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Abstract

In this study, we deal with the conjecture given in [R. Keskin, Suborbital graph
for the normalizer of Γ0(m), European Journal of Combinatorics 27 (2006) 193-
206.], that when the normalizer of Γ0(N) acts transitively on Q ∪ {∞}, any circuit
in the suborbital graph G(∞, u/n) for the normalizer of Γ0(N), is of the form

v → T (v) → T 2(v) → · · · → T k−1(v) → v,

where n > 1, v ∈ Q ∪ {∞} and T is an elliptic mapping of order k in the normalizer
of Γ0(N).

1. Introduction

Let N be a positive integer and let N (Γ0(N)) be the normalizer of Γ0(N) in PSL(2, R).
The normalizer N (Γ0(N)) was studied for the first time by Lehner and Newman in
[10]. The correct normalizer was determined by Atkin and Lehner in [3]. A complete
description of the elements of N (Γ0(N)) is given in [14]. Especially, a necessary and
sufficient condition for N (Γ0(N)) to act transitively on the set Q̂ = Q ∪ {∞} of the
cusps of N (Γ0(N)) was given in [2] . If we represent the elements of N (Γ0(N)) by the
associated matrices, then the normalizer consists exactly of the matrices

(

ae b/h
cN/h de

)

where e | (N/h2) such that (e, (N/h2)/e) = 1 and h is the largest divisor of 24 for which
h2|N with the understanding that the determinant of the matrix is e > 0. If e | N and
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(e, N/e) = 1, we represent this as e || N and we say that e is an exact divisor of N . Thus
we have

N (Γ0(N)) =

{

A =

(

a
√

q b/h
√

q
cN/h

√
q d

√
q

)

: det A = 1, q || (N/h2); a, b, c, d ∈ Z

}

.

In [9], it was shown that when n > 1 and m is a square-free positive integer, any
circuit in the suborbital graph G(∞, u/n) for N(Γ0(m)) is of the form

v → T (v) → T 2(v) → T 3(v) → · · · → T k−1(v) → v

for a unique elliptic mapping T ∈ N(Γ0(m)) of order k and for some v ∈ Q̂. After that it
was conjectured that the same is true when N(Γ0(m)) acts transitively on Q̂(See section
2, for the definition of suborbital graph.). In this paper, we deal with this conjecture.
Before discussing this conjecture we also investigate suborbital graphs for some Hecke
groups, which are conjugate to N(Γ0(m)). Moreover, we give simple and different proofs
of some known theorems for the sake of completeness.

2. The Action of N(Γ0(N)) on Q̂

Let N be a natural number and let

Γ+

0 (N) =

{

A =

(

a
√

q b/
√

q
cN/

√
q d

√
q

)

: det A = 1, 1 6 q, q || N ; a, b, c, d ∈ Z

}

.

Then Γ+

0 (N) is a subgroup of the normalizer of Γ0(N). Moreover, any element of Γ+

0 (N) is
an Atkin-Lehner involution of Γ0(N). Recall that an Atkin-Lehner involution wq of Γ0(N)
is an element of determinant 1 of the form

wq =

(

a
√

q b/
√

q
cN/

√
q d

√
q

)

for some exact divisor q of N. If h = 1, then Γ+

0 (N) is equal to N (Γ0(N)).
Let m = N/h2. Then, it is well-known and easy to see that

N (Γ0(N)) =

(

1/
√

h 0

0
√

h

)

Γ+

0 (m)

(

1/
√

h 0

0
√

h

)−1

.

We will use this fact in the subsequent theorems.

Theorem 2.1. Γ+

0 (N) acts transitively on the set Q̂ = Q ∪ {∞} if and only if N is a

square-free positive integer.

Proof. Let Γ+

0 (N) act transitively on the set Q̂ and assume that N is not a square-free
positive integer. Then N = k2m for some k > 1. Since Γ+

0 (N) acts transitively on Q̂,
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there exists some T ∈ Γ+

0 (N) satisfying T (∞) = 1/km. Since T ∈ Γ+

0 (N) , there exists
some q || N such that

T =

(

a
√

q b/
√

q
cN/

√
q d

√
q

)

where adq − bcN/q = 1.

Then (a
√

q)/(cN/
√

q) = 1/km, i.e.,
a

cN/q
= 1/km. Since (a, cN/q) = 1, a = ±1 and

cN/q = ±km. It follows from N = k2m, ck2m = ±kmq that q = ±kc with (q, c) = 1. So
we have

1 = (q, c) = (±kc, c) = |c| (±k, 1) = |c| .
Thus c = ±1 and q = ±kc = k. Since q is an exact divisor of N , (q, N/q) = 1. Then it
follows that k = (k, km) = (k, N/k) = (q, N/q) = 1, which contradicts our assumption
that k > 1. Thus N is a square-free positive integer.

Now suppose that N is a square-free positive integer. Let k/s ∈ Q̂ with (k, s) = 1 and
q = (s, N) . Then s = s∗q for some integer s∗. Since N is square-free, (s, N/q) = 1. Thus we
have (s, kN/q) = 1. Therefore there exist two integers x and y such that sx−(N/q) ky = 1.
Let

T (z) =
x
√

qz + k
√

q
(

yN/
√

q
)

z + s∗
√

q
.

