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Abstract

Let D be a directed graph of order n. An anti-directed Hamilton cycle H in D
is a Hamilton cycle in the graph underlying D such that no pair of consecutive arcs
in H form a directed path in D. We prove that if D is a directed graph with even
order n and if the indegree and the outdegree of each vertex of D is at least %n then
D contains an anti-directed Hamilton cycle. This improves a bound of Grant [7].
Let V(D) = PUQ be a partition of V(D). A (P, Q) vertex-oriented Hamilton cycle
in D is a Hamilton cycle H in the graph underlying D such that for each v € P,
consecutive arcs of H incident on v do not form a directed path in D, and, for each
v € @, consecutive arcs of H incident on v form a directed path in D. We give
sufficient conditions for the existence of a (P, Q) vertex-oriented Hamilton cycle in
D for the cases when |P| > 2n and when n < |P| < 2n. This sharpens a bound
given by Badheka et al. in [1].

1 Introduction

Let G be a graph with vertex set V(G) and edge set E(G). For a vertex v € V(G), the
degree of v in G, denoted by deg(v,G) is the number of edges of G incident on v. Let
§(G) = minyey () {deg(v, G)}. Let D be a directed graph with vertex set V(D) and arc set
A(D). For a vertex v € V (D), the outdegree (respectively, indegree) of v in D denoted by
d* (v, D) (respectively, d~ (v, D)) is the number of arcs of D directed out of v (respectively,
directed into v). Let 6°(D) = min,ey (py{min{d* (v, D),d" (v, D)}}. The graph underlying
D is the graph obtained from D by ignoring the directions of the arcs of D. A directed
Hamilton cycle H in D is a Hamilton cycle in the graph underlying D such that all pairs of
consecutive arcs in H form a directed path in D. An anti-directed Hamilton cycle H in D
is a Hamilton cycle in the graph underlying D such that no pair of consecutive arcs in H
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form a directed path in D. Note that if D contains an anti-directed Hamilton cycle then
|[V(D)| must be even. Let D be a directed graph, and let V(D) = P U Q@ be a partition
of V(D). A (P,Q) vertex-oriented Hamilton cycle in D is a Hamilton cycle H in the
graph underlying D such that for each v € P, consecutive arcs of H incident on v do not
form a directed path in D, and, for each v € (), consecutive arcs of H incident on v form
a directed path in D. Note that if D contains a (P, Q) vertex-oriented Hamilton cycle
then |P| must be even. The idea of a (P, () vertex-oriented Hamilton cycle generalizes
the ideas of a directed Hamilton cycle and an an anti-directed Hamilton cycle, because
a directed Hamilton cycle in D is a (0, V(D)) vertex-oriented Hamilton cycle in D and
an anti-directed Hamilton cycle in D is a (V(D), 0) vertex-oriented Hamilton cycle in D.
We refer the reader to ([1,2,5]) for all terminology and notation that is not defined in this
paper.

The following classical theorems by Dirac [3] and Ghouila-Houri [6] give sufficient
conditions for the existence of a Hamilton cycle in a graph G and for the existence of a
directed Hamilton cycle in a directed graph D respectively.

Theorem 1 [3] If G is a graph of ordern > 3 and 6(G) > 5, then G contains a Hamilton
cycle.

Theorem 2 [6] If D is a directed graph of order n and §°(D) > 5, then D contains a
directed Hamilton cycle.

The following theorem by Grant [7] gives a sufficient condition for the existence of an
anti-directed Hamilton cycle in a directed graph D.

Theorem 3 (7] If D is a directed graph with even order n and if 5°(D) > §n+ nlog(n)
then D contains an anti-directed Hamilton cycle.

In his paper Grant [7] conjectured that the theorem above can be strengthened to assert
that if D is a directed graph with even order n and if 6°(D) > %n then D contains
an anti-directed Hamilton cycle. Mao-cheng Cai [10] gave a counter-example to this
conjecture. However, the following theorem by Haggkvist and Thomason [8] proves that
Grant’s conjecture is asymptotically true.

Theorem 4 [8] There exists an integer N such that if D is a directed graph of order
n>= N and 0°(D) = (3 + n=s)n then D contains an n-cycle with arbitrary orientation.

We point out here that if D is an oriented graph (i.e. a digraph for which at most one of
the arcs (u,v) and (v, u) can be in A(D)) Héggkvist and Thomason [9] have obtained the
following result.

