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Abstract

Given a collection of matchings M = (M1,M2, . . . ,Mq) (repetitions allowed), a
matching M contained in

⋃

M is said to be s-rainbow for M if it contains repre-
sentatives from s matchings Mi (where each edge is allowed to represent just one
Mi). Formally, this means that there is a function φ : M → [q] such that e ∈ Mφ(e)

for all e ∈ M , and |Im(φ)| > s.
Let f(r, s, t) be the maximal k for which there exists a set of k matchings of size

t in some r-partite hypergraph, such that there is no s-rainbow matching of size t.
We prove that f(r, s, t) > 2r−1(s − 1), make the conjecture that equality holds

for all values of r, s and t and prove the conjecture when r = 2 or s = t = 2.
In the case r = 3, a stronger conjecture is that in a 3-partite 3-graph if all vertex

degrees in one side (say V1) are strictly larger than all vertex degrees in the other
two sides, then there exists a matching of V1. This conjecture is at the same time
also a strengthening of a famous conjecture, described below, of Ryser, Brualdi and
Stein. We prove a weaker version, in which the degrees in V1 are at least twice as
large as the degrees in the other sides. We also formulate a related conjecture on
edge colorings of 3-partite 3-graphs and prove a similarly weakened version.

1 Preliminaries

An r-graph (namely a hypergraph all of whose edges are of the same size r) is said to
be r-partite if the vertex set V (H) of H can be partitioned into sets V1, V2, . . . , Vr in
such a way that every edge in H meets each Vi at precisely one vertex. Generally, we
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shall use the names V1, . . . , Vr for the sides of an r-partite hypergraph, without further
explicit mention. (There will be one exception, in which we shall enumerate the sides
V0, V1, . . . , Vr−1.) A legal k-tuple (of vertices) is a set of vertices containing at most one
vertex from each Vi.

Given a set X of vertices in a hypergraph H we write E(X) (or EH(X) if explicit
mention of the hypergraph H is necessary) for the multiset of partial edges {e \ X |
X ⊆ e ∈ H}. For an element x we write E(x) for E({x}). We write deg(X) for |E(X)|
(repetitions counted). Given a set U of vertices, we write ∆(U) for max{deg(u) | u ∈ U}
and δ(U) for min{deg(u) | u ∈ U}.

A matching in a hypergraph H is a subset of E(H) (the edge set of H) consisting
of disjoint edges. For the sake of brevity, we shall refer to a matching of size t as a
t-matching. The maximal size of a matching in a hypergraph H is denoted by ν(H).

Let M = (M1, M2, . . . , Mq) be a collection of (possibly repeating) matchings, and let
M be a matching contained in

⋃

M. A function φ : M → [q] is called an earmarking
for M if φ(e) ∈ Mφ(e) for all e ∈ M . The pair (M, φ) is then said to be an earmarked
matching. If |Im(φ)| > s then the earmarked matching is said to be s-rainbow. If M has
an earmarking φ such that |Im(φ)| > s we say also about M by itself that it is s-rainbow.

In this article we study matchings in r-partite r-graphs, and we are concerned with
the following question: what size q of a collection of t-matchings M = (M1, M2, . . . , Mq)
in an r-partite r-graph guarantees the existence of an s-rainbow t-matching? (here t and
s are fixed parameters, s 6 t).

Definition 1.1 Let r, s, t be numbers such that s 6 t. We write f(r, s, t) for the maximal
size of a family of t-matchings in an r-partite r-uniform hypergraph, possessing no s-
rainbow t-matching.

Conjecture 1.2 f(r, s, t) = 2r−1(s− 1) for all r > 1 and for all s and t such that s 6 t.

Note that the conjectured value of f is independent of t. One direction of the conjecture
can be somewhat strengthened:

Conjecture 1.3 Let m = 2r−1(s − 1). Given matchings M1, . . . , Mm+1 in an r-partite
r-graph, where Mi is a t-matching for all i 6 m and Mm+1 consists of one edge, there
exists an s-rainbow t-matching.

2 Motivation

Like others who have studied rainbow matchings (see, e.g., [15, 16]) we are motivated by
famous conjectures of Ryser [13], Brualdi [5] and Stein [14]. To formulate them, we need
the following definitions.

A matrix is called a Latin rectangle if no two symbols in the same row or in the same
column are equal (here and below the “symbols” are the elements appearing in the cells
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of the matrix). A partial transversal (or plainly transversal) in a Latin m × n rectangle
is a set of entries, each in a different row and in a different column, and each contain-
ing a different symbol. The partial transversal is called a full transversal if it is of size
min(m, n).