Then T ∈ Γ+

0 (N) and T (0) = k/s∗q = k/s. Thus the proof follows.

Now we can give the following theorem.

Theorem 2.2. Let m = N/h2. Then N (Γ0(N)) acts transitively on the set Q̂ if and only

if Γ+

0 (m) acts transitively on the set Q̂.

Proof. Since

N (Γ0(N)) =

(

1/
√

h 0

0
√

h

)

Γ+

0 (m)

(

1/
√

h 0

0
√

h

)−1

,

the proof follows.

The following theorem is proved in [2]. We will present a different proof.

Theorem 2.3. Let N have prime power decomposition 2α13α2pα3

3 ....pαr

r . Then N (Γ0(N))
acts transitively on Q̂ if and only if α1 6 7, α2 6 3, αi 6 1, i = 3, 4, ..., r.

Proof. Let m = N/h2 and assume that N (Γ0(N)) acts transitively on Q̂. Then, in
view of the above theorem Γ+

0 (m) acts transitively on Q̂. Thus m is a square-free positive
integer according to Theorem2.1. Let m = 2k13k2pα3

3 ....pαr

r with ki, αi ∈ {0, 1} . Since h is
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the largest divisor of 24 for which h2 | N , then h = 2t13t2 for some integers t1 and t2 such
that 0 6 t1 6 3 and 0 6 t2 6 1. Thus we have

N = mh2 = 2k1+2t13k2+2t2pα3

3 ....pαr

r = 2α13α2pα3

3 ....pαr

r ,

where α1 = k1 + 2t1, α2 = k2 + 2t2. Hence we see that

α1 = k1 + 2t1 6 1 + 2.3 = 7 and α2 = k2 + 2t2 6 1 + 2.1 = 3.

Now suppose that N = 2α13α2pα3

3 ....pαr

r , where α1 6 7, α2 6 3, αi 6 1 for i = 3, 4, ..., r.
Dividing α1 and α2 by 2 we get,

α1 = 2t1 + r1, 0 6 r1 6 1

α2 = 2t2 + r2, 0 6 r2 6 1.

Since α1 6 7, α2 6 3, we see that 0 6 t1 6 3 and 0 6 t2 6 1. This gives

N = 22t132t22r13r2pα3

3 ....pαr

r =
(

2t13t2
)2

2r13r2pα3

3 ....pαr

r .

Let h = 2t13t2 with 0 6 t1 6 3, 0 6 t2 6 1. Then h is the largest divisor of 24 such that
h2 divides N. Let m = N/h2 = 2r13r2pα3

3 ....pαr

r . Then it is clear that m is a square-free
positive integer. Thus, by Theorem2.1, Γ+

0 (m) acts transitively on Q̂, and it follows that
N (Γ0(N)) acts transitively on Q̂ by Theorem2.2. So the proof is completed.

3. Suborbital Graphs For N (Γ0(N))

Let (G, X) be a transitive permutation group. Then G acts on X × X by

g : (α, β) → (g (α) , g (β)) , (g ∈ G, α, β ∈ X) .

The orbits of this action are called suborbitals of G. The suborbital containing (α, β) is
denoted by O(α, β). From O(α, β) we can form a suborbital graph G(α, β) whose vertices
are the elements of X, and there is an edge from γ to δ if (γ, δ) ∈ O(α, β). If there is an
edge γ to δ, we will represent this by γ → δ. Briefly, there is an edge γ → δ in G(α, β)
iff there exists T ∈ G such that T (α) = γ and T (β) = δ. If α = β, then O(α, β) is the
diagonal of X ×X and G(α, β) is said to be a trivial suborbital graph. We will interested
in non-trivial suborbital graph. Since G acts transitively on X, any suborbital graph is
equal to G(λ0, λ) for a fixed λ0.

Let G(α, β) be a suborbital graph and let k > 3 be a natural number. By a circuit of
the length k, we mean different k vertices v0, v1, ..., vk = v0 such that v0 → v1 is an edge
in the graph G(α, β) and for 1 6 r 6 k − 1, either vr → vr+1 or vr+1 → vr is an edge in
the graph G(α, β). Let G have an element T of finite order k > 3. It can be seen that if
α 6= T (α), then

α → T (α) → T 2(α) → · · · → T k−1(α) → α

is a circuit of the length k in the graph G(α, T (α)).
We now investigate suborbital graphs for N(Γ0(N)). If N(Γ0(N)) acts transitively on

Q̂, then any non-trivial suborbital graph is equal to G(∞, u/n) for some u/n ∈ Q. We
give the following theorem from [9].
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Theorem 3.1. Let m be a square-free positive integer and let G(∞, u/n) be suborbital

graph for N(Γ0(m)). Then any circuit in G(∞, u/n) is of the form

v → T (v) → T 2(v) → T 3(v) → · · · → T k−1(v) → v

for a unique elliptic mapping T ∈ N(Γ0(m)) of order k and for some v ∈ Q̂ where n > 1
and (u, n) = 1.

