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Abstract

We provide direct proofs of product and coproduct formulae for Schur functions
where the coefficients (Littlewood–Richardson coefficients) are defined as counting
puzzles. The product formula includes a second alphabet for the Schur functions,
allowing in particular to recover formulae of [Molev–Sagan ’99] and [Knutson–Tao
’03] for factorial Schur functions. The method is based on the quantum integrability
of the underlying tiling model.
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1 Introduction

Littlewood–Richardson coefficients are important integers related to Schur functions or
equivalently to the representation theory of the general linear group; they also appear in
the cohomology of Graßmannians. Interesting combinatorial formulae for them have been
given in [11, 10]: these coefficients count puzzles, i.e. certain tilings of a triangle where
the tiles are decorated elementary triangles and rhombi. However all the proofs of this
formula are fairly indirect e.g. rely on induction.

From the mathematical physicist’s point of view, Littlewood–Richardson coefficients
provide a challenge. It is well-known [7] that Schur functions are related to (2-dimensional)
free fermions. However it is not clear how to define Littlewood–Richardson coefficients
in this framework. In fact the contruction of [10], as will be discussed here, suggests that
the right way to describes them involves interacting fermions. Interestingly, the physical
model in question has in fact been studied in the physics literature. As pointed out in [18],
it is equivalent to a model of random tilings, the square-triangle triangle model, which has
been the subject of a lot of activity [19, 8, 1]. Note that this equivalence is not particularly
useful – in order to solve the square-triangle tiling model, one usually goes back to the
model of tilings of decorated triangles and rhombi. The most important feature of this
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model for our purposes is that it is integrable: the scattering of the elementary degrees
of freedom (the aforementioned interacting fermions) is factorized and thus satisfies the
Yang–Baxter equation (with spectral parameters).

A general consequence of integrability is the existence of a commuting family of transfer
matrices that contains the original transfer matrix describing the discrete time evolution
of the system. In the case of free fermions, these transfer matrices precisely “grow”
Schur functions. Here we find in fact two families of commuting matrices [2]. It is quite
satisfying that computing their matrix elements naturally produces one of the expressions
that define Littlewood–Richardson coefficients, namely the coproduct formula. We thus
obtain a direct proof of the combinatorial formula for them.

Furthermore, the integrability strongly suggests to introduce arbitrary spectral param-
eters into the model: this corresponds to extending the original tiling model to a more
general inhomogeneous model. This naturally produces generalizations of the Littlewood–
Richardson coefficients which are polynomials of the inhomogeneities. We recover this way
several known formulae [10, 16] as well as a new one for the coefficients in the expansion
of the product of factorial (or double) Schur functions.

The paper is organized as follows. Section 2 is a presentation of the tiling model
which will be used throughout this paper. Section 3 presents the main ingredients in the
derivation of the coproduct formula: the Fock space/transfer matrix formalism. Section 4
discusses the integrability of the tiling model and provides the proof of the main theorem
used in section 5, which is the derivation of the coproduct formula. Finally, section 6
describes the inhomogeneous model and its application to product formulae for factorial
Schur functions. The appendix briefly discusses the equivalence to a square-triangle-
rhombus tiling model.

2 The tiling model

We provide here our own formulation of the model of tilings by decorated rhombi and
triangles which is the basis of [10] (we actually extend it slightly by defining two additional
tiles).

2.1 Tiles

The model is defined by filling a domain contained inside the triangular lattice with tiles
of the form shown on Fig. 1. More precisely, one can use either the colored lines inside
the tiles or the symbols on the edges to decide if adjacent tiles match: that is, symbols
must coincide on the edges, or equivalently green and red lines must propagate across
edges. Colored lines or edge labels can be thought of as two equivalent ways to encode
the four possible states of edges, which each have their advantages. We shall mostly use
colored lines in what follows. The correspondence of edge labels with the notation of [10]
is − ↔ 0, + ↔ 1, 0 ↔ 10, 0̃ ↔ 01. The shading of the tiles γ will be explained later (cf
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Figure 1: The tiles.

Figure 2: An example of tiling, using tiles α±, β±0, γ−.

a similar shading in [10]).

Note that we have classified tiles in pairs; this is because the two tiles of type β−, β+,
β0, γ−, γ+, γ0 always appear together on adjacent triangles to form rhombi, which we have
illustrated by using dotted lines. There is some freedom however in how to reconnect the
two tiles of type α±: an upper tile of type α− can have on its left any number of pairs of
tiles of type β+; the only way this series can end is with a lower tile of type α−. Similarly
for the tiles of type α+, with series of tiles of type β− on its right. In what follows it
will be convenient to consider tilings of the whole plane. However, we shall see that with
our “boundary conditions” (conditions at left and right infinity), all such series of tiles of
type β± will be necessarily finite.

2.2 Paths

At this stage we can forget about the underlying triangles and rhombi and simply keep
track of the paths formed by the green and red lines. Consider a horizontal line in the
triangular lattice. Each edge can be in only three states: empty or occupied by a green
or red line. In what follows we shall number edges using alternatingly half-odd-integers
and integers to take into account the nature of the lattice. (One could of course get rid of
this issue by applying an additional shift by a half-step say to the right, but that would
break the left-right symmetry of the model, and we do not choose to do so here.)

We now analyze what happens to the lines during one “time step”, that is as one
moves (upwards) from one horizontal line to the next. Let us first ignore the tiles γ0,−,+.
This corresponds to the original tiling model of [19] which also occurs in [10] (in the
non-equivariant case). Then the rules are as follows: a green (resp. red) line moves one
half-step to the right (resp. left) if there is currently no particle of the opposite kind at
this spot. The only situation left to consider is when lines of opposite colors are adjacent,
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Figure 3: An example of evolution of paths from one time step to the next.

with the green line at the left. Then two scenarios occur: either the green line crosses all
the red lines at its right until it finds an empty spot, or the red line crosses all the green
lines at its left until it finds an empty spot. This is shown on Fig. 3.

If we add the tiles γ− (resp. γ+), then green (resp. red) lines have the additional
possibility of moving in the opposite direction as normally, on condition that the spot is
free. If we add the tile γ0, then green and red lines are allowed to simply cross each other
as if they did not see each other.

3 Fock spaces and transfer matrices

We first define the notion of Fock space. The idea is that to encode the possible config-
urations of tilings on a given horizontal line into a Hilbert space. But first we describe
another Fcok space which is slightly simpler (only two states per site instead of three)
and will play an important role.

3.1 Fermionic Fock space F

The Fock space F is an infinite dimensional Hilbert space with canonical orthonormal
basis defined as follows. Each element |f〉 of the basis is indexed by a map f from Z + 1

2

to {−1, 1} such that there exists N−, N+ such that f(i) = −1 for i < N− and f(i) = +1
for i > N+. Call N+(f) (resp. N−(f)) the smallest (resp. largest) such integer.

