we have that

k = 2j − 1
3
n 6 j = |V (G(P ))|

2
. Lemma 2 implies that G(P ) contains a matching M with

|M | = ⌈k⌉. Let (pi, p
′
i), i = 1, 2, . . . , ⌈k⌉ be the ⌈k⌉ arcs in D[P ] corresponding to the

edges in M . We now successively apply ⌈k⌉ Type 2 reductions to D with respect to the
vertices pi and p′i for i = 1, 2, . . . , ⌈k⌉. Let D∗ be the directed graph obtained from D after
these ⌈k⌉ Type 2 reductions. Then, |V (D∗| = n−⌈k⌉ and since δ0(D) >

2
3
n, we have that

δ(D∗) >
2
3
n−⌈k⌉. Let P ∗ = P −∪

⌈k⌉
i=1{pi}−∪

⌈k⌉
i=1{p

′
i} and let Q∗ = V (D∗)−P ∗. We have

that |P ∗| = 2j−2⌈k⌉ = 1
3
n+k−2⌈k⌉. Hence, δ(D∗) >

2
3
n−⌈k⌉ >

1
2
|V (D∗)|+ 1

2
|P ∗|. Now,

Theorem 7 implies that D∗ contains a (P ∗, Q∗) vertex-oriented Hamilton cycle which in
turn implies that D contains a (P, Q) vertex-oriented Hamilton cycle.

4 Conclusion

We summarize the results given in this paper as follows. Let D be a directed graph of
order n and let V (D) = P ∪Q be a partition of V (D) with |P | = p, and p being even. By
Theorems 7, 8, and 9, with f(n, p) as defined below, if δ0(D) > f(n, p) then D contains
a (P, Q) vertex-oriented Hamilton cycle.

f(n, p) =























1
2
n + 1

2
p, if 0 6 p 6

1
3
n

2
3
n, if 1

3
n 6 p 6

2
3
n

1
2
n + 1

4
p, if 2

3
n 6 p 6 n.

In the case when p = n, we can do better than the previous statement promises. Theorem
6 gives us that f(n, p) = 2

3
n if p = n, thus, it is natural to expect that the lower bounds
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on δ0(D) that guarantee a (P, Q) vertex-oriented Hamilton cycle can be significantly
improved when p is relatively large.
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