Theorem 5 [9] For every € > 0, there exists N(¢) such that if D is an oriented graph
of order n > N(e) and 6°(D) > (35 + €)n then D contains an n-cycle with arbitrary
orientation.

In Section 2 of this paper we prove the following improvement of Theorem 3 by Grant [7].
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Theorem 6 If D is a directed graph with even order n and if 5°(D) > %n then D contains
an anti-directed Hamilton cycle.

In Section 3 of this paper we turn our attention to (P, Q) vertex-oriented Hamilton cycles.
In [1] the following theorem giving a sufficient condition for the existence of a (P, Q)
vertex-oriented Hamilton cycle was proved. For the sake of completeness we include the
proof of this theorem in Section 3.

Theorem 7 [1] Let D be a directed graph of order n and let V(D) = PUQ be a partition
of V(D). If |P| = 2j for some integer j > 0, and 6°(D) > %+ j , then D contains a
(P, Q) vertez-oriented Hamilton cycle.

Let D be a directed graph and let D’ be the spanning directed subgraph of D consisting
of all arcs uv € A(D) for which vu € A(D). Let G’ be the graph underlying D’. We
note that if 6°(D) > 3n, then §(G’) > %, and hence Theorem 1 implies that G’ contains
a Hamilton cycle. Thus, if 6°(D) > 2n and |P| is even, then D trivially contains a (P, Q)
vertex-oriented Hamilton cycle for any partition V(D) = PUQ of V(D).

In Section 3 of this paper we prove the following two theorems that give sufficient
conditions for the existence of a (P, Q) vertex-oriented Hamilton cycle that are sharper
than the one given in Theorem 7 for the cases when |P| > 2n and when in < |P| < 2n.

Theorem 8 Let D be a directed graph of order n > 4 and let V(D) = PUQ be a partition
of V(D). If |P| = 2j > 2n for some integer j >0, and 6°(D) > % + L | then D contains
a (P, Q) vertez-oriented Hamilton cycle.

Theorem 9 Let D be a directed graph of order n > 4 and let V(D) = PUQ be a partition
of V(D). If |P| = 2j for some integer j > 0 with 3n < 2j < 2n and 6°(D) > 2n , then
D contains a (P, Q) vertex-oriented Hamilton cycle.

2 Proof of Theorem 6

A partition of a set S with |S| being even into S = X UY is an equipartition of S if
X =1Y|= @ We will use the following theorem by Moon and Moser [11].

Theorem 10 [11] Let G be a bipartite graph of even order n, with equipartition V(G) =
XUY. Ifre X, yeVY, xzy ¢ E(G), and, deg(x) + deg(y) > 5, then G contains a
Hamilton cycle if and only if G + xy contains a Hamilton cycle.

For a bipartite graph G of order n, with partition V(G) = X UY, the closure of G
is defined as the supergraph of GG obtained by iteratively adding edges between pairs of
nonadjacent vertices x € X and y € Y whose degree sum is greater than 7.

For an equipartition of V(D) into V(D) = X UY, let B(X — Y') be the bipartite directed
graph with vertex set V(D), equipartition V(D) = X UY, and with (z,y) € A(B(X —
Y))ifand only if 2 € X, y € Y, and, (x,y) € A(D). Let B(X,Y') denote the bipartite
graph underlying B(X — Y). It is clear that B(X,Y’) contains a Hamilton cycle if and
only if B(X — Y) contains an anti-directed Hamilton cycle. The following lemma will
imply Theorem 6.
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Lemma 1 If D is a directed graph with even order n and if 8°(D) > 2n then there exists
an equipartition of V(D) into V(D) = X UY, such that |{v € V(D) : deg(v, B(X,Y)) >
in}| > 2.
3 2

Proof. For a vertex v € V(D), let ny(v) be the number of equipartitions of V(D)
into V(D) = X UY for which deg(v, B(X,Y)) > in and let ny(v) be the number of
equipartitions of V(D) for which deg(v, B(X,Y)) < $n. We will show that ny(v) > na(v)
for each v € V(D) which in turn clearly implies the conclusion in the lemma.

Since n is even, we have that n = 0 mod 6 or n = 2 mod 6 or n = 4 mod 6. We give
the proof for the case in which n = 2 mod 6; the other cases can be proved similarly.