Conjecture 2.1 (Ryser-Brualdi-Stein) In an n×n Latin square there exists a partial
transversal of size n − 1. If n is odd, then there exists a transversal of size n.

(Ryser conjectured the odd case, and Brualdi and Stein independently conjectured
the case of general n.) In [9] it was shown that an n × n Latin square contains a partial
transversal of size n − O(log2 n).

Forming a 3-partite 3-graph whose sides are the rows, columns and symbols, respec-
tively, and assigning to each entry in the Latin square an edge joining the appropriate
row, column and symbol, the conjecture can be restated as:

Conjecture 2.2 If in an n × n × n 3-partite 3-graph H every legal pair of vertices has
degree 1 then ν(H) > n − 1.

Here is a more general conjecture, which possibly better captures the essence of the
matter:

Conjecture 2.3 If in a 3-partite 3-graph E(x) is a matching of size |V1| for every x ∈ V1

then ν > |V1| − 1.

And even stronger -

Conjecture 2.4 If in a 3-partite 3-graph E(x) is a matching of size |V1| + 1 for every
x ∈ V1 then V1 is matchable.

Note that the condition “V1 is matchable” can also be formulated as “the match-
ings E(x), x ∈ V1, have a |V1|-rainbow |V1|-matching”. This is the connection to the
topic of the present paper. In this terminology, the conjecture says that any collection
(M1, M2, . . . , Mn) of (n+1)-matchings in a bipartite graph has an n-rainbow n-matching.

In fact, we believe that something stronger than Conjecture 2.4 is true:

Conjecture 2.5 If in a 3-partite 3-graph H with sides V1, V2, V3 we have δ(V1) > ∆(V2 ∪
V3) then ν(H) = |V1|.

There is a sharp jump here. If δ(V1) = ∆(V2 ∪V3) then it is possible that ν(H) = |V1|
2

,
as shown by any disjoint union of copies of the 4-edges hypergraph (a1, b1, c1), (a1, b2, c2),
(a2, b1, c2), (a2, b2, c1).

We can prove “half” of this conjecture:

Theorem 2.6 If δ(V1) > 2∆(V2 ∪ V3) then ν(H) = |V1|. Moreover, for every edge there
exists a matching of V1 containing e.
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The proof will use the following:

Theorem 2.7 [2] If for every subset U of V1 there holds ν(EH(U)) > 2(|U | − 1) then
there exists a matching of V1.

Proof (of Theorem 2.6) Let e be an arbitrary edge. Let H ′ be the hypergraph obtained
from H by deleting from V (H) the V1-vertex of e, and deleting all edges meeting e. We
have to show that in H ′ there exists a matching of the first side, V ′

1 := V1 \ e. We shall
show that H ′ satisfies the conditions of Theorem 2.7. Write D = ∆(V2∪V3). Let U ⊆ V ′

1 .
Then |EH(U)| > 2D|U |, and since e∩ (V2 ∪ V3) meets at most 2(D − 1) edges apart from
e itself, it follows that

|EH′(U)| > 2D|U | − 2(D − 1) > 2D(|U | − 1) (1)

(Edges may be counted with multiplicity). By König’s edge coloring theorem, which states
that the edge chromatic number of a bipartite graph is equal to the maximal degree of the
graph, EH′(U) can be partitioned into D matchings, and by (1) one of these matchings
must be of size larger than 2(|U | − 1), proving the desired condition. �

By a simple trick of duplicating all vertices in V2 ∪V3 and duplicating the V2 ∪V3 part
of each edge we can deduce another “half” version of the conjecture:

Corollary 2.8 If δ(V1) > ∆(V2 ∪ V3) then ν(H) >
|V1|
2

.

The same trick would give the following corollary of Conjecture 2.5, if indeed this
conjecture is true:

Conjecture 2.9 For k an integer, if δ(V1) > 1
k
∆(V2 ∪ V3) then ν(H) >

|V1|
k

.

3 The lower bound in Conjecture 1.2

In this section we prove:

Theorem 3.1 f(r, s, t) > 2r−1(s − 1).

