Vertex-oriented Hamilton cycles in directed graphs

Michael J. Plantholt
Department of Mathematics Illinois State University
Normal, IL 61790-4520, USA
mikep@ilstu.edu

Shailesh K. Tipnis
Department of Mathematics
Illinois State University
Normal, IL 61790-4520
tipnis@ilstu.edu

Submitted: Feb 16, 2009; Accepted: Sep 12, 2009; Published: Sep 18, 2009
Mathematics Subject Classifications: 05C20, 05C45

Abstract

Let D be a directed graph of order n. An anti-directed Hamilton cycle H in D is a Hamilton cycle in the graph underlying D such that no pair of consecutive arcs in H form a directed path in D. We prove that if D is a directed graph with even order n and if the indegree and the outdegree of each vertex of D is at least $\frac{2}{3} n$ then D contains an anti-directed Hamilton cycle. This improves a bound of Grant [7]. Let $V(D)=P \cup Q$ be a partition of $V(D)$. A (P, Q) vertex-oriented Hamilton cycle in D is a Hamilton cycle H in the graph underlying D such that for each $v \in P$, consecutive arcs of H incident on v do not form a directed path in D, and, for each $v \in Q$, consecutive arcs of H incident on v form a directed path in D. We give sufficient conditions for the existence of a (P, Q) vertex-oriented Hamilton cycle in D for the cases when $|P| \geqslant \frac{2}{3} n$ and when $\frac{1}{3} n \leqslant|P| \leqslant \frac{2}{3} n$. This sharpens a bound given by Badheka et al. in [1].

1 Introduction

Let G be a graph with vertex set $V(G)$ and edge set $E(G)$. For a vertex $v \in V(G)$, the degree of v in G, denoted by $\operatorname{deg}(v, G)$ is the number of edges of G incident on v. Let $\delta(G)=\min _{v \in V(G)}\{\operatorname{deg}(v, G)\}$. Let D be a directed graph with vertex set $V(D)$ and arc set $A(D)$. For a vertex $v \in V(D)$, the outdegree (respectively, indegree) of v in D denoted by $d^{+}(v, D)$ (respectively, $d^{-}(v, D)$) is the number of arcs of D directed out of v (respectively, directed into v). Let $\delta^{0}(D)=\min _{v \in V(D)}\left\{\min \left\{d^{+}(v, D), d^{-}(v, D)\right\}\right\}$. The graph underlying D is the graph obtained from D by ignoring the directions of the arcs of D. A directed Hamilton cycle H in D is a Hamilton cycle in the graph underlying D such that all pairs of consecutive arcs in H form a directed path in D. An anti-directed Hamilton cycle H in D is a Hamilton cycle in the graph underlying D such that no pair of consecutive arcs in H
form a directed path in D. Note that if D contains an anti-directed Hamilton cycle then $|V(D)|$ must be even. Let D be a directed graph, and let $V(D)=P \cup Q$ be a partition of $V(D)$. A (P, Q) vertex-oriented Hamilton cycle in D is a Hamilton cycle H in the graph underlying D such that for each $v \in P$, consecutive arcs of H incident on v do not form a directed path in D, and, for each $v \in Q$, consecutive arcs of H incident on v form a directed path in D. Note that if D contains a (P, Q) vertex-oriented Hamilton cycle then $|P|$ must be even. The idea of a (P, Q) vertex-oriented Hamilton cycle generalizes the ideas of a directed Hamilton cycle and an an anti-directed Hamilton cycle, because a directed Hamilton cycle in D is a $(\emptyset, V(D))$ vertex-oriented Hamilton cycle in D and an anti-directed Hamilton cycle in D is a $(V(D), \emptyset)$ vertex-oriented Hamilton cycle in D. We refer the reader to $([1,2,5])$ for all terminology and notation that is not defined in this paper.

The following classical theorems by Dirac [3] and Ghouila-Houri [6] give sufficient conditions for the existence of a Hamilton cycle in a graph G and for the existence of a directed Hamilton cycle in a directed graph D respectively.