Unless n > 1, the above theorem may not be correct. Before giving the examples, we
give some lemmas and theorems for the graph G(∞, 1). The following lemma appears in
[9] as Corollary 1.

Lemma 1. Let m be a square-free positive integer and let G(∞, 1) be suborbital graph

for N(Γ0(m)). Then, r/s → x/y is an edge in G(∞, 1) if and only if ry − sx = ±1 and

q|s, (m/q)|y for some q|m.

Let m be a square-free positive integer and let G(∞, 1) be suborbital graph for

N(Γ0(m)). If r/s → x/y is an edge in G(∞, 1), then there exists A ∈ N(Γ0(m)) such
that A(∞) = r/s and A(1) = x/y. Let

T =

( −√
m m+1√

m

−√
m

√
m

)

.

Then T (∞) = 1 and T (1) = ∞. Thus AT (∞) = A(1) = x/y and AT (1) = A(∞) = r/s,
and so x/y → r/s is an edge in G(∞, 1). If we represent the edges of G(∞, 1) as hyperbolic
geodesics in the upper-half plane U = {z ∈ C : Imz > 0}, then no edges of G(∞, 1) cross
in U(See [9]). Using these facts and the above lemma, we can give the following theorem.

Theorem 3.2. Let m be a square-free positive integer. A circuit of minimal length in

the graph G(∞, 1) for N (Γ0(m)) is of the form

v → S(v) → S2(v) → S3(v) → · · · → Sk−1(v) → v

for an elliptic mapping S ∈ N (Γ0(m)) and for some v ∈ Q̂ . If m > 5, then G(∞, 1) does

not contain any circuits.

Proof. Let
w0 → w1 → w2 → w3 → · · · → wk−2 → wk−1 → w0

be a circuit of the minimal length in G(∞, 1). Then

A (∞) = w0 , A (1) = w1

for some A ∈ N (Γ0(m)). By applying the mapping A−1 to vertices of the circuit, we
obtain the following circuit,

∞ → 1 → A−1(w2) → · · · → A−1(wk−2) → A−1(wk−1) → ∞.
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Since no edges of G(∞, 1) cross in the upper-half plane, either

1 < A−1(w2) < · · · < A−1(wk−2) < A−1(wk−1)

or
1 > A−1(w2) > · · · > A−1(wk−2) > A−1(wk−1).

If r/s → x/y is an edge in the graph G(∞, 1), it can be shown that (2− r/s) → (2−x/y)
is an edge in the graph G(∞, 1). To see this, suppose that r/s → x/y is an edge in
G(∞, 1). Then there exists A ∈ N (Γ0(m)) such that A(∞) = r/s and A(1) = x/y.
Let Ψ(z) = 2 − z. Then it follows that ΨAΨ ∈ N (Γ0(m)) , ΨAΨ(∞) = 2 − r/s, and
ΨAΨ(1) = 2−x/y. Thus (2−r/s) → (2−x/y) is an edge in the graph G(∞, 1). Therefore
we may suppose that

1 < A−1(w2) < · · · < A−1(wk−2) < A−1(wk−1).

Let v0 = ∞, v1 = 1, vk−1 = 2, and vj = A−1(wj) for 2 6 j 6 k − 1. Then

v0 → v1 → v2 → · · · → vk−2 → vk−1 → v0

is a circuit of the minimal length. Let vk−1 = x/y. Since x/y → ∞ =
1

0
, we see that

x.0−y.1 = ∓1 and therefore y = 1. That is, vk−1 = x. Since 2 → ∞ is an edge in G(∞, 1)
and no edges of the circuit cross in the upper-half plane, we see that vk−1 = x = 2. Since
the circuit is of minimal length and vj → vj+1 is an edge in the circuit, vj+1 must be the
largest vertex greater than vj , which is adjacent to vj . A simple computation shows that
v2 = (m + 1)/m and vk−2 = (2m − 1)/m. Let

T =

( −√
m 2m+1√

m

−√
m 2

√
m

)

.

Then T ∈ N (Γ0(m)) and

T (x/y) =
−m(x/y) + 2m + 1

−m(x/y) + 2m
.

Thus it follows that for 1 < x/y < (2m− 1)/m, we have 1 < x/y < 2 and x/y < T (x/y).
Moreover, T (∞) = 1, T (1) = (m + 1)/m, T ((2m − 1)/m) = 2, and T (2) = ∞. That
is, T (v0) = v1, T (v1) = v2, T (vk−2) = vk−1, and T (vk−1) = ∞ = v0. By applying the
mapping T to the vertices of the circuit

v0 → v1 → v2 → · · · → vk−2 → vk−1 → v0,

we get the circuit

T (v0) → T (v1) → T (v2) → · · · → T (vk−2) → T (vk−1) → T (v0).
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That is, we obtain the circuit

v1 → v2 → T (v2) → · · · → T (vk−2) → v0 → v1.