Proof It is convenient in this setting to denote the sides of the r-graph under considera-
tion by V0, . . . , Vr−1. For each function p : [r− 1] → {0, 1} define a matching M(p) of size
t, whose i-th edge (1 6 i 6 t) is (ui

0, u
i
1, . . . , u

i
r−1), where ui

j = i +
∑

k6j p(k) mod t. Let

M consist of s − 1 copies of each matching M(p), p ∈ {0, 1}[r−1]. Let M be a matching
of size t contained in the union of the matchings M(p). Clearly, M is perfect, namely
it covers all vertices of the hypergraph. We claim that it is equal to some M(p). To
prove this, let e = (1, u1, . . . , ur−1) be the edge in M whose first coordinate is 1, and let
f = (2, v1, . . . , vr−1) be the edge whose first coordinate is 2. Suppose that e belongs to a
copy of M(p) and f belongs to a copy of M(q). Assume, for contradiction, that p 6= q,
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and let j be the first index such that p(j) 6= q(j). Then since uj 6= vj we have q(j) > p(j),
and thus q(j) > p(j). But then the vertex uj +1 in the j-th side of the hypergraph cannot
belong to any edge in M , contradicting the fact that M is perfect.

Continuing this way we see that all edges in M belong to the same M(p). Since there
are only s − 1 copies of M(p) in M, this means that M is not s-rainbow. �

In this example there are lots of repeated edges in the matchings. With some trepi-
dation we conjecture the following:

Conjecture 3.2 Any set of 2r−2(s− 1) + 2 matchings of size t, no two of which sharing
an edge, has an s-colored t-matching contained in its union.

In the case r = 2 the conjecture is that a set of t+1 disjoint t-matchings has a t-rainbow
matching. This is yet another generalization of the Ryser-Brualdi-Stein conjecture.

4 The case r = 2

Theorem 4.1 f(2, s, t) = 2(s − 1).

Remark 4.2 Drisko [6] essentially proved f(2, t, t) = 2(t−1), where “essentially” means
that he considered only the case in which one side of the bipartite graph is of size t.

Proof For greater transparency of the proof, we first exhibit the main idea in the special
case s = t. Namely, we first prove Drisko’s result, that f(2, t, t) = 2(t − 1). Since by
Theorem 3.1 f(2, t, t) > 2(t−1) we only have to show that f(2, t, t) 6 2(t−1). The proof
is shorter than that in [6].

Let M1, M2, . . . , M2t−1 be a family of t-matchings in a bipartite graph with sides A

and B. Let K be a k-rainbow k-matching of maximal size k. We need to show that k > t.
Assume for contradiction that k < t, and suppose w.l.o.g that the edges of K are taken
from the matchings M2t−k, M2t−k+1, . . . , M2t−1.

Write X1 = A ∩ supp(K) (here and below the support, supp(M) of a matching M

is its union), so |X1| = |K| = k < t. Since |M1| = t > |X1|, there exists some edge
e1 = {a1, b1} ∈ M1 disjoint from X1. If e1 is disjoint from supp(K), then adding it to
K results in a (k + 1)-rainbow (k + 1)-matching, contrary to the maximality assumption
on k. Thus we may assume that e1 is incident with an edge f1 = {b1, c1} ∈ K. Write
X2 = (X1 ∪ {b1}) \ {c1}. Then |X2| = |X1| = k.

Since |M2| = t > k, there exists an edge e2 = {a2, b2} ∈ M2 disjoint from X2 (possibly
with a2 = a1 or a2 = c1). If b2 6∈ supp(K), then there exists an alternating path, whose
application to K (and earmarking the edges ei appearing in it by color i) results in a
(k + 1)-rainbow (k + 1)-matching. Thus we may assume that e2 is incident with an edge
f2 = {b2, c2} ∈ K. Write now X3 = (X2 ∪ {b2}) \ {c2}.

Continuing this way k steps, all edges of K must appear as fi, and thus in the k + 1st

step the edge ek+1 does not meet Xk+1 = supp(K) ∩ B. This yields an alternating path
resulting in a (k + 1)-rainbow (k + 1)-matching, contradicting the maximality of k.
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The proof of the general case, s 6 t, is similar, with one main difference: instead of
leaving each matching Mi after one edge, we continue choosing edges from it, until all
edges in some matching Mj represented in K have appeared as fℓ’s.