Theorem 1 [3] If G is a graph of order $n \geqslant 3$ and $\delta(G) \geqslant \frac{n}{2}$, then G contains a Hamilton cycle.

Theorem 2 [6] If D is a directed graph of order n and $\delta^{0}(D) \geqslant \frac{n}{2}$, then D contains a directed Hamilton cycle.

The following theorem by Grant [7] gives a sufficient condition for the existence of an anti-directed Hamilton cycle in a directed graph D.

Theorem 3 [7] If D is a directed graph with even order n and if $\delta^{0}(D) \geqslant \frac{2}{3} n+\sqrt{n \log (n)}$ then D contains an anti-directed Hamilton cycle.

In his paper Grant [7] conjectured that the theorem above can be strengthened to assert that if D is a directed graph with even order n and if $\delta^{0}(D) \geqslant \frac{1}{2} n$ then D contains an anti-directed Hamilton cycle. Mao-cheng Cai [10] gave a counter-example to this conjecture. However, the following theorem by Häggkvist and Thomason [8] proves that Grant's conjecture is asymptotically true.

Theorem 4 [8] There exists an integer N such that if D is a directed graph of order $n \geqslant N$ and $\delta^{0}(D) \geqslant\left(\frac{1}{2}+n^{-\frac{1}{6}}\right) n$ then D contains an n-cycle with arbitrary orientation.

We point out here that if D is an oriented graph (i.e. a digraph for which at most one of the arcs (u, v) and (v, u) can be in $A(D))$ Häggkvist and Thomason [9] have obtained the following result.

Theorem 5 [9] For every $\epsilon>0$, there exists $N(\epsilon)$ such that if D is an oriented graph of order $n \geqslant N(\epsilon)$ and $\delta^{0}(D) \geqslant\left(\frac{5}{12}+\epsilon\right) n$ then D contains an n-cycle with arbitrary orientation.

In Section 2 of this paper we prove the following improvement of Theorem 3 by Grant [7].

Theorem 6 If D is a directed graph with even order n and if $\delta^{0}(D) \geqslant \frac{2}{3} n$ then D contains an anti-directed Hamilton cycle.
In Section 3 of this paper we turn our attention to (P, Q) vertex-oriented Hamilton cycles. In [1] the following theorem giving a sufficient condition for the existence of a (P, Q) vertex-oriented Hamilton cycle was proved. For the sake of completeness we include the proof of this theorem in Section 3.
Theorem 7 [1] Let D be a directed graph of order n and let $V(D)=P \cup Q$ be a partition of $V(D)$. If $|P|=2 j$ for some integer $j \geqslant 0$, and $\delta^{0}(D) \geqslant \frac{n}{2}+j$, then D contains a (P, Q) vertex-oriented Hamilton cycle.
Let D be a directed graph and let D^{\prime} be the spanning directed subgraph of D consisting of all arcs $u v \in A(D)$ for which $v u \in A(D)$. Let G^{\prime} be the graph underlying D^{\prime}. We note that if $\delta^{0}(D) \geqslant \frac{3}{4} n$, then $\delta\left(G^{\prime}\right) \geqslant \frac{n}{2}$, and hence Theorem 1 implies that G^{\prime} contains a Hamilton cycle. Thus, if $\delta^{0}(D) \geqslant \frac{3}{4} n$ and $|P|$ is even, then D trivially contains a (P, Q) vertex-oriented Hamilton cycle for any partition $V(D)=P \cup Q$ of $V(D)$.

In Section 3 of this paper we prove the following two theorems that give sufficient conditions for the existence of a (P, Q) vertex-oriented Hamilton cycle that are sharper than the one given in Theorem 7 for the cases when $|P| \geqslant \frac{2}{3} n$ and when $\frac{1}{3} n \leqslant|P| \leqslant \frac{2}{3} n$.