We shall represent the −1’s (resp. 1’s) as green (resp. red) particles or dots.

There is a notion of “charge” which can be thought of as follows: each green particle
has charge −1 and each red particle has charge +1. This is ill-defined because there is
an infinite number of particles, so we need a reference state. Define |∅〉 (the vacuum
state) to be the state such that there are only green particles to the left of zero and
only red particles to the right. The corresponding map from Z + 1

2
to {−1, 1} is the sign

map. |∅〉 has by definition zero charge. This way, the charge of any state |f〉 is given by
c(f) :=

∑

i∈Z+ 1

2

(f(i) − sign(i)). The charge is always an even number (we use twice the

standard convention, for reasons that will become clear).

Define the shift operator S: it is defined by S |f〉 = |f ′〉 with f ′(i + 1) = f(i) for all i.
S decreases the charge by 2, and is an isomorphism between subspaces of different charge.

In a subspace of given charge, basis elements can alternatively be indexed by Young
diagrams [7] (see also [20]). The correspondence goes as follows. Rotate the Young
diagram 45 degrees, assign green dots and red dots to edges of either orientation as
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indicated on the picture:

One can then flatten the line and obtain a configuration of green and red dots. There
remains the arbitrariness in shifting the line, or equivalently in the charge. Here we shall
only consider the case of zero charge, in which case the convention is that the diagonal
line (dotted line on the picture) represents the zero. In such a way to any Young diagram
λ we associate a state simply denoted by |λ〉, and all the basis vectors of the subspace
with zero charge are recovered this way. In the case of the empty diagram we recover our
vacuum state |∅〉.

Finally, define for future use F+,k (resp. F−,k) to be the span of the |f〉 such that
N+(f) ≤ k (resp. N−(f) ≥ −k).

3.2 Fock space G of the tiling model

The Fock space G can be similarly described as follows. Basis vectors |f〉 of G are indexed
by maps f from Z + 1

2
to {−1, 0, +1} such that there exists N−, N+ such that f(i) = −1

for i < N− and f(i) = +1 for i > N+.

The correspondence to configurations of the tiling model described in the previous
section is as follows: each basis vector of G encodes a horizontal line in a configuration
of tiles; thus, −1 ≡ − correspond to a green particle, 0 to an empty spot and +1 ≡ +
to a red particle. Since the model is translationally invariant the choice of an origin is
irrelevant; however, note that successive lines have all sites shifted by half a step, which
means that G can only describe rows of a given parity, not both at the same time. We
shall come back to this point below.

Define N±(f) similarly as before: that is, N−(f) is the location of the leftmost empty
spot or red particle minus one half, whereas N+(f) is the location of the rightmost empty
spot or green particle plus one half. We can also define two more numbers which will be
useful: N−0(f) is the location of the leftmost red particle minus one half, whereas N+0(f)
is the location of the rightmost green particle plus one half.

There are two “quantum numbers” in G. The first one, the charge, is defined in G as
in F by c(f) :=

∑

i∈Z+ 1

2

(f(i) − sign(i)) i.e. green particles have charge −1, red particles

have charge +1, empty spots have zero charge. The charge is an integer with arbitrary
parity.
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The second quantum number, the “emptiness number”, is simply the number of zeroes:
e(f) := #{i : f(i) = 0}.

Intuitively, the conservation of the two quantum numbers is related to the conservation
of the number of lines of either color in any finite region. Since we have an infinite sys-
tem, particles can however “leak to infinity”, which results in variation of these quantum
numbers.

There is again a shift operator, denoted by S, which to |f〉 ∈ G associates |f ′〉 such
that f ′(i+1) = f(i) for all i. S preserves the emptiness number, and decreases the charge
by 2.

3.3 From F to G

There are two types of maps we need to define from F to G.

There is the obvious inclusion map from F to G. This identifies F with the subspace
of G with zero emptiness number.

The less obvious map t takes two basis elements |f−〉 and |f+〉 and produces |f〉 =
|f−〉 t |f+〉 in G such that

f(i) =

{
1
2
(f−(i) − 1) i < 0

1
2
(f+(i) + 1) i > 0

In other words it “concatenates” the two words by discarding the right of f− and the left
of f+.

More generally, define for k ∈ Z

|f−〉 tk |f+〉 = S−k |f−〉 t Sk |f+〉

This map tk is injective if one restricts to |f−〉 and |f+〉 such that N+(f−) ≤ k and
N−(f+) ≥ −k, which is the only situation where we shall use tk. We thus consider from
now on tk as a linear map from F+,k ⊗ F−,k to G.
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It is an easy calculation that if |f〉 = |f−〉 tk |f+〉,

c(f) =
1

2
(c(f−) + c(f+))

e(f) =
1

2
(c(f−) − c(f+)) + 2k

The image of tk, denoted by Gfree ⊂ G, is exactly the span of the |f〉 such that
N−0(f) ≥ 0 and N+0(f) ≤ 0.

Remark 1: intuitively, this second operation has the following meaning. When the
sets of green and red particles are widely separated from each other (green ones being on
the left and red ones on the right), then each of them behaves like a system of fermions
(the fermionic character being the condition that there can be at most one particle per
site).

Next we shall define transfer matrices. In fact, we should say a few words on what we
mean by a “transfer matrix” here because of the fact that we are dealing with infinite-
dimensional spaces. A transfer matrix is defined here as a matrix, that is a collection
of entries (Tf,g) where f and g index the canonical basis of F or G. It is tempting to
associate to it a linear operator T on F or G, such that Tf,g = 〈f |T |g〉, but this is
problematic because sometimes the action of T leads to an infinite linear combination of
basis elements, which would require discussing the convergence of summations. However in
all that follows, whenever we have two transfer matrices T and T′, the product (TT′)f,h =
∑

g Tf,gT
′
g,h only involves finite sums and is therefore well-defined; so that we can safely

ignore this subtlety and manipulate transfer matrices as operators.

3.4 The transfer matrix of free fermions

We first define the usual dynamics for free fermions that leads to Schur functions, see e.g.
[20].

The transfer matrix, denoted by Tfree(u), is most simply described by considering red
dots as lines propagating (similarly as green and red lines in the tiling model). In this
case the rule of evolution for red lines is that at each step, they can either move straight
upwards or upwards and one step to the right on condition that no two lines touch each
other. An example is given on Fig. 5. Furthermore, sufficiently far to the right, we
impose that red lines go straight upwards. This way any evolution only involves finitely
many moves to the right: we then assign a weight of u to each such move. Explicitly,
〈f |Tfree(u) |f ′〉 equals the sum over configurations of the form of Fig. 5 where the initial
configuration (at the bottom) is described by f ′ and the final configuration (at the top)
is described by f , of u to the power the number of moves to the right.