Therefore
∞ → 1 → T (v1) → · · · → T (vk−3) → 2 → ∞

is a circuit of length k, whose rational vertices lie between 1 and 2. It follows that

∞ → 1 → v2 → · · · → vk−2 → 2 → ∞

and
∞ → 1 → T (v1) → · · · → T (vk−3) → 2 → ∞

are the same circuits. This is illustrated in Figure 1 and Figure 2.

Thus v3 = T (v2), v4 = T (v3), ..., vk−2 = T (vk−3). Since

v1 = T (v0), v2 = T (v1), ..., vk−1 = T (vk−2),

we see that T k(v0) = v0, T k(v1) = v1, and T k(v2) = v2. Therefore T k = I and thus T is
an elliptic mapping. Moreover, we get vj = T j(∞). Using wj = A(vj), and ∞ = A−1(w0),
we see that the circuit

w0 → w1 → w2 → · · · → wk−2 → wk−1 → w0

is equal to the circuit

w0 → ATA−1(w0) → AT 2A−1(w0) → · · · → AT k−1A−1(w0) → w0.
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If we take S = ATA−1, then S is an elliptic mapping and thus the proof follows. As T is
an elliptic mapping, we see that m 6 3. Thus, if m > 5, then the graph G(∞, 1) contains
no circuits.

Taking m = 3, we get

T =

(

−
√

3 7/
√

3

−
√

3 2
√

3

)

and therefore ∞ → T (∞) → T 2(∞) → T 3(∞) → T 4(∞) → T 5(∞) → ∞ is a circuit in
G(∞, 1). That is, we get the circuit

∞ → 1 → 4/3 → 3/2 → 5/3 → 2 → ∞.

If we apply the mapping Ψ(z) = 2− z, to the vertices of the above circuit, we obtain the
circuit ∞ → 0 → 1/3 → 1/2 → 2/3 → 1 → ∞, which is the same circuit ∞ → S(∞) →
S2(∞) → S3(∞) → S4(∞) → S5(∞) → ∞ for the mapping

S = ΨTΨ =

( √
3 −1/

√
3√

3 0

)

.

Therefore ∞ → 0 → 1/3 → 1/2 → 2/3 → 1 → 4/3 → 3/2 → 5/3 → 2 → ∞ is a circuit
of length 10. This circuit is illustrated in Figure 3. Thus we obtain many circuits using
the same argument.

Let r be an odd natural number. By using Lemma1, we see that

∞ → 1 → 1/2 → · · · → 1/k → 1/(k + 1) → · · · → 1/(r − 1) → 0 → ∞

is a circuit of length r + 1 in the graph G(∞, 1) for N(Γ0(2)). In fact, the mapping

T =

(

1 −1
r − 1 2 − r

)

is in N(Γ0(2)) and T (∞) = 1

r−1
, T (1) = 0. Therefore 1

r−1
→ 0 is an edge in G(∞, 1).

Moreover, if k is an odd natural number, then

T =

( √
2 −1/

√
2√

2k
√

2(1−k
2

)

)

the electronic journal of combinatorics 16 (2009), #R116 8



is in N(Γ0(2)) and T (∞) = 1

k
, T (1) = 1

k+1
. If k is an even natural number, then

S =

(

1 0
k 1

)

is in N(Γ0(2)) and S(∞) = 1

k
, S(1) = 1

k+1
. This shows that 1

k
→ 1

k+1
is an edge in G(∞, 1).

Since, for the mapping

A =

(

0 −1/
√

2√
2 −

√
2

)

,

we have A ∈ N(Γ0(2)), A(∞) = 0 and A(1) = ∞, we see that 0 → ∞ is an edge in

G(∞, 1). Thus

∞ → 1 → 1/2 → · · · → 1/k → 1/(k + 1) → · · · → 1/(r − 1) → 0 → ∞

is a circuit of the length r + 1 in the graph G(∞, 1).

Lemma 2. Let S ∈ N (Γ0(N)) and let N (Γ0(N)) act transitively on Q̂. If S(v) = v
and S(w) = w for different v and w in Q̂, then S = I. In particular, if S(v) = T (v) and

S(w) = T (w) for T ∈ N (Γ0(N)), then S = T.

Proof. Since N (Γ0(N)) acts transitively on Q̂, there exists A ∈ N (Γ0(N)) such that
A(∞) = v. Hence (A−1SA)(∞) = ∞ and (A−1SA)(A−1(w)) = A−1(w). Since v 6= w, we
see that A−1(w) 6= A−1(v) = ∞. Therefore, A−1SA has two different fixed points. Since
(A−1SA)(∞) = ∞ and A−1SA ∈ N (Γ0(N)) ,

A−1SA =

(

1 b/h
0 1

)

for some integer b. If b 6= 0, then A−1SA is a parabolic mapping, which has two different
fixed points. This is a contradiction. Therefore b = 0 and thus A−1SA = I, which implies
that S = I. Now assume that S(v) = T (v) and S(w) = T (w). Then (S−1T )(v) = v and
(S−1T )(w) = w. Thus the proof follows.