Theorem 8 Let D be a directed graph of order $n \geqslant 4$ and let $V(D)=P \cup Q$ be a partition of $V(D)$. If $|P|=2 j \geqslant \frac{2}{3} n$ for some integer $j \geqslant 0$, and $\delta^{0}(D) \geqslant \frac{n}{2}+\frac{j}{2}$, then D contains a (P, Q) vertex-oriented Hamilton cycle.

Theorem 9 Let D be a directed graph of order $n \geqslant 4$ and let $V(D)=P \cup Q$ be a partition of $V(D)$. If $|P|=2 j$ for some integer $j \geqslant 0$ with $\frac{1}{3} n \leqslant 2 j \leqslant \frac{2}{3} n$ and $\delta^{0}(D) \geqslant \frac{2}{3} n$, then D contains a (P, Q) vertex-oriented Hamilton cycle.

2 Proof of Theorem 6

A partition of a set S with $|S|$ being even into $S=X \cup Y$ is an equipartition of S if $|X|=|Y|=\frac{|S|}{2}$. We will use the following theorem by Moon and Moser [11].
Theorem 10 [11] Let G be a bipartite graph of even order n, with equipartition $V(G)=$ $X \cup Y$. If $x \in X, y \in Y, x y \notin E(G)$, and, $\operatorname{deg}(x)+\operatorname{deg}(y)>\frac{n}{2}$, then G contains a Hamilton cycle if and only if $G+x y$ contains a Hamilton cycle.
For a bipartite graph G of order n, with partition $V(G)=X \cup Y$, the closure of G is defined as the supergraph of G obtained by iteratively adding edges between pairs of nonadjacent vertices $x \in X$ and $y \in Y$ whose degree sum is greater than $\frac{n}{2}$.
For an equipartition of $V(D)$ into $V(D)=X \cup Y$, let $B(X \rightarrow Y)$ be the bipartite directed graph with vertex set $V(D)$, equipartition $V(D)=X \cup Y$, and with $(x, y) \in A(B(X \rightarrow$ $Y)$) if and only if $x \in X, y \in Y$, and, $(x, y) \in A(D)$. Let $B(X, Y)$ denote the bipartite graph underlying $B(X \rightarrow Y)$. It is clear that $B(X, Y)$ contains a Hamilton cycle if and only if $B(X \rightarrow Y)$ contains an anti-directed Hamilton cycle. The following lemma will imply Theorem 6.

Lemma 1 If D is a directed graph with even order n and if $\delta^{0}(D) \geqslant \frac{2}{3} n$ then there exists an equipartition of $V(D)$ into $V(D)=X \cup Y$, such that $\mid\{v \in V(D): \operatorname{deg}(v, B(X, Y)) \geqslant$ $\left.\frac{1}{3} n\right\} \left\lvert\,>\frac{n}{2}\right.$.

Proof. For a vertex $v \in V(D)$, let $n_{1}(v)$ be the number of equipartitions of $V(D)$ into $V(D)=X \cup Y$ for which $\operatorname{deg}(v, B(X, Y)) \geqslant \frac{1}{3} n$ and let $n_{2}(v)$ be the number of equipartitions of $V(D)$ for which $\operatorname{deg}(v, B(X, Y))<\frac{1}{3} n$. We will show that $n_{1}(v)>n_{2}(v)$ for each $v \in V(D)$ which in turn clearly implies the conclusion in the lemma.

Since n is even, we have that $n \equiv 0 \bmod 6$ or $n \equiv 2 \bmod 6$ or $n \equiv 4 \bmod 6$. We give the proof for the case in which $n \equiv 2 \bmod 6$; the other cases can be proved similarly.