One remark is in order. One can of course also assign lines to the green dots and
formulate the rules in terms of the green lines (see [20] for details). These lines have also
been represented on Fig. 5. The rule is that at each time step green lines can move up
half-way then arbitrarily far to the left then up again, but in such a way that they do not
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Figure 5: An example of evolution of the free fermionic model.

touch any other green lines along the way. The weight of u is given to each crossing of
green and red lines.

Tfree(u) breaks the “particle–hole” symmetry that exchanges left and right, green and
red lines, since the rules are clearly different for the two types of lines. One can therefore
introduce a mirror-symmetric transfer matrix Tfree(u). It is defined similarly as Tfree(u),
but this time, the green lines are allowed to go either straight upwards or upwards and
one step to the left. Each left move is given a weight of u.

Both Tfree(u) and Tfree(u) preserve the charge.

Finally, we have the following important formulae:

Lemma 1.

sλ/µ(u1, . . . , un) = 〈µ|

n∏

i=1

Tfree(ui) |λ〉

is the skew Schur function associated with the Young diagram λ. For µ = ∅,

sλ(u1, . . . , un) = 〈∅|
n∏

i=1

Tfree(ui) |λ〉

is the Schur function associated with the Young diagram λ. Similarly,

sλT /µT (u1, . . . , un) = 〈µ|
n∏

i=1

Tfree(ui) |λ〉

where λT is the transpose of λ, and in particular

sλT (u1, . . . , un) = 〈∅|

n∏

i=1

Tfree(ui) |λ〉

The most general formula is

sλ/µ(u1, . . . , um/v1, . . . , vn) = 〈µ|
m∏

i=1

Tfree(ui)
n∏

i=1

Tfree(vi) |λ〉

that is the supersymmetric skew Schur function, which leads for µ = ∅ to the usual
supersymmetric Schur function

sλ(u1, . . . , um/v1, . . . , vn) = 〈∅|

m∏

i=1

Tfree(ui)

n∏

i=1

Tfree(vi) |λ〉
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Remark 2: as will be apparent in the proof, the expressions in the lemma are indepen-
dent of the ordering of the products, which is why we left them unspecified. This implies
the commutation relations

[Tfree(u),Tfree(v)] = 0 [Tfree(u),Tfree(v)] = 0 [Tfree(u),Tfree(v)] = 0

which are also a consequence of the more general results of the next section.

Proof. There are several simple proofs of this standard result. Note first that taking
products of n transfer matrices amounts to stacking together n rows made of the paths
defined above. One proof involves a bijection between these paths and the appropriate
tableaux that one uses to define supersymmetric Schur functions. Another proof, which
we sketch here, is to use the Lindström–Gessel–Viennot (LGV) formula [14, 6]. We apply
it to the green lines to the right of N−(λ) (those to the left necessarily go straight).
There are exactly λ′

1 such lines, where λ′
1 is the number of non-zero rows of λ. This

leads us to compute the evolution for a single line from initial location k to final location
k + j. Noting that the rules of evolution are translationally invariant, one can introduce
a generating function h(i)(x) =

∑

j≥0 h
(i)
j xj for the time step corresponding to Tfree(ui)

and e(i)(x) =
∑

j≥0 e
(i)
j xj for the time step corresponding to Tfree(vi). h

(i)
j and e

(i)
j are the

numbers of ways to move j steps to the left for a single green line and a single time step,
so we immediately find

h(i)(x) = (1 − xui)
−1 e(i)(x) = 1 + xvi

Composing the transfer matrices amounts to multiplying the generating series, so we find
the evolution for a single green line to be given by the generating series

h(x; u1, . . . , um/v1, . . . , vn) =

∏n
i=1(1 + xvi)

∏m
i=1(1 − xui)

which is exactly the generating series of the supersymmetric analogues of completely
symmetric functions i.e. Schur functions hj corresponding to one row:

h(x; u1, . . . , um/v1, . . . , vn) =
∑

j≥0

hj(u1, . . . , um/v1, . . . , vn)x
j

Applying the LGV formula produces the Jacobi–Trudi identity for supersymmetric Schur
functions

sλ/µ(u1, . . . , um/v1, . . . , vn) = det
(
hλj−µi+i−j(u1, . . . , um/v1, . . . , vn)

)

1≤i,j≤λ′

1
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3.5 The transfer matrix of the tiling model

Before defining the transfer matrix of the tiling model, one must discuss the problem of
the numbering of successive rows. Since the edges are shifted by a half-step during one
time unit, there are two symmetric choices: shift everything one half-step to either the
right or the left (either before or after the evolution, since it is translationally invariant).
The resulting transfer matrices are called respectively T+ and T−. 〈f |T± |g〉 is then
defined as the number of possible ways paths can move from the initial configuration
encoded by g to the final configuration encoded by f in one time step according to the
rules of evolution described in section 2.2, using only the 2 × 5 tiles α and β of Fig. 1.
In principle one could assign weights to the different tiles but we shall not need to do so
here. Note the relation T+ = ST−. In the case of a two-row evolution, one can introduce
T2 := T+T− = T−T+, which has the advantage that it restores the left-right symmetry.1

Note that sufficiently far to the left, there are only green lines and these necessarily
move one half-step to the left. On the contrary, far to the right, one has red lines that
move one half-step to the right. This observation allows us to conclude that T± changes
the charge by ∓1 and increases the emptiness number by 1, or equivalently T2 preserves
the charge, but increases the emptiness number by 2.

We now prove some additional properties of T2.

Lemma 2. For any pair of basis states f and g,

〈f |T2 |g〉 6= 0 ⇒ N−0(f) ≥ N−0(g) + 1 and N+0(f) ≤ N+0(g) − 1

Proof. Since particles of the same color never cross, the leftmost or rightmost particles
remain the same during time evolution. The lemma then follows from the fact that red
(resp. green) particles move at least one half-step to the right (resp. left) at each time
step.

Lemma 3. If |f〉 = |f−〉 t |f+〉 ∈ Gfree, with N+(f−) ≤ 0 and N−(f+) ≥ 0, then T2 |f〉 ∈
Gfree, and

T2k |f〉 = |f−〉 tk |f+〉 ∀k ∈ Z+

Proof. Such a state |f〉 has the properties that all green lines are to the left of red lines,
so no crossings ever occur. Therefore, the green (resp. red) lines move one half-step to
the left (resp. right) at each time step. This is all that the lemma says.