Lemma 3. Let N (Γ0(N)) acts transitively on Q̂ and let S, T ∈ N (Γ0(N)) . If

v → S(v) → S2(v) → S3(v) → · · · → Sk−1(v) → v

and

v → T (v) → T 2(v) → T 3(v) → · · · → T k−1(v) → v

are the same circuits in G(∞, u/n), then T = S.
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Proof. From the hypothesis, we get

S(v) = T (v), S2(v) = T 2(v), ...., Sk−1(v) = T k−1(v).

Since S(v) = T (v), S2(v) = T 2(v), it follows that (S−1T )(v) = v and S(v) = S−1(T 2(v)) =
(S−1T )(T (v)) = (S−1T )(S(v)). Then according to the above lemma, we see that S−1T =
I, which implies that S = T .

Let n > 1 and (u, n) = 1. Then by using Theorem3.1, it can be shown that if

v → T (v) → T 2(v) → T 3(v) → · · · → T k−1(v) → v

is a circuit in the graph G(∞, u/n) for N (Γ0(m)), then T is an elliptic mapping of order k
in N (Γ0(m)). The following theorem shows that the same is true for the graph G(∞, 1).

Theorem 3.3. Let m be a square-free positive integer. If any circuit in the graph G(∞, 1)
for N (Γ0(m)) is of the form

v → T (v) → T 2(v) → T 3(v) → · · · → T k−1(v) → v,

then T is an elliptic mapping of order k.

Proof. Suppose that

v → T (v) → T 2(v) → T 3(v) → · · · → T k−1(v) → v

is a circuit in G(∞, 1). Then there is a mapping A ∈ N (Γ0(m)) such that A(∞) = v and
A(1) = T (v). If we apply A−1 to the vertices of the above circuit, we obtain the circuit

A−1 (v) → A−1(T (v)) → A−1(T 2 (v)) → · · · → A−1(T k−1 (v)) → A−1 (v) .

Since A(∞) = v, we get

∞ →
(

A−1TA
)

(∞) →
(

A−1T 2A
)

(∞) → · · · →
(

A−1T k−1A
)

(∞) → ∞.

Let B = A−1TA. Then the above circuit is equal to the circuit

∞ → B (∞) → B2 (∞) → · · · → Bk−2 (∞) → Bk−1 (∞) → ∞.

Since no edges of G(∞, 1) cross in the upper half plane U = {z ∈ C : Imz > 0}, either

B (∞) < B2 (∞) < · · · < Bk−2 (∞) < Bk−1 (∞)

or
B (∞) > B2 (∞) > · · · > Bk−2 (∞) > Bk−1 (∞) .

Assume that
B (∞) < B2 (∞) < · · · < Bk−2 (∞) < Bk−1 (∞) .

Thus the circuit is as in Figure 4.
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If we apply the mapping B to the vertices of the above circuit, we obtain the circuit

B (∞) → B2 (∞) → B3 (∞) → · · · → Bk−1 (∞) → Bk (∞) → B(∞).

Now we show that Bk(∞) = ∞. Assume that Bk(∞) 6= ∞. It can be easily seen that
Bk(∞) 6= Bj(∞) for 1 6 j 6 k − 1. Then there are only two cases that we have to
deal with. The first case; if Bk−1(∞) < Bk(∞), then the edges Bk(∞) → B(∞) and
Bk−1(∞) → ∞ cross in U . The second case; if Bk(∞) < Bk−1(∞), then the edges
Bk−1(∞) → Bk(∞) and ∞ → B(∞) cross in U . So our assumption is impossible. Hence
Bk(∞) = ∞, and so Bk(B(∞)) = B(Bk(∞)) = B(∞) and similarly Bk(B2(∞)) =
B2(∞). This shows that Bk = I. Thus B is an elliptic mapping of order k. Since B is an
elliptic mapping and B = A−1TA, we see that T is an elliptic mapping. This completes
the proof .

The suborbital graph for the Hecke group H (
√

m) on the set of cusps of H (
√

m) was
investigated in [8]. H (

√
m) is the Hecke group generated by the mappings

z → z +
√

m and z → −1/z , m = 2, 3.

It is well known that H (
√

m) consists of the mappings of the following two types:

(i) T (z) =
az + b

√
m

c
√

mz + d
, a, b, c, d ∈ Z , ad − bcm = 1

(ii) T (z) =
a
√

mz + b

cz + d
√

m
, a, b, c, d ∈ Z, adm − bc = 1.

Let

M =

(

m−1/4 0
0 m1/4

)

.

Then, it can be shown that

H
(√

m
)

= M−1N (Γ0(m)) M

and the set of the cusps of H (
√

m) is

√
mQ̂ =

{

(r/s)
√

m : r/s ∈ Q̂
}

∪ {∞}

The following lemma is proved easily.
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Lemma 4. H (
√

m) acts transitively on
√

mQ̂ = {(r/s)√m : r/s ∈ Q} ∪ {∞} .

Theorem 3.4. Let m = 2, 3 and n > 1. Let G(∞, u/n) be a suborbital graph for

N (Γ0(m)) and G(∞, (u/n)
√

m) be a suborbital graph for H (
√

m) . Then the mapping

given by (r/s)
√

m → M ((r/s)
√

m) from G(∞, (u/n)
√

m) to G(∞, u/n) is an isomor-

phism.