Hence, assume that $|V(D)|=n=6 k+2$ for some positive integer k. Let v be a vertex in $V(D)$. Now, $\delta^{0}(D) \geqslant \frac{2}{3} n$ implies that $d^{+}(v, D) \geqslant 4 k+2$, and since we wish to argue that $n_{1}(v)>n_{2}(v)$, we can assume that $d^{+}(v, D)=4 k+2$. Note that this implies that $\operatorname{deg}(v, B(X, Y)) \geqslant k+2$ for every equipartition of $V(D)$ into $V(D)=X \cup Y$. Now, $n_{1}(v)$ is the number of equipartitions of $V(D)$ into $V(D)=X \cup Y$ for which $2 k+2 \leqslant \operatorname{deg}(v, B(X, Y)) \leqslant 3 k+1$, and, $n_{2}(v)$ is the number of equipartitions of $V(D)$ into $V(D)=X \cup Y$ for which $k+2 \leqslant \operatorname{deg}(v, B(X, Y))<2 k+1$. Hence, because v may be in X or Y, we have that

$$
n_{1}(v)=2 \sum_{i=1}^{k}\binom{4 k+2}{2 k+i+1}\binom{2 k-1}{k-i}
$$

and that,

$$
n_{2}(v)=2 \sum_{i=1}^{k}\binom{4 k+2}{2 k+2-i}\binom{2 k-1}{k+i-1} .
$$

Since $\binom{4 k+2}{2 k+i+1}\binom{2 k-1}{k-i}>\binom{4 k+2}{2 k+2-i}\binom{2 k-1}{k+i-1}$ for each $i=1,2, \ldots, k$, we have that $n_{1}(v)>n_{2}(v)$ and this completes the proof of the lemma.

Proof of Theorem 6. As given by Lemma 1, consider an equipartition of $V(D)$ into $V(D)=X \cup Y$ such that $\left|\left\{v \in V(D): \operatorname{deg}(v, B(X, Y)) \geqslant \frac{1}{3} n\right\}\right|>\frac{n}{2}$. Let $Z=\left\{v \in V(D): \operatorname{deg}(v, B(X, Y)) \geqslant \frac{1}{3} n\right\}$ and let $X^{*}=X \cap Z$ with $\left|X^{*}\right|=k>0$, and let $Y^{*}=Y \cap Z$ with $\left|Y^{*}\right| \geqslant \frac{n}{2}-k+1$. Let $B^{+}(X, Y)$ denote the closure of $B(X, Y)$. Note that since $\delta^{0}(D) \geqslant \frac{2}{3} n$, we have that $\operatorname{deg}(v, B(X, Y))>\frac{n}{6}$ for each vertex v. Hence, $\operatorname{deg}\left(v, B^{+}(X, Y)\right)=\frac{n}{2}$ for each $v \in X^{*} \cup Y^{*}$. Therefore, $\operatorname{deg}\left(v, B^{+}(X, Y)\right) \geqslant \frac{n}{2}-k+1$ for each $v \in X$ and $\operatorname{deg}\left(v, B^{+}(X, Y)\right) \geqslant k$ for each $v \in Y$. Now, Theorem 10 implies that $B^{+}(X, Y)$ contains a Hamilton cycle and hence $B(X, Y)$ contains a Hamilton cycle. This in turn implies that D contains an anti-directed Hamilton cycle.

3 Proofs of Theorems 7, 8 and 9

In [1] the following Type 1 reduction was used to prove Theorem 7.

Type 1 reduction. Let D be a directed graph and let $V(D)=P \cup Q$ be a partition of $V(D)$. Let p and p^{\prime} be distinct vertices in P and let $q \in Q$ such that $p q \in A(D)$ and $q p^{\prime} \in A(D)$. A Type 1 reduction applied to D with respect to the vertices p, q, and p^{\prime} produces a directed graph D_{1} from D with $V\left(D_{1}\right)=\left(V(D)-\left\{p, q, p^{\prime}\right\}\right) \cup\left\{q_{1}\right\}$ and with $E\left(D_{1}\right)$ obtained from $A(D)$ as follows: Delete arcs $v p \in A(D)$ for each $v \in V(D)$, delete $\operatorname{arcs} p^{\prime} v \in A(D)$ for each $v \in V(D)$, delete all arcs incident on q, replace arc $p v \in A(D)$ by an arc $q_{1} v$ for each $v \in V(D)$, and, replace arc $v p^{\prime} \in A(D)$ by an arc $v q_{1}$ for each $v \in V(D)$. Let $P_{1}=P-\left\{p, p^{\prime}\right\}$ and $Q_{1}=(Q-\{q\}) \cup\left\{q_{1}\right\}$. Clearly, if D_{1} contains a $\left(P_{1}, Q_{1}\right)$ vertex-oriented Hamilton cycle then D contains a (P, Q) vertex-oriented Hamilton cycle that includes the arcs $p q$ and $q p^{\prime}$.