Lemma 4. Call p = max(N+0(f),−N−0(f)). Then T2p |f〉 ∈ Gfree and there exist unique
coefficients cf

g,h such that

T2k |f〉 =
∑

g,h

cf
g,h |g〉 tk |h〉 ∀k ≥ p

1Despite the notation, T2 is not the square of an operator on G; if one insisted that it be so, one would

have to define T as acting on G ⊕ G, with T =
(

0 T+

T
−

0

)

.
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Intuitively, this lemma says that no matter what the initial state is, eventually all
possible crossings will take place and we shall be left with a linear combination of states
which are all such that all green lines are the to the left of red lines.

Proof. This is combination of the two preceding lemmas. Let |f〉 be a basis state, and set
p = max(N+0(f),−N−0(f)). Then according to lemma 2, T 2p |f〉 is a linear combination
of basis states |g〉 such that N−0(g) ≥ 0 and N+0(g) ≤ 0, i.e. T2p |f〉 ∈ Gfree.

By definition of Gfree, this implies that there exist uniquely defined coefficients cf
g,h such

that T2p |f〉 =
∑

g,h cf
g,h |g〉tp |h〉, where the summation is restricted to couples (g, h) such

that N+(g) < p, N−(h) > −p. Set all other entries cf
g,h to zero. The formula of the lemma

then follows by application of lemma 3.

Corollary. If |λ〉 ∈ F ⊂ G is a state with zero charge and zero emptiness number and
p = max(N+(f),−N−(f)), then there exist unique coefficients cλ

µ,ν such that

T2k |λ〉 =
∑

µ,ν

cλ
µ,ν |µ〉 tk |ν〉 ∀k ≥ p

where the sum is over pairs of Young diagrams.

Proof. Such a state |λ〉 has zero charge and zero emptiness number. The formula of lemma
3 implies that all pairs (g, h) that contribute to the sum satisfy 0 = c(λ) = 1

2
(c(g)+ c(h))

and 0 = e(λ) = 1
2
(c(g) − c(h)), so that they have zero charge themselves. They can

therefore be indexed by Young diagrams.

3.6 The two families of commuting transfer matrices

We define here two one-parameter families of transfer matrices T̃±(u), which are closely
connected to T±.

Naively, one would like to define T̃± as transfer matrices which, in addition to the
usual tiles α and β, allow one more type of tiles γ±, but at a cost of a certain weight
x. However, this turns out to be inconvenient for the boundary conditions we have in
mind, so we use the following definition instead, using the inverse u = x−1 of the natural
parameter x (which will reoccur in section 4). T̃±(u) is defined similarly as T±, but with
three new ingredients: (i) we allow the extra tiles of type γ± and (ii) we give a weight of u
to each pair of tiles of type α±, and to each pair of tiles of type β± (all the signs being the
same as that of the transfer matrix). (iii) we impose the following condition at infinity:
sufficiently far to the left and to the right, the effect of T̃−(u) (resp. T̃+(u)) must be to
push either type of lines one half-step to the right (resp. left). Taking into account that
this half-step is absorbed into the definition of the matrix, we find that at infinity T̃±(u)
behaves like the identity. This ensures that only a finite number of tiles of type α± or β±

ever occur in the evolution w.r.t. T̃±(u). Thus each entry of T̃±(u) is a polynomial in u.
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The boundary conditions also imply that T̃±(u) preserves the charge and the emptiness
number.

We now list some properties of T̃±(u).

Lemma 5. For any pair of basis states f and g,

〈f | T̃+(u) |g〉 6= 0 ⇒ N−0(f) ≥ N−0(g) − 1 and N+0(f) ≤ N+0(g)

〈f | T̃−(u) |g〉 6= 0 ⇒ N−0(f) ≥ N−0(g) and N+0(f) ≤ N+0(g) + 1

Proof. Same proof as lemma 2, but this time green particles can move one half-step to
the right for T̃− and red particles can move one half-step to the left for T̃+.

Lemma 6. |f〉 = |f−〉 t |f+〉 ∈ Gfree, then

T̃−(u) |f〉 = Tfree(u) |f−〉 t |f+〉

T̃+(u) |f〉 = |f−〉 t Tfree(u) |f+〉

Proof. By inspection. If there are only green particles to the left of 0 and red particles to
the right of 0, no crossings can occur. For T̃−(u), this leaves two possibilities for green
particles: going left one half-step (pair of tiles α−) with a weight of u or going right one
half-step (pair of tiles γ−) with a weight of 1; and only one possibility for red particles,
going right one-half step (pair of tiles α+) with a weight of 1. Adjusting the locations by
shifting everything one half-step to the left, we obtain exactly Tfree(u) for green particles
and no evolution for red particles. The reasoning is the same for T̃+(u).

Note the similarity with lemma 3. However, an important difference with the situation
of lemma 3 is that it is not true that |f〉 ∈ Gfree implies T̃±(u) |f〉 ∈ Gfree, so in general
one cannot iterate the argument.

Remark 3 (followup of Remark 1): intuitively, this means that when the sets of green
and red particles are widely separated from each other then our transfer matrices make
them evolve like free fermions. When green and red particles mix, it is not the case any
more: in this sense what we have is a system of two species of fermions interacting with
each other.

Lemma 7. The transfer matrices T̃±(u) leave F ⊂ G stable, and:

T̃−(u) |f〉 = Tfree(u) |f〉 ∀ |f〉 ∈ F

T̃+(u) |f〉 = Tfree(u) |f〉 ∀ |f〉 ∈ F

Proof. F viewed as a subspace of G is simply the subspace of zero emptiness number, and
the T̃±(u) preserve this number, so they leave F stable.

The rest of the reasoning is again by inspection. Consider the action of T̃+(u) on a
state with no empty spots. Remembering that the final state should also have no empty
spots (this is in fact a consequence of the boundary conditions, as already explained),
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we conclude that tiles of type α+ are forbidden (consider the leftmost tile of type upper
α+; the only allowed tile left of it is the empty tile β0). Similarly tiles of type β− are
forbidden (sequences of such tiles always end with tiles of type α+). All that we are left
with is half-steps to the left (tiles α− and γ+) and crossings of the type β+, that is one
green line crossing a series of red lines. But up to an overall half-step to the left, these
crossings are exactly those that occur between red and green lines in the free fermionic
model, compare Figs. 3 and 5. The weight of u is given to each each pair of β+ tiles, that
is to each crossing, which is the same weight that is given in the free fermionic model.

A similar reasoning works for T̃−(u) and Tfree(u).

Theorem 1. All transfer matrices T̃−(u), T̃+(v), T commute:

[T̃ε(u), T̃ε′(v)] = 0 [T̃ε(u),Tε′] = 0 ε, ε′ ∈ {+,−}

This is the central result of this section, embodying the integrability of the model. Its
proof is the subject of next section.