Hence, assume that |V(D)| = n = 6k + 2 for some positive integer k. Let v be a
vertex in V(D). Now, 6°(D) > 2n implies that d*(v,D) > 4k + 2, and since we wish
to argue that ni(v) > no(v), we can assume that d* (v, D) = 4k + 2. Note that this
implies that deg(v, B(X,Y)) > k+2 for every equipartition of V(D) into V(D) = X UY.
Now, ni(v) is the number of equipartitions of V(D) into V(D) = X UY for which
2k + 2 < deg(v, B(X,Y)) < 3k + 1, and, na(v) is the number of equipartitions of V(D)
into V(D) = X UY for which k4 2 < deg(v, B(X,Y)) < 2k + 1. Hence, because v may
be in X or Y, we have that

k
dh+2 \ (2h—1
=
i) =22 <2k:+z'+1)<k—z')’

w

and that,
k
4k + 2 2k —1
n2(v) ; (2k+2—i) (k+i—1)
Since (233—?1) (%f_‘;) > (zgffgi) (szi__ll) for each i = 1,2,..., k, we have that ni(v) > no(v)

and this completes the proof of the lemma. W

Proof of Theorem 6. As given by Lemma 1, consider an equipartition of V(D)
into V(D) = X UY such that [{v € V(D) : deg(v,B(X,Y)) > sn}| > % Let
Z ={v € V(D) : deg(v, B(X,Y)) > 3n} and let X* = X N Z with |[X*| =k > 0,
and let Y* =Y NZ with |[Y*| > § —k+ 1. Let BT(X,Y) denote the closure of B(X,Y).
Note that since §°(D) > 2n, we have that deg(v, B(X,Y)) > 2 for each vertex v. Hence,
deg(v, B¥(X,Y)) = % for each v € X* UY™. Therefore, deg(v, B7(X,Y)) > § —k+1
for each v € X and deg(v, BY(X,Y)) > k for each v € Y. Now, Theorem 10 implies that
B*(X,Y) contains a Hamilton cycle and hence B(X,Y) contains a Hamilton cycle. This

in turn implies that D contains an anti-directed Hamilton cycle. W

3 Proofs of Theorems 7, 8 and 9

In [1] the following Type 1 reduction was used to prove Theorem 7.
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Type 1 reduction. Let D be a directed graph and let V(D) = P U Q be a partition
of V(D). Let p and p’ be distinct vertices in P and let ¢ € @) such that pg € A(D) and
qp’ € A(D). A Type 1 reduction applied to D with respect to the vertices p,q, and p’
produces a directed graph D; from D with V(D;) = (V(D) —{p,q,p'}) U {q1} and with
E(D,) obtained from A(D) as follows: Delete arcs vp € A(D) for each v € V (D), delete
arcs p'v € A(D) for each v € V(D), delete all arcs incident on ¢, replace arc pv € A(D)
by an arc v for each v € V(D), and, replace arc vp’ € A(D) by an arc vg for each
ve V(D). Let PL=P—{p,p}and Q1 = (Q — {q}) U {q:}. Clearly, if D; contains a
(P, Q) vertex-oriented Hamilton cycle then D contains a (P, () vertex-oriented Hamil-
ton cycle that includes the arcs pg and gp’.

For the sake of completeness we include the proof of Theorem 7 here.

Proof of Theorem 7. If j = 0, then P = ) and 6°(D) > %. Theorem 2 implies that D
contains a directed Hamilton cycle which is a (0, V(D)) vertex-oriented Hamilton cycle
in D. Now suppose that j > 1. Let p and p’ be distinct vertices in P. It is easy to
see that there exists ¢ € @ such that pg € A(D) and gp’ € A(D). We now apply a
Type 1 reduction to D with respect to the vertices p,q, and p’ to obtain the directed
graph D; with partition of V(D;) into V(D) = P, U @y, where P, = P — {p,p'} and
Q1= (Q —{a¢}) U{m}. Now, |V(D;)| =n—2, |P| =2j —2, and since 6°(D) > 2+ j we
have that 6°(D;) > (2 +j) —2 = 252 4+ 2222, So, we can apply a Type 1 reduction to D;
to get the directed graph Dy with partition V' (Ds) into V(Dy) = P, U ()9, where P, and
() are obtained from P; and ()7 in a manner similar to the one by which P, and (), were
obtained from P and (). Iterating this procedure a total of j times yields a directed graph
D; with P; = () and Q; = V(D;) with |V(D;)| = n—2j and 6°(D;) > 2+ j —2j = 252,
Now, Theorem 2 implies that D; contains a directed Hamilton cycle which in turn implies
that D contains a (P, Q) vertex-oriented Hamilton cycle. H

To prove Theorems 8 and 9 we will use the following Type 2 reduction.