Proof. Let G(∞, (u/n)
√

m) be the suborbital graph for H (
√

m) and suppose that
(r/s)

√
m → (x/y)

√
m is an edge in the graph G(∞, (u/n)

√
m). Then there exists T ∈

H (
√

m) such that
T (∞) = (r/s)

√
m, T (u/n) = (x/y)

√
m.

Since H (
√

m) = M−1N (Γ0(m)) M , there exists S ∈ N (Γ0(m)) such that T = M−1SM .
Then

(

M−1SM
)

(∞) = (r/s)
√

m
(

M−1SM
) (

(u/n)
√

m
)

= (x/y)
√

m.

Since M(z) = z/
√

m, we see that

S(∞) = S (M (∞)) = M
(

(r/s)
√

m
)

S(u/n) = S
(

M
(

(u/n)
√

m
))

= M
(

(x/y)
√

m
)

.

This shows that M ((r/s)
√

m) → M ((x/y)
√

m) is an edge in the suborbital graph
G(∞, u/n). Moreover, if r/s → x/y is an edge in G(∞, u/n), then M−1 (r/s) →
M−1 (x/y) is an edge in the graph G(∞, (u/n)

√
m).

Theorem 3.5. Let m = 2, 3 and (u, n) = 1 with n > 1 and let G(∞, (u/n)
√

m) be a

suborbital graph for H (
√

m) . Then any circuit in G(∞, (u/n)
√

m) is of the form

v1 → S(v1) → S2(v1) → S3(v1) → · · · → Sk−1(v1) → v1

for a unique elliptic mapping S ∈ H (
√

m) and for some v1 ∈
√

mQ̂.

Proof. Let C be a circuit in G(∞, (u/n)
√

m) and let C∗ be the circuit constructed by
applying the mapping M to the vertices of the circuit C. Then by the above theorem, C∗

is a circuit in the graph G(∞, u/n) for N (Γ0(m)). Since n > 1, by Theorem3.1, C∗ is of
the form

v → T (v) → T 2(v) → T 3(v) → · · · → T k−1(v) → v

for some v ∈ Q̂ and for a unique elliptic mapping T ∈ N (Γ0(m)) of order k. By applying
M−1 to the vertices of the circuit C∗, we see that the circuit C is in the form

M−1 (v) → M−1(T (v)) → M−1(T 2 (v)) → · · · → M−1(T k−1 (v)) → M−1 (v) .

Since v = M (M−1 (v)), we see that C is of the form

M−1 (v) → M−1(T
(

M
(

M−1 (v)
))

) → · · · → M−1(T k−1
(

M
(

M−1 (v)
))

) → M−1 (v) .
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Let v1 = M−1 (v) and S = M−1TM . Then S is an elliptic mapping of H(
√

m) of order
k and thus the circuit C is of the form

v1 → S(v1) → S2(v1) → S3(v1) → · · · → Sk−1(v1) → v1.

We now consider suborbital graphs for N (Γ0(N)) when N (Γ0(N)) acts transitively
on Q̂. Let N (Γ0(N)) acts transitively on Q̂ and let m = N/h2. Then m is a square-free
positive integer by Theorem2.2. Therefore

N
(

Γ+

0 (m)
)

= N (Γ0(m))

and thus

N (Γ0(N)) =

(

1/
√

h 0

0
√

h

)

N (Γ0(m))

(

1/
√

h 0

0
√

h

)−1

.

If we take H (z) = hz, then

N (Γ0(N)) = H−1N (Γ0(m))H.

Therefore we can give the following theorem.

Theorem 3.6. Suppose that N (Γ0(N)) acts transitively on Q̂. Let G(∞, u/n) be a sub-

orbital graph for N (Γ0(N)) and let G(∞, hu/n) be a suborbital graph for N (Γ0(m)) .
Then the mapping r/s → H (r/s) , from G(∞, u/n) to G(∞, hu/n) is an isomorphism.

Proof. The proof is exactly the same as in Theorem3.4 and is omitted.

Theorem 3.7. Suppose that N (Γ0(N)) acts transitively on Q̂ and suppose that (u, n) =
1 with n > 1. If (h, n) < n, then any circuit in the suborbital graph G(∞, u/n) for

N (Γ0(N)) is of the form

v1 → S(v1) → S2(v1) → S3(v1) → · · · → Sk−1(v1) → v1

for a unique elliptic mapping S ∈ N (Γ0(N)) of order k and for some v1 ∈ Q̂.

Proof. Let C be a circuit in G(∞, u/n) and let C∗ be the circuit constructed by applying
the mapping H to the vertices of the circuit C. Then by the above theorem, C∗ is a circuit
in the suborbital graph G(∞, hu/n) for N (Γ0(m)). Since the reduced form of hu/n is

hu/(h, n)

n/(h, n)
,

we see that n/(h, n) > 1. Then, by the Theorem3.1, C∗ is of the form

v → T (v) → T 2(v) → T 3(v) → · · · → T k−1(v) → v
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for some v ∈ Q̂ and for a unique elliptic mapping T ∈ N (Γ0(m)) of order k. By applying
H−1 to the vertices of the circuit C∗, we see that the circuit C is in the form

H−1 (v) → H−1(T (v)) → H−1(T 2 (v)) → · · · → H−1(T k−1 (v)) → H−1 (v) .