4 Yang–Baxter equation and proof of the commuta-

tion theorem

We now discuss the integrability of the tilings model, that is the various forms of the
Yang–Baxter and how they imply the commutation relations of theorem 1.

4.1 R-matrix and Yang–Baxter equation

The first idea is to decompose the action of the transfer matrices as products of elementary
blocks, called R-matrices. It is convenient in this section to go back to the labels +,−, 0, 0̃
on the edges because using it, the tiles are explicitly Z3-invariant. We can then choose as
elementary blocks two adjacent triangles. They have three possible orientations, which
correspond to three possible rhombi.

Let us choose for example the orientation as shown on Fig. 6, and allow the tiles α±,
β±0, γ+, with the weights indicated below. x is the spectral parameter. In fact the only
rule is that pairs of shaded tiles get a weight of x. The weights look different but are
actually equivalent to the weights of T̃+(v), with v = 1/x (this will be explained in the
next section). The colored lines are only decorative here and the focus is on the edge
numbers. We can encode this information into a 3×3×3×3 tensor as follows. Ri,j,k,l(x),
where each index lives in {−, +, 0}, is the weight of the rhombus with edges i, j, k, l read
counterclockwise starting from the left edge (or the right edge, the tiles being 180 degrees
symmetric).

R(x) is usally considered as a matrix by associating to it the map from C
3 ⊗ C

3

(corresponding to the left and bottom edges) to itself (corresponding to the right and top
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Figure 6: The R-matrix in one of its three orientations.

edges); explicitly,

R(x) =

















−,− −,+ −,0 +,− +,+ +,0 0,− 0,+ 0,0

−,− 1 0 0 0 0 0 0 0 0
−,+ 0 x 0 0 0 1 1 0 0
−,0 0 0 1 0 0 0 0 0 0
+,− 0 0 0 1 0 0 0 0 0
+,+ 0 0 0 0 1 0 0 0 0
+,0 0 1 0 0 0 0 0 0 0
0,− 0 1 0 0 0 0 0 0 0
0,+ 0 0 0 0 0 0 0 1 0
0,0 0 0 0 0 0 0 0 0 0

















(4.1)

This point of view is not particularly useful for our purposes because it breaks the Z3

rotational symmetry by forcing to distinguish “incoming” and “outgoing” edges.

Rotate now every tile 120 degrees clockwise: we obtain the tiles α±, β±0, γ− (which
are exactly the tiles of T̃−(v)). This time it is γ− pairs (again, the shaded tiles) which
get a weight of x. Finally, there exists a third possible orientation of rhombi, obtained
from the first set of tiles by 120 degrees counterclockwise rotation – and correspondingly,
a third shaded tile which has not been used so far, namely γ0. We shall use the following
graphical notation for these three types of R-matrices: simply depict them with rhombi
(with thick edges) and put the spectral parameter x inside. The convention is that when
several rhombi are pasted together, the internal edges are free i.e. summed over while the
external edges are fixed.

We now have the key proposition, which is the Yang–Baxter equation:

Proposition 1. Let three variables x, y, z satisfy x + y + z = 0. Then, the following
equality holds

PSfrag replacements

= zz
x

x y

y

for any values of the external edges while summing over the matching tiles inside.

Proof. The proof is just an explicit computation. We provide a particularly compact
version of it, which was suggested to the author by A. Knutson.

Note first that if the equation is true for a given sequence of external edges, then it
is true for any cyclic rotation of it: indeed a rotation of 120 degrees amounts to cyclic
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permutation of the variables, and a rotation of 180 degrees amounts to exchanging l.h.s.
and r.h.s. (the tile weights being invariant by 180 degrees rotation).

Next, observe that if no shaded tiles appear in the equality, then it is trivial – the
different types of rhombi are only distinguished by the additional shaded tiles which
carry a non-trivial weight. If there are such pieces, then necessarily one of the external
sides of the tiles must be a sequence of −, + (read counterclockwise). This leaves only
three possible sequences of external edges, up to cyclic rotation: (i) −, +,−,−, +,−, (ii)
−, +, +,−, +, + and (iii) −, +,−, +,−, +. The first two sequences are invariant by 180
degrees, which allows to prove the equality without calculation, since as already mentioned
the 180 degrees rotation of the l.h.s. is the r.h.s. The last case is the only interesting one:
we find the identity

PSfrag replacements
++ = 0

(or its 180 degrees rotation), that is x + y + z = 0.

4.2 The RTT relations

We use the notation T
a,b
± (x) for the transfer matrix that creates one extra row made of

the usual tiles α, β and γ±, followed as usual by a ± 1
2
-step, in such a way that sufficiently

far to the left the left sides of the rhombi are all a and sufficiently far to the right the
right sides of the rhombi are all b. The weights are those of R, divided by a factor κa,b

± if
say the value of the upper edge is equel to ±, which makes sure that the tiles have weight
1 sufficiently far to the left and right. Explicitly, κa,b

+ = Ra,+,a,+ and κa,b
− = R−,b,−,b. In

practice we shall only consider here the cases T
−,+
± , T

−,−
+ and T

+,+
− , in which case we

recover.
T± = T

−,+
± (0) T̃+(u) = T

−,−
+ (u−1) T̃−(u) = T

+,+
− (u−1)

We now apply the standard argument of repeated application of the Yang–Baxter
equation (“unzipping”) to write the RTT relations, which allow to show various commu-
tation relations.

Let us fix two basis elements |f〉 and |g〉 in G and consider matrix elements of the form
〈f |Ta,b

+ (x)Tc,d
− (y) |g〉. The important observation is that to the left of min(N−(f), N−(g)),

one has series of identical tiles. Thus no information is lost by truncating the state
anywhere left of min(N−(f), N−(g)), and the product of weights of the discarded left tiles
is 1. Similarly, to the right of max(N+(f), N+(g)), everything is frozen and we only have
weights of 1.

Note that we already know this to be the case “sufficiently far to the left”, but this
is not good enough for our purposes: we need a bound that is uniform w.r.t. the inter-
mediate state. For example if a = b = − and c = d = +, one can check that the infinite
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on the right side can only stop when the

upper or lower edges change their value.

In the case a = b = − and c = −, d = +, there is no change to the right of

max(N+(f), N+(g)), where we find again sequences of
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. However, to the left of

min(N−(f), N−(g)), we have a new situation where green lines move one full step to the

left, that is sequences of
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The two other cases of interest to us can be treated

similarly.

Thus, if we pick any region containing the interval [min(N−(f), N−(g)), max(N+(f),
N+(g))], we can write that

(κa,b
+ )r(κc,d

− )g 〈f |Ta,b
+ (x)Tc,d

− (y) |g〉 =

f
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where g (resp. r) denotes the number of green (resp. red) lines in the finite domain,
which is well-defined if b = − (resp. c = +) because no green (resp. red) line can cross the
boundary with such boundary conditions (and these are the only cases where the factors
κ are not 1).