Type 2 reduction. Let D be a directed graph and let V(D) = P U Q be a partition of
V(D). Let p and p’ be distinct vertices in P with pp’ € A(D). A Type 2 reduction applied
to D with respect to the vertices p and p’ produces a directed graph D, from D with
V(D2) = (V(D) —A{p,p'}) U{q2} and with E (D) obtained from A(D) as follows: Delete
arcs vp € A(D) for each v € V (D), delete arcs p'v € A(D) for each v € V(D), replace arc
pv € A(D) by an arc gy for each v € V(D), and, replace arc vp’ € A(D) by an arc vgs for
eachv € V(D). Let P, = P—{p,p'} and Q2 = QU{q:}. Clearly, if D, contains a (P, Q2)
vertex-oriented Hamilton cycle then D contains a (P, Q) vertex-oriented Hamilton cycle
that includes the arc pp'.

Proof of Theorem 8. Let D be a directed graph of order n. Let V(D) = PUQ
be a partition of V(D) with |P| = 2j > 2n for some integer j > 0. Let D[P] be the
directed subgraph of D induced by vertices in P, and let G(P) be the simple graph
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underlying D[P]. Since 6°(D) > 2 + 4, 2j > 2n, and, |Q| = n — 2j, we have that
§(G(P)) = (2+ 1) — (n—2j) > j. Hence, Theorem 1 implies that G(P) contains a
Hamilton cycle and hence a perfect matching M. Let (p;,p}),i =1,2,...,j be the j arcs
in D[P] corresponding to the edges in M. We now successively apply j Type 2 reductions
to D with respect to the vertices p; and p, for ¢ = 1,2,...,5. Let D* be the directed
graph obtained from D after these j Type 2 reductions. Then, |V (D*| = n — j and since
6°(D) > 2 + £, we have that 6°(D*) > (% + %) — j = %52. Now, Theorem 2 implies that
D* contains a directed Hamilton cycle which in turn implies that D contains a (P, Q)
vertex-oriented Hamilton cycle. W

We will need the following Lemma [4] in the proof of Theorem 9.

Lemma 2 [4] Let G be a graph of order n and let 5(G) be the mazimum cardinality of a
matching in G. Then 3(G) > min{d(G), | 5]}

Proof of Theorem 9. Let D be a directed graph of order n. Let V(D) = PUQ be
a partition of V(D) with |P| = 2j for some integer j > 0 and with sn < 2j < 3n. Let
2j = in+k, 0 <k < gn. Let D[P] be the directed subgraph of D induced by vertices in
P, and let G(P) be the simple graph underlying D[P]. Since §°(D) > %n and |Q| = n—27,
we have that 6(G(P)) > %n —(n—2j) =25 — %n = k. Since 2j < %n, we have that
k=25— %n <j= w. Lemma 2 implies that G(P) contains a matching M with
|M| = [k]. Let (pi,p),i = 1,2,...,[k] be the [k] arcs in D[P] corresponding to the
edges in M. We now successively apply [k] Type 2 reductions to D with respect to the
vertices p; and p) fori = 1,2,..., [k]. Let D* be the directed graph obtained from D after
these [k] Type 2 reductions. Then, [V/(D*| = n— [k] and since 6°(D) > 2n, we have that
8(D*) = 2n—[k]. Let P* = P—Uf {p;} —UlFl {p} and let Q* = V(D*) — P*. We have
that |P*| = 2j—2[k] = tn+k—2[k]. Hence, §(D*) > 2n—[k] > £|V(D*)|+3|P*|. Now,
Theorem 7 implies that D* contains a (P*, Q*) vertex-oriented Hamilton cycle which in
turn implies that D contains a (P, Q) vertex-oriented Hamilton cycle. W

4 Conclusion

We summarize the results given in this paper as follows. Let D be a directed graph of
order n and let V(D) = PUQ be a partition of V(D) with |P| = p, and p being even. By
Theorems 7, 8, and 9, with f(n,p) as defined below, if §°(D) > f(n,p) then D contains
a (P, Q) vertex-oriented Hamilton cycle.

in+ip, f0<p<in

n

wino

n, if in <p <

wino

f(n,p) =
%n—l—ip, if%népgn.

In the case when p = n, we can do better than the previous statement promises. Theorem
6 gives us that f(n,p) = %n if p = n, thus, it is natural to expect that the lower bounds
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on §°(D) that guarantee a (P, Q) vertex-oriented Hamilton cycle can be significantly
improved when p is relatively large.
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