Since v = H (H−1 (v)) we see that C is of the form

H−1 (v) → H−1(T
(

H
(

H−1 (v)
))

) → · · · → H−1(T k−1
(

H
(

H−1 (v)
))

) → H−1 (v) .

Let v1 = H−1 (v) and S = H−1TH . Then S is an elliptic mapping of N (Γ0(N)) of order
k and the circuit C is of the form

v1 → S(v1) → S2(v1) → S3(v1) → · · · → Sk−1(v1) → v1.

If (h, n) = n, the above theorem may not be correct, since the graph G(∞, u/n) for
N (Γ0(N)) is isomorphic to the graph G(∞, (h/n)u) = G(∞, 1) for N (Γ0(m)) . More
generally, the following example shows this. Let N = 32 and n = 4 then h = 4. Thus it
follows that

∞ → 1/4 → 1/8 → · · · → 1/4 (r − 1) → 0 → ∞
is a circuit of length r + 1 in the graph G(∞, 1/4) for N (Γ0(32)) .

If

A =

(

a
√

q b/h
√

q
cN/h

√
q d

√
q

)

is an elliptic mapping in N (Γ0(N)), then the order of A depends on q and a + d. If
a + d = 0, then the order of A is 2. If a + d = ±1, then the order of A is equal to 3, 4 and
6 when q is 1, 2 and 3 respectively(see [2] for more details.). Using this fact we can give
the following theorem.

Theorem 3.8. Assume that N (Γ0(N)) acts transitively on Q̂. Moreover, assume that

T and S are elliptic mappings in N (Γ0(N)) of order k and r respectively. If

v → T (v) → T 2(v) → T 3(v) → · · · → T k−1(v) → v

and

w → S(w) → S2(w) → S3(w) → · · · → Sr−1(w) → w

are two circuits in G(∞, u/n), then r = k. That is, the two circuits have the same length.

Proof. Assume that

v → T (v) → T 2(v) → T 3(v) → · · · → T k−1(v) → v

and
w → S(w) → S2(w) → S3(w) → · · · → Sr−1(w) → w
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are two circuits in G(∞, u/n). Then there exist two mappings A, B ∈ N (Γ0(N)) such
that A(∞) = v, A(u/n) = T (v) and B(∞) = w, B(u/n) = S(w). Then u/n = A−1T (v) =
(A−1TA)(∞) and u/n = B−1S(w) = (B−1SB)(∞). Therefore we get (A−1TA)(∞) =
(B−1SB)(∞). Let

A−1TA =

(

a
√

q b/h
√

q
cN/h

√
q d

√
q

)

, adq − (bcN)/h2q = 1

and

B−1SB =

(

a∗
√

q∗ b∗/h
√

q∗

c∗N/h
√

q∗ d∗
√

q∗

)

, a∗d∗q∗ − (b∗c∗N)/h2q∗ = 1

Then, since (A−1TA)(∞) = (B−1SB)(∞), we obtain

a

(cN/h)/q
=

a∗

(c∗N/h)/q∗

and therefore
a

cN/h2q
=

a∗

c∗N/h2q∗
.

A simple calculation shows that q = q∗. Then it follows that A−1TA and B−1SB have
the same order and therefore T and S have the same order. That is, the two circuits have
the same length.

A circuit of length 3, 4, and 6 is called a triangle, a rectangle, and a hexagon respec-
tively. Since any elliptic mapping of N (Γ0(N)) is of order 2, 3, 4, or 6, it follows that when
(h, n) < n, G(∞, u/n) may contain only triangle, rectangle, or hexagon by Theorem3.8.

Theorem 3.9. Let m be a square-free positive integer and (u, n) = 1. Then G(∞, u/n)
contains a triangle if and only if m | n, u2 ∓ u + 1 ≡ 0 (mod n), a rectangle if and only

if 2|m, m|2n, and 2u2 ∓ 2u + 1 ≡ 0 (mod n), and a hexagon if and only if 3|m, m|3n and

3u2 ∓ 3u + 1 ≡ 0 (modn).

Proof. If n = 1, then the proof is easy. Assume that G(∞, u/n) contains a circuit when
n > 1. Then, by Theorem3.1, this circuit must be of the form

v → T (v) → T 2(v) → T 3(v) → · · · → T k−1(v) → v

for a unique elliptic mapping T of order k. Since v → T (v) is an edge in G(∞, u/n), there
exists A ∈ N (Γ0(m)) such that A(∞) = v and A(u/n) = T (v). Then (A−1TA)(∞) = u/n.
Let

A−1TA =

(

a
√

q b/
√

q
cm/

√
q d

√
q

)

, q|m, adq − (bcm)/q = 1.