For the sake of completeness we include the proof of Theorem 7 here.
Proof of Theorem 7. If $j=0$, then $P=\emptyset$ and $\delta^{0}(D) \geqslant \frac{n}{2}$. Theorem 2 implies that D contains a directed Hamilton cycle which is a $(\emptyset, V(D))$ vertex-oriented Hamilton cycle in D. Now suppose that $j \geqslant 1$. Let p and p^{\prime} be distinct vertices in P. It is easy to see that there exists $q \in Q$ such that $p q \in A(D)$ and $q p^{\prime} \in A(D)$. We now apply a Type 1 reduction to D with respect to the vertices p, q, and p^{\prime} to obtain the directed graph D_{1} with partition of $V\left(D_{1}\right)$ into $V\left(D_{1}\right)=P_{1} \cup Q_{1}$, where $P_{1}=P-\left\{p, p^{\prime}\right\}$ and $Q_{1}=(Q-\{q\}) \cup\left\{q_{1}\right\}$. Now, $\left|V\left(D_{1}\right)\right|=n-2,\left|P_{1}\right|=2 j-2$, and since $\delta^{0}(D) \geqslant \frac{n}{2}+j$ we have that $\delta^{0}\left(D_{1}\right) \geqslant\left(\frac{n}{2}+j\right)-2=\frac{n-2}{2}+\frac{2 j-2}{2}$. So, we can apply a Type 1 reduction to D_{1} to get the directed graph D_{2} with partition $V\left(D_{2}\right)$ into $V\left(D_{2}\right)=P_{2} \cup Q_{2}$, where P_{2} and Q_{2} are obtained from P_{1} and Q_{1} in a manner similar to the one by which P_{1} and Q_{1} were obtained from P and Q. Iterating this procedure a total of j times yields a directed graph D_{j} with $P_{j}=\emptyset$ and $Q_{j}=V\left(D_{j}\right)$ with $\left|V\left(D_{j}\right)\right|=n-2 j$ and $\delta^{0}\left(D_{j}\right) \geqslant \frac{n}{2}+j-2 j=\frac{n-2 j}{2}$. Now, Theorem 2 implies that D_{j} contains a directed Hamilton cycle which in turn implies that D contains a (P, Q) vertex-oriented Hamilton cycle.

To prove Theorems 8 and 9 we will use the following Type 2 reduction.
Type 2 reduction. Let D be a directed graph and let $V(D)=P \cup Q$ be a partition of $V(D)$. Let p and p^{\prime} be distinct vertices in P with $p p^{\prime} \in A(D)$. A Type 2 reduction applied to D with respect to the vertices p and p^{\prime} produces a directed graph D_{2} from D with $V\left(D_{2}\right)=\left(V(D)-\left\{p, p^{\prime}\right\}\right) \cup\left\{q_{2}\right\}$ and with $E\left(D_{2}\right)$ obtained from $A(D)$ as follows: Delete $\operatorname{arcs} v p \in A(D)$ for each $v \in V(D)$, delete $\operatorname{arcs} p^{\prime} v \in A(D)$ for each $v \in V(D)$, replace arc $p v \in A(D)$ by an arc $q_{2} v$ for each $v \in V(D)$, and, replace arc $v p^{\prime} \in A(D)$ by an arc $v q_{2}$ for each $v \in V(D)$. Let $P_{2}=P-\left\{p, p^{\prime}\right\}$ and $Q_{2}=Q \cup\left\{q_{2}\right\}$. Clearly, if D_{2} contains a (P_{2}, Q_{2}) vertex-oriented Hamilton cycle then D contains a (P, Q) vertex-oriented Hamilton cycle that includes the arc $p p^{\prime}$.