To make this idea precise, let K̂ be a k-rainbow t-matching, with maximal possible
value of k. Let φ be the appropriate earmarking function. Assuming that k < s, there
are at least s matchings Mi not represented in it, so assume that M1, . . . , Ms 6∈ Im(φ).
Let K = K̂ \ {e}, where e is an edge which is not the only one of its color. Now start
a process similar to that in the above proof, starting with M1. But after having chosen
e1 = {a1, b1} ∈ M1 disjoint from X1 = A∩ supp(K), and letting f1 = {b1, c1} be the edge
in K meeting e1, we do not necessarily switch to M2. Unless f1 is the only one of its
color in (K, φ ↾ K), we continue with M1. Namely, we choose an edge e2 = {a2, b2} ∈ M1

Disjoint from X2 = (X1∪{b1})\{c1}. If b2 6∈ supp(K) then applying the alternating path
ending at b2 gives a (k + 1)-rainbow t-matching, contradicting the maximality of k. Note
that we use here the assumption that f1 is not the only one in its color when claiming
that the obtained matching is (k + 1)-rainbow.

Thus we can assume that e2 meets at B some edge f2 = {b2, c2} ∈ K. We continue
this way, until the first time in which the set Fi = {f1, . . . , fi} satisfies Fi ⊇ φ−1(j1) for
some j1. When this happens, say at an index i = i1, we switch to M2, namely we find
an edge ei1+1 = {ai1+1, bi1+1} ∈ M2 disjoint from Xi1+1. Assuming, for contradiction,
that bi1+1 6∈ supp(K), the matching obtained from K by applying the alternating path
ending at bi1+1 is a (k + 1)-rainbow t-matching. Thus we may assume that ei1+1 meets
some edge fi1+1 ∈ K. We now continue with M2, until for some index i2 6= i1 the set
Fi2 = {f1, . . . , fi2} satisfies Fi2 ⊇ φ−1(j2) for some j2. We then switch to M3, and so on.

After k such switches all colors j represented in (K, φ) are exhausted, which means
that at the k +1st stage the edge eik+1 does not meet Xik+1 = B∩supp(K), which results
in a (k + 1)-rainbow t-matching. �

5 The case s = t = 2

Theorem 5.1 f(r, 2, 2) = 2r−1 for all r.

Proof Let Mi, i 6 q be a set of 2-matchings in an r-partite hypergraph, having no 2-
rainbow matching. For each i write Mi = {ei, fi}. Let Ai = ei for 1 6 i 6 q, Ai = fi−q

for q + 1 6 i 6 2q, and Bi = fi for 1 6 i 6 q, Bi = ei−q for q + 1 6 i 6 2q. Then
Ai ∩ Bi = ∅, while the assumption that there is no 2-rainbow matching implies that
Ai ∩ Bj 6= ∅ for all i 6= j. In [4] an upper bound was proved on the size of such a general
system (Ai, Bi) satisfying this condition. Alon [3], using a multilinear algebraic proof
of Bollobás’ theorem discovered by Lovász, proved that if the ground set is partitioned
into sets Vm such that |Ai ∩ Vm| = rm and |Bi ∩ Vm| = sm for all i and m, then the
number of pairs is at most

∏

i

(

ri+si

ri

)

. In our case, taking the sets Vm to be the sides of
the hypergraph, we have rm = sm = 1, implying that the number of pairs, namely 2q,
does not exceed 2r. Thus q 6 2r−1.
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Here is a somewhat shorter proof, due to Roy Meshulam [12]. For each edge g =
(a1, a2, . . . , ar) participating in a matching Mi define a polynomial Pg =

∏

(xi − z(ai)),
where z(ai) are numbers that are chosen to be algebraically independent. Then every
edge g ∈

⋃

Mi has a substitution ~xg of values for the variables xj , such that Pg(~xg) 6= 0
while Ph(~xg) = 0 for all edges h ∈

⋃

Mi \ {g}. To see this, simply take the other edge,
say (b1, b2, . . . , br) in the matching Mi containing g, and let ~xg = (z(b1), z(b2), . . . , z(br)).
Thus the polynomials Pg are all independent, and hence their number does not exceed
the dimension of the space of multilinear polynomials in x1, x2, . . . , xr, which is 2r. Thus,
again, 2q 6 2r, proving the desired conclusion. �

Again, a slight adaptation of the proof yields also Conjecture 1.3 for s = t = 2.

6 Edge colorings in r-partite hypergraphs

As in graphs, the edge chromatic number χe(H) of a hypergraph H is defined to be the
minimal number of matchings whose union is the entire edge set of the hypergraph. In
[7] the following generalization of König’s edge coloring theorem was conjectured:

Conjecture 6.1 In an r-partite r-graph H with maximal vertex degree ∆ there holds:
χe(H) 6 (r − 1)∆.