Then it follows that u/n = a/(cm/q). A−1TA is an elliptic mapping, since T is an
elliptic mapping. Therefore a + d = ∓1, since the order of T is not 2. From the equalities
u/n = a/(cm/q) and a+d = ∓1, we see that qu2∓qu+1 ≡ 0 (mod n), m | qn. If the circuit
is a triangle, a rectangle, and a hexagon, then q = 1, 2, and 3 respectively. The proof
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then follows. For the other part of the theorem, assume that qu2 ∓ qu + 1 ≡ 0 (mod n),
m | qn. Then the mapping

T (z) =
−u

√
qz + (qu2 ∓ qu + 1)/n

√
q

(−nq/
√

q)z + (u ∓ 1)
√

q

is in N (Γ0(m)) and T (∞) = u/n. The order of T is 3, 4 and 6, when q = 1, 2, and 3
respectively. Moreover, if we represent the order of T by k, we get the circuit

∞ → T (∞) → T 2(∞) → · · · → T k−1(∞) → ∞

in G(∞, u/n), as required.

Corollary 1. Let m be a square-free positive integer and let n > 1 with (u, n) = 1. If

the graph G(∞, u/n) for N (Γ0(m)) contains a triangle, then for any prime divisor p of

n greater than 3, we have p ≡ 1 (mod 3). If G(∞, u/n) contains a rectangle, then n is an

odd natural number and n ≡ 1 (mod 4). If G(∞, u/n) contains a hexagon, then for any

odd prime divisor p of n we have p ≡ 1 (mod 3).

Proof. Assume that G(∞, u/n) contains a triangle. Then u2 ∓ u + 1 ≡ 0 (mod n).
It follows that (2u ∓ 1)2 + 3 ≡ 0 (mod n). Thus if p|n and p > 3, then (2u ∓ 1)2 +
3 ≡ 0 (mod p). It follows that p ≡ 1 (mod 3). If G(∞, u/n) contains a rectangle, then
2u2∓2u+1 ≡ 0 (modn). This shows that n is an odd natural number and (2u + 1)2+1 ≡
0 (mod n). Then for any prime divisor of n, we have (2u ∓ 1)2 + 1 ≡ 0 (mod p) and
therefore p ≡ 1 (mod 4). Therefore n ≡ 1 (mod 4). If G(∞, u/n) contains a hexagon, then
3u2 ∓ 3u + 1 ≡ 0 (mod n). This shows that 3 ∤ n and 36u2 ∓ 36u + 12 ≡ 0 (modn). That
is, (6u ∓ 3)2 + 3 ≡ 0 (mod n). Let p be an odd prime divisor of n. Then (6u ∓ 3)2 + 3 ≡
0 (mod p). Thus it follows that p ≡ 1 (mod 3).

Let N (Γ0(N)) act transitively on Q̂ and assume that n > 1 and (h, n) < n. Then,
by using Theorem3.7, a necessary and sufficient condition for the graph G(∞, u/n) to
contain a triangle, a rectangle or a hexagon may be given. Because the graph G(∞, u/n)
and the graph G(∞, hu/n) for N (Γ0(m)) is isomorphic, where m = N/h2.

Corollary 2. Assume that N (Γ0(N)) acts transitively on Q̂. Then any circuit of the

minimal length in G(∞, u/n) is of the form

v → T (v) → T 2(v) → · · · → T k−1(v) → v

for a unique elliptic mapping T ∈ N (Γ0(N)) of order k and for some v ∈ Q̂. Moreover,

the graph G(∞, u/n) contains a circuit if and only if there exists an elliptic mapping T
∈ N (Γ0(N)) of order greater than 2 such that T (∞) = u/n.

Proof. By Theorem3.2, Theorem3.6, and Theorem3.7, it is seen that any circuit of the
minimal length in G(∞, u/n) is of the form

v → T (v) → T 2(v) → · · · → T k−1(v) → v
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for a unique elliptic mapping T ∈ N (Γ0(N)) and for some v ∈ Q̂. Assume that T (∞) =
u/n for some elliptic mapping of order greater than 2, then

∞ → T (∞) → T 2(∞) → · · · → T k−1(∞) → ∞

is a cicuit in G(∞, u/n), where k is the order of T . Now suppose that G(∞, u/n) contains
a circuit, then G(∞, u/n) contains a circuit of the minimal length and thus this circuit
must be of the form

v → T (v) → T 2(v) → · · · → T k−1(v) → v

for an elliptic mapping of N (Γ0(N)). Since v → T (v) is an edge in G(∞, u/n), there
exists A ∈ N (Γ0(N)) such that A(∞) = v and A(u/n) = T (v). Then it follows that
ATA−1 is an elliptic mapping and ATA−1(∞) = u/n.

If m is a square-free positive integer and G(∞, 1) is the graph for N (Γ0(m)), then it
can be seen easily that the length of any circuit is an even number. Therefore we can give
the following corollary.

Corollary 3. Let N (Γ0(N)) act transitively on Q̂. Then the length of any circuit in

G(∞, u/n) is either 3 or an even natural number.
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