At this stage, we can insert the R-matrix at the left, with spectral parameter z =
−x − y:

∑

a,c

Rc′,a′,c,a(z)(κa,b
+ )g(κc,d

− )r 〈f |Ta,b
+ (x)Tc,d

− (y) |g〉 =

f
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We apply repeatedly proposition 1 all the way to

∑

a,c

Rc′,a′,c,a(z)(κa,b
+ )r(κc,d

− )g 〈f |Ta,b
+ (x)Tc,d

− (y) |g〉 =

f

PSfrag replacements

a′

bc′

dx

y

x

y

x

y

x

y

x

y

x

y
z

g

=
∑

b′,d′

Rd′,b′,d,b(−x − y)(κa′,b′

+ )r(κc′,d′

− )g 〈f |Tc′,d′

− (y)Ta′,b′

+ (x) |g〉
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Figure 7: Graphical representation of the Yang–Baxter equation with one matrix R?(x)
and two matrices R(y), R(z). Here x = z − y.

By varying a′, b, c′, d one gets in principle 81 identities relating transfer matrices with
various boundary conditions. We are only interested in the four cases a′ = −, b ∈ {+,−},
c′ ∈ {+,−}, d = + which lead to the following

Theorem 2. We have the commutation relations

[T−,−
+ (x),T−,+

− (y)] = [T−,−
+ (x),T+,+

− (y)] = [T−,+
+ (x),T−,+

− (y)] = [T−,+
+ (x),T+,+

− (y)] = 0

This theorem implies that [T̃+(u), T̃−(v)] = 0, as well as [T̃ε(u),Tε′] = 0, ε, ε′ ∈
{−, +}.

4.3 Other cases

In order to complete the proof of theorem 1, we must show that [T̃±(u), T̃±(v)] = 0 (same
sign). This requires another kind of R-matrix, as the geometry suggests, cf Fig. 7. We do
not provide the details since these commutation relations are not needed anywhere. Let
us simply give the expression of the new R-matrix:

R?(x) =

















−,− −,+ −,0 +,− +,+ +,0 0,− 0,+ 0,0

−,− 1 0 0 0 0 0 0 0 0
−,+ 0 x 0 1 0 0 0 0 0
−,0 0 0 x 0 0 0 1 0 0
+,− 0 1 0 0 0 0 0 0 0
+,+ 0 0 0 0 1 0 0 0 0
+,0 0 0 0 0 0 0 0 1 0
0,− 0 0 1 0 0 0 0 0 0
0,+ 0 0 0 0 0 1 0 x 0
0,0 0 0 0 0 0 0 0 0 1

















The rest of the proof is identical (unzipping argument) and we obtain the following

Theorem 3. We have the commutation relations

[T−,−
+ (x),T−,−

+ (y)] = [T+,+
− (x),T+,+

− (y)] = [T−,+
+ (x),T−,+

+ (y)] = [T−,+
− (x),T−,+

− (y)] = 0

Note that this theorem does not say that T
−,−
+ and T

−,+
+ commute.
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5 Littlewood–Richardson coefficients from coproduct

5.1 The coproduct formula

Theorem 4. The coefficients cλ
µ,ν in the corollary of lemma 4 are Littlewood–Richardson

coefficients.

Proof. Start from the supersymmetric Schur function (lemma 1)

sλ(u1, . . . , um/v1, . . . , vn) = 〈∅|
m∏

i=1

Tfree(ui)
n∏

i=1

Tfree(vi) |λ〉

Considering |∅〉 and |λ〉 as states in G, we immediately find by applying lemma 7:

sλ(u1, . . . , um/v1, . . . , vn) = 〈∅|

m∏

i=1

T̃+(ui)

n∏

i=1

T̃−(vi) |λ〉

Given a non-negative integer k, consider the evolution backwards in time (i.e. going
downwards instead of upwards) starting from 〈∅| tk 〈∅|. It is elementary to check that
after 2k steps, one gets 〈∅|, or in other words 〈∅| = 〈∅| tk 〈∅|T2k. This results in

sλ(u1, . . . , um/v1, . . . , vn) = 〈∅| tk 〈∅|T2k
m∏

i=1

T̃+(ui)
n∏

i=1

T̃−(vi) |λ〉

We now use the commutation of the transfer matrices (theorem 1) to rewrite it

sλ(u1, . . . , um/v1, . . . , vn) = 〈∅| tk 〈∅|
m∏

i=1

T̃+(ui)
n∏

i=1

T̃−(vi)T
2k |λ〉

Assume k > max(N+(λ),−N−(λ)), and apply the corollary of lemma 4:

sλ(u1, . . . , um/v1, . . . , vn) =
∑

µ,ν

cλ
µ,ν 〈∅| tk 〈∅|

m∏

i=1

T̃+(ui)
n∏

i=1

T̃−(vi) |µ〉 tk |ν〉

We now wish to apply lemma 6. |µ〉 tk |ν〉 ∈ Gfree, but as already mentioned T̃+(u) may
push red particles to the left and T̃−(u) may push green particles to the right. Let us
thus choose k > max(N+(λ),−N−(λ)) + n/2; according to lemma 5, this ensures that
lemma 6 can be applied repeatedly. Separating into two bra-kets, we get:

sλ(u1, . . . , um/v1, . . . , vn) =
∑

µ,ν

cλ
µ,ν 〈∅|

m∏

i=1

Tfree(ui) |ν〉 〈∅|
n∏

i=1

Tfree(vi) |µ〉
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Figure 8: An example of configuration and the triangle in which all the crossings take
place.

Finally, apply the basic free fermionic identity (lemma 1): we find

sλ(u1, . . . , um/v1, . . . , vn) =
∑

µ,ν

cλ
µ,ν sν(u1, . . . , um)sµT (v1, . . . , vn)

Remembering that the l.h.s. is the supersymmetric Schur function associated to λ, we
conclude that this equality defines uniquely the cλ

µ,ν as Littlewood–Richardson coefficients.

5.2 Back to the triangle

All that has been described so far uses an infinite-dimensional Fock space of configurations.
This helps in formulating the results more elegantly. However, for any given Young
diagram λ, all the evolution of the state |λ〉 with respect to T takes place in a finite
part of the plane; more precisely, a triangle, which leads us back to the more standard
formulation, as in [10], in terms of puzzles.