Proof of Theorem 8. Let D be a directed graph of order n. Let $V(D)=P \cup Q$ be a partition of $V(D)$ with $|P|=2 j \geqslant \frac{2}{3} n$ for some integer $j \geqslant 0$. Let $D[P]$ be the directed subgraph of D induced by vertices in P, and let $G(P)$ be the simple graph
underlying $D[P]$. Since $\delta^{0}(D) \geqslant \frac{n}{2}+\frac{j}{2}, 2 j \geqslant \frac{2}{3} n$, and, $|Q|=n-2 j$, we have that $\delta(G(P)) \geqslant\left(\frac{n}{2}+\frac{j}{2}\right)-(n-2 j) \geqslant j$. Hence, Theorem 1 implies that $G(P)$ contains a Hamilton cycle and hence a perfect matching M. Let $\left(p_{i}, p_{i}^{\prime}\right), i=1,2, \ldots, j$ be the j arcs in $D[P]$ corresponding to the edges in M. We now successively apply j Type 2 reductions to D with respect to the vertices p_{i} and p_{i}^{\prime} for $i=1,2, \ldots, j$. Let D^{*} be the directed graph obtained from D after these j Type 2 reductions. Then, $\mid V\left(D^{*} \mid=n-j\right.$ and since $\delta^{0}(D) \geqslant \frac{n}{2}+\frac{j}{2}$, we have that $\delta^{0}\left(D^{*}\right) \geqslant\left(\frac{n}{2}+\frac{j}{2}\right)-j=\frac{n-j}{2}$. Now, Theorem 2 implies that D^{*} contains a directed Hamilton cycle which in turn implies that D contains a (P, Q) vertex-oriented Hamilton cycle.
We will need the following Lemma [4] in the proof of Theorem 9.
Lemma 2 [4] Let G be a graph of order n and let $\beta(G)$ be the maximum cardinality of a matching in G. Then $\beta(G) \geqslant \min \left\{\delta(G),\left\lfloor\frac{n}{2}\right\rfloor\right\}$.

Proof of Theorem 9. Let D be a directed graph of order n. Let $V(D)=P \cup Q$ be a partition of $V(D)$ with $|P|=2 j$ for some integer $j \geqslant 0$ and with $\frac{1}{3} n \leqslant 2 j \leqslant \frac{2}{3} n$. Let $2 j=\frac{1}{3} n+k, 0 \leqslant k \leqslant \frac{1}{3} n$. Let $D[P]$ be the directed subgraph of D induced by vertices in P, and let $G(P)$ be the simple graph underlying $D[P]$. Since $\delta^{0}(D) \geqslant \frac{2}{3} n$ and $|Q|=n-2 j$, we have that $\delta(G(P)) \geqslant \frac{2}{3} n-(n-2 j)=2 j-\frac{1}{3} n=k$. Since $2 j \leqslant \frac{2}{3} n$, we have that $k=2 j-\frac{1}{3} n \leqslant j=\frac{|V(G(P))|}{2}$. Lemma 2 implies that $G(P)$ contains a matching M with $|M|=\lceil k\rceil$. Let $\left(p_{i}, p_{i}^{\prime}\right), i=1,2, \ldots,\lceil k\rceil$ be the $\lceil k\rceil \operatorname{arcs}$ in $D[P]$ corresponding to the edges in M. We now successively apply $\lceil k\rceil$ Type 2 reductions to D with respect to the vertices p_{i} and p_{i}^{\prime} for $i=1,2, \ldots,\lceil k\rceil$. Let D^{*} be the directed graph obtained from D after these $\lceil k\rceil$ Type 2 reductions. Then, $\left\lvert\, V\left(D^{*} \mid=n-\lceil k\rceil\right.$ and since $\delta^{0}(D) \geqslant \frac{2}{3} n$, we have that \right. $\delta\left(D^{*}\right) \geqslant \frac{2}{3} n-\lceil k\rceil$. Let $P^{*}=P-\cup_{i=1}^{\lceil k\rceil}\left\{p_{i}\right\}-\cup_{i=1}^{\lceil k\rceil}\left\{p_{i}^{\prime}\right\}$ and let $Q^{*}=V\left(D^{*}\right)-P^{*}$. We have that $\left|P^{*}\right|=2 j-2\lceil k\rceil=\frac{1}{3} n+k-2\lceil k\rceil$. Hence, $\delta\left(D^{*}\right) \geqslant \frac{2}{3} n-\lceil k\rceil \geqslant \frac{1}{2}\left|V\left(D^{*}\right)\right|+\frac{1}{2}\left|P^{*}\right|$. Now, Theorem 7 implies that D^{*} contains a $\left(P^{*}, Q^{*}\right)$ vertex-oriented Hamilton cycle which in turn implies that D contains a (P, Q) vertex-oriented Hamilton cycle.