We propose the following stronger:

Conjecture 6.2 In an r-partite r-graph H with sides V1, . . . , Vr there holds: χe(H) 6

max(∆(V1),
∑r

i=2 ∆(Vi)).

A special case is:

Conjecture 6.3 If in a 3-partite hypergraph H it is true that δ(V1) > 2∆(V2 ∪ V3), then
χe(H) = ∆(H).

This generalizes a conjecture of Hilton [11]:

Conjecture 6.4 The cells of any m × 2m Latin rectangle can be decomposed into 2m
transversals.

The derivation of Hilton’s conjecture is done by the transformation described in Section
2. In [8] an asymptotic version of Conjecture 6.4 was proved, namely that the cells of any
m × (1 + ǫ)m Latin rectangle can be decomposed into (1 + ǫ)m transversals, for m large
enough (ǫ being any fixed positive number). Also, “half” of Conjecture 6.4 was proved
there: the cells of any m × 4m Latin rectangle can be decomposed into 4m transversals
for any m. It is interesting to note that while Hilton’s conjecture may be true for m + 1
replacing 2m, in Conjecture 6.3 the bound 2∆(V2 ∪ V3) on ∆(V1) is sharp. The example
is obtained from the 4-edges hypergraph (a1, b1, c1), (a1, b2, c2), (a2, b1, c2), (a2, b2, c1) (the
example used for the sharpness of Conjecture 2.5), with edges multiplied m

2
times, and
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dangling edges added in V1, so that the degrees in V1 are 2m−1, and ∆(V2∪V3) = m. Since
the line graph of the hypergraph (whose vertices are the edges of the hypergraph, two of
them being joined if they intersect) contains a clique of size 2m, we have χe(H) > 2m,
namely the edge chromatic number is larger than the degrees in V1.

Here we shall prove “half” of Conjecture 6.3:

Theorem 6.5 If in a 3-partite hypergraph H it is true that δ(V1) > 4∆(V2 ∪ V3), then
χe(H) = ∆(H).

Proof The proof uses an idea taken from [10]. In fact, we shall use a simplified version,
used in [1], for which an appropriate name is the “beating boys” method. Write k =
∆(V2 ∪ V3) and t = ∆(H). let f be a maximum t-coloring of the edges, namely a partial
coloring that colors a maximal number of edges. Assuming the negation of the theorem,
there exists an edge (x, y, z) not colored by f . For any vertex u denote by E(u) the set
of edges containing u. Then there exists a color not appearing among the colors given by
f to edges in E(x). Without loss of generality, we may assume that this color is 1. For
every u ∈ V1, if there exists in E(u) an edge e colored 1 by f , remove from E(u) all edges
b = (u, v, w) ∈ dom(f) (where dom(f), the domain of f , is the set of edges colored by f ,)
for which there exists some edge h = (p, q, r) such that (a) p 6= u, (b)f(h) = f(b) and (c)
h meets e. (The edge b is a “beating boy” of h, deleted just because it carries the same
color as h.) Let E ′ be the set of edges remaining after all these deletions, and let H ′ be
the hypergraph whose edge set is E ′.

Since |E(u)| > 4k for every u ∈ V1, and since every edge e = (u, v, w) meets at most
2k edges of the form (p, q, r), where p 6= u, it follows that E ′(u) > 2k for every u ∈ V1.
By Theorem 2.6 it follows that there exists in H ′ a matching M of V1, containing the
edge (x, y, z). Color all edges in M by color 1, and for every edge a = (p, q, r) colored
1 by f , if there exists an edge b = (p, v, w) ∈ M (namely, an edge in M sharing with a

its V1-vertex), re-color a by the color f(b). This produces a coloring f ′ whose domain is
larger than that of f , since (x, y, z) is colored by it. A contradiction (to the assumption
that f is not total) will be shown if we prove that f ′ is a legal coloring. Assuming it is
not, there exist two intersecting edges b = (p, v1, w1) and c = (q, v2, w2) colored by the
same color, say i. This could occur only if one of them, say b, was colored 1 by f and
it was recolored i because an edge c ∈ M ∩ E(p) was colored i. But this is impossible,
because in such a case b would have been removed from E as the “beating boy” of c. �

Acknowledgement We are indebted to Ran Ziv for a stimulating remark, and to Noga
Zewi for proving Corollary 2.8.
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