First, let us define how to read Young diagrams from the boundaries of a finite domain
(this is a finitized version of the transformation of section 3.1). Let n and k be two non-
negative integers such that k ≤ n. Consider a sequence of n successive edges which can
be either − or +, such that there are k “−” and n − k “+”. Fix an orientation of the
edge: then reading the values of the edges following the orientation, one obtains a binary
string of length n. To it one associates bijectively a Young diagram contained inside the
Young diagram k × (n− k), that is the rectangle of height k and width n− k, as follows:
each − corresponds to a step up, and each + to a step to the right, starting from the
lower left corner of the rectangle. For example,

+ − + + −+ 7−→ ≡

Note that depending on the direction of the boundary, a − will be drawn as a green
particle or an empty spot, and a + will be drawn as a red particle or an empty spot.
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Let us now fix an initial state given by a Young diagram λ and consider the possible
evolution of the system. The situation is illustrated on Fig. 8. The smallest possible
triangle in which all crossings between green and red particles take place has as its lower
side the interval between N−(λ) and N+(λ). So we can set n = N+(λ)−N−(λ), in which
case k is the height of λ (number of non-zero parts). Of course one could make the
triangle bigger, which illustrates the stability property of puzzles. Now the configuration
outside the triangle is uniquely fixed by the locations of the lines at the two upper sides
of the triangle: green (resp. red) particles move uniformly to the left (resp. right). In
other words, no information is lost by restricting to the triangle and conversely, any
configuration inside the triangle can be extended to the outside in a unique way. The
“asymptotic” states µ and ν which describe the sequences of green particles and empty
spots to the left and of red particles and empty spots to the right can also be read off
the two upper sides of the triangle in the way described in the previous paragraph, the
binary strings being read from left to right. Combining these observations, we conclude
that cλ

µ,ν also counts the number of fillings of the triangle with fixed boundaries, where λ
is encoded by the bottom edge, µ by the left edge and ν by the right edge, always reading
from left to right. These fillings are called puzzles. For example, on Fig. 8, one reads

λ = , µ = ν = .

6 Equivariance or the introduction of inhomogeneities

It is natural to try to generalize the construction of section 5 by putting arbitrary horizon-
tal and vertical spectral parameters (inhomogeneities) at each site. As already observed
in [4, 12, 3] in a different but similar setting, this amounts geometrically to going from
ordinary cohomology to equivariant cohomology – in the present case, of the Graßman-
nian.

There are however some complications. The first one is that the infinite system view-
point used so far is not particularly convenient to handle the functions that appear in the
inhomogeneous situation, that is factorial (or double) Schur functions. We shall therefore
work in a finite domain instead.

The second one is that the coproduct formula does not obviously generalize to the
inhomogeneous case. In fact, a coproduct formula for double Schur functions has only
recently been discovered [17] and the description in terms of objects analogous to puzzles
is unknown. We shall prove instead product formulae. Note that even specialized to
the non-equivariant case, the formulae of this section will thus be distinct from those of
section 5.

The basis setup is to consider that there are (oriented) lines of spectral parameters
propagating on the dual lattice of the lattice of tiles of R-matrices, in such a way that the
spectral parameter attached to the tile is the difference of the two spectral parameters
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Figure 9: Our definition of factorial Schur functions, and an example in various graphical
representations. The numbering of the xi is reversed in the tableau representation.
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In all that follow we fix integers n and k, k ≤ n, and use the same correspondence
between binaray strings and Young diagrams inside the rectangle k × (n − k) described
in section 5.2.

We now define the two basic “building blocks” with which we shall produce non-trivial
identities.

6.1 Factorial Schur functions

What we really want to define is the double Schubert polynomial of a Graßmannian
permutation. It will however coincide with the notion of factorial Schur function.

the electronic journal of combinatorics 16 (2009), #R12 22



Given a Young diagram λ inside the rectangle k × (n − k), let us define the factorial
Schur function sλ(x1, . . . , xk|y1, . . . , yn) graphically as on Fig. 9, that is as a tiling of a
n × k rhombus with prescribed boundaries: λ is encoded into the edges of the left side,
read from bottom to top, the bottom side is full of green particles and the other two sides
are empty (in all the figures of this section, we omit entirely drawing empty spots, and
use half-colored circles to indicate that the spot can be either empty or occupied by a
particle of the given color, depending on the Young diagram it encodes). The spectral
parameters are the xi and the yi, from left to right and bottom to top.

An important property is the following:

Proposition 2. sλ(x1, . . . , xk|y1, . . . , yn) is a symmetric function of the xi, i = 1, . . . , k.

Proof. Fix i ∈ {1, . . . , n − 1} and apply the matrix R?(xi+1 − xi) from section 4.3 to
the bottom edges i and i + 1. Noting that R?

i,j,−,− = δi,−δj,− and R?
i,j,0,0 = δi,0δj,0, we

can use the usual unzipping argument (repeated application of the Yang–Baxter relation
represented on Fig. 7) to move the matrix R?(xi+1 − xi) all the way to the top and
then remove it. The result is the same picture as we started from, but with xi and xi+1

exchanged.

On Fig. 9, an example of configuration is provided, as well as two alternative represen-
tations of it. The first one is the pipe dream of the Graßmannian permutation associated
to λ [5, 9]. Our picture can be deformed into the pipe dream picture by rotating 60 de-
grees clockwise and then distorting it slightly to make the 60 degrees angle a right angle.
This way, the green lines are exactly the trajectories of the lines above the descent of the
permutation. The other lines can be recovered unambiguously. The weights are now given
to the crossings (between a red line and a green line) and take the form xi − yj, where i
is the row number and j the column number, both counted starting from the corner.

The final representation is a semi-standard Young tableau of λ, with the alphabet
{1, . . . , k}. Starting from the pipe dream picture, each column of the tableau corresponds
to a red line counted from left to right, and each number in the boxes of the column
indicates the row at which the red line crosses a green line. An important difference is
that the rows are numbered from bottom to top; but since the factorial Schur function is
a symmetric function of the xi, this is irrelevant, and we may as well assign to the tableau
a weight equal to the product over boxes of xT − yT+c, where T is the number in the box
(i.e. the row number in the pipe dream picture) and c is the content of the box (column
minus row of the box), in such a way that T + c is precisely the column number in the
pipe dream picture.

6.2 MS-puzzles and equivariant puzzles

We first define an MS-puzzle (this terminology is borrowed from [10]). It is simply given
by Fig. 10. Three sides encode Young diagrams, whereas the fourth side, the upper right
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Figure 10: Definition of an MS-puzzle (k = 2, n = 4).

one, is simply a sequence of +n−k−k, all read from bottom to top. We denote this object
by eν

λ,µ(y1, . . . , yn; z1, . . . , zn).

We shall need the following series of lemmas:

Lemma 8. In the top half of a MS-puzzle, green lines always go in straight lines (up and
to the left).