4 Conclusion

We summarize the results given in this paper as follows. Let D be a directed graph of order n and let $V(D)=P \cup Q$ be a partition of $V(D)$ with $|P|=p$, and p being even. By Theorems 7, 8 , and 9 , with $f(n, p)$ as defined below, if $\delta^{0}(D) \geqslant f(n, p)$ then D contains a (P, Q) vertex-oriented Hamilton cycle.

$$
f(n, p)= \begin{cases}\frac{1}{2} n+\frac{1}{2} p, & \text { if } 0 \leqslant p \leqslant \frac{1}{3} n \\ \frac{2}{3} n, & \text { if } \frac{1}{3} n \leqslant p \leqslant \frac{2}{3} n \\ \frac{1}{2} n+\frac{1}{4} p, & \text { if } \frac{2}{3} n \leqslant p \leqslant n\end{cases}
$$

In the case when $p=n$, we can do better than the previous statement promises. Theorem 6 gives us that $f(n, p)=\frac{2}{3} n$ if $p=n$, thus, it is natural to expect that the lower bounds
on $\delta^{0}(D)$ that guarantee a (P, Q) vertex-oriented Hamilton cycle can be significantly improved when p is relatively large.

References

[1] K. N. Badheka, M. J. Plantholt, and S. K. Tipnis, On a well-spread halving of directed multigraphs, Ars Combinatoria 83 (2007) 257-265.
[2] J.A. Bondy and U.S.R. Murty, Graph Theory, Springer, GTM 244 (2008).
[3] Dirac G.A., Some theorems on abstract graphs, Proc. London Math. Soc. 2 (1952) 69-81.
[4] P. Erdös and L. Pósa, Publ. Math. Debrecen 9 (1962) 3-12.
[5] F. Harary, Graph Theory, Addison-Wesley, Reading, MA(1969).
[6] A. Ghouila-Houri, Une condition suffisante d'existence d'un circuit Hamiltonien, C.R. Acad. Sci. Paris 156 (1960) 495-497.
[7] D.D. Grant, Anti-directed Hamilton cycles in digraphs, Ars Combinatoria 10 (1980) 205-209.
[8] R. Häggkvist and A. Thomason, Oriented Hamilton cycles in digraphs, J. of Graph Theory, 19, No. 4, (1995) 471-479.
[9] R. Häggkvist and A. Thomason, Oriented hamilton cycles in oriented graphs, Combinatorics, geometry and probability Cambridge University Press, Cambridge 1997, MR 1476456.
[10] Mao-cheng Cai, A counterexample to a conjecture of Grant, Discrete Mathematics 44 (1983) 111.
[11] J. Moon and L. Moser, On Hamiltonian bipartite graphs, Israel J. Math. 1 (1963) 163-165.