Proof. By inspection. Since the red lines are stacked at their rightmost positions, there
is no available free spot for a green particle to cross the red particles by moving straight
to the right.

Lemma 9. Assume that zn+1−i = yi, i = 1, . . . , n. Then the top half of the MS-puzzle is
“frozen” i.e. it has a unique configuration (which has weight 1); the edges on the horizontal
diagonal of the MS-puzzle reproduce, read from left to right, the Young diagram µ.

Proof. If zn+1−i = yi for all i, then the rhombi sitting on the horizontal diagonal of
the MS-puzzle have a zero spectral parameter. This implies that the shaded tiles γ0 is
forbidden, or equivalently that the edges crossing horizontally these rhombi cannot be 0̃
(red and green particles on top of each other). Since there are k green and n− k red lines
incoming, there cannot be an empty spot either (edge 0). So these edges can only be +
or −; according to lemma 8, the green particles on it are at the same locations as on the
upper left edge, and therefore the red lines are also fixed (they must move one step to the
left each time they cross a green line) and occupy the complementary set on the diagonal.
In other words, the diagram µ is reproduced on the diagonal. No shaded tiles are used in
the top half, so its weight is one.

With the hypothesis of the last lemma, the top half of the MS-puzzle can be removed
since it is fixed and has a weight of 1. The result, after 180 degree rotation, is called an
equivariant puzzle, cf Fig. 11.
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If we call cν
µ,λ the weight of an equivariant puzzle, that is the tiling of a triangle with

sides ν (bottom), µ (left), λ (right), all read from left to right, with the same tiles and
spectral parameters as an upside-down MS-puzzle with zn+1−i = yi, we have

eν
λ,µ(zn, . . . , z1; z1, . . . , zn) = cµ̄

ν̄,λ(z1, . . . , zn)

or equivalently cν
µ,λ(z1, . . . , zn) = eµ̄

λ,ν̄(zn, . . . , z1; z1, . . . , zn), where λ̄ is the complement of
the Young diagram λ inside the rectangle k × (n − k) after a 180 degree rotation, which
corresponds to reading the binary string of λ from right to left.

Lemma 10. There are no equivariant puzzles contributing to cν
∅,µ or cν

µ,∅ if µ 6= ν, and
one (which has no shaded tiles) if µ = ν, so that:

cν
∅,µ(z1, . . . , zn) = cν

µ,∅(z1, . . . , zn) = δν
µ

Proof. Considering the equivariant puzzle as the bottom piece of an MS-puzzle, apply
lemma 9 to either the mirror image w.r.t. the horizontal axis of the MS-puzzle with colors
interchanged, or its 180 degree rotation.

Finally, note that if all spectral parameters are equal to zero, we find by defini-
tion cν

λ,µ(0, . . . , 0) = cν
λ,µ; which implies eν

λ,µ(0, . . . , 0; 0, . . . , 0) = cµ̄
ν̄,λ. Rotating a (non-

equivariant) puzzle 60 degrees counterclockwise results in another puzzle, so that cµ̄
ν̄,λ =

cν
λ,µ. To summarize,

cν
λ,µ(0, . . . , 0) = eν

λ,µ(0, . . . , 0; 0, . . . , 0) = cν
λ,µ

6.3 The Molev–Sagan problem

The Molev–Sagan (MS) problem consists in expanding the product of two factorial Schur
functions with the same first set of variables as a sum of factorial Schur functions. It was
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Figure 12: Graphical solution of the MS problem (n = 5, k = 3).

first solved in [16] in terms of barred tableaux and then reformulated in [10] in terms of
MS-puzzles. We now rederive it in our framework.

Let us consider the formal equality of Fig. 12. On each side of the equality, we have
configurations where all the external edges are fixed. The order of the parameters yi and
zi is important; note in particular the dashed line which corresponds to the difference of
spectral parameters vanishing.

On the upper left side, we have a Young diagram µ encoded by a binary string of
green particles and empty spots in the region of parameters yi, and emptiness above in
the region of the zi. On the lower left side, we have a Young diagram λ encoded by a
binary string of green particles and empty spots. Both diagrams are read from bottom
to top. The right sides have k green particles at their highest possible location and n− k
red particles at their lowest possible location. The top and bottom sides are full of green
particles. Furthermore, we assume that the sum of widths µ1 +λ1 of the Young diagrams
µ and λ does not exceed n − k. This can always be achieved by choosing n sufficiently
large. The justification of this assumption will become clear below.

In order to go from one side to the other side of the figure, one simply applies repeatedly
proposition 1 (Yang–Baxter) starting from the center and “piling up boxes”. Since our
spectral parameters are differences of the parameters of crossing lines, the sum of spectral
parameters around a hexagon is indeed zero.
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Figure 13: An example of tilings contributing to each side of the equality of Fig. 12.

We shall now examine what the consequences of this equality are. It is simpler to work
on an example, as on Fig. 13. For ease of discussion, we have labelled the various regions
inside the hexagon and marked in blue the “interesting” ones, that is those in which there
is some freedom left – the other regions are entirely “frozen” once the boundary conditions
are fixed.

Let us start with the left hand side. In region A, green particles starting from the
bottom can only go straight to the left, so that red particles must go horizontally. In region
B, red particles move freely to the right. In region C, we note that the spectral parameters
are of the form of the hypothesis of lemma 9, so that we can apply lemmas 9 and 10 to
conclude that the whole region is frozen. The result is that the upper left side of region
C reproduces the Young diagram λ read from top to bottom. We now recognize region D
as the 180 degree rotated picture of a factorial Schur function (cf section 6.1). Since all
tiles and weights are 180 degree rotation invariant, we find that this region contributes
sλ(x1, . . . , xk|z1, . . . , zn), paying attention to the order of the parameters zi (we have
however reordered the xi because of proposition 2). Region E is the picture of a factorial
Schur function with the standard orientation, so it contributes sµ(x1, . . . , xk|y1, . . . , yn).
Overall, the left hand side equals sλ(x1, . . . , xk|z1, . . . , zn)sµ(x1, . . . , xk|y1, . . . , yn).

Now let us compute the right hand side. In regions G, H and I, it is easy to check
that all particles can only move straight in the way indicated on the figure. Region F
needs to be dealt with carefully. We want to make sure that the green lines starting
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from the bottom exit region F through the left side. This requires to look ahead into the
region J. Let us consider the rightmost green particle. If we number the upper left side of
region J from bottom to top, then its endpoint is precisely k + µ1 (the length of the first
row of µ). This means that the location (counted from bottom to top) of the rightmost
green particle when it crosses the diagonal line starting at the bottom of the junction of
J and F cannot exceed k + µj plus the number of steps to the left it can make in region
J. We claim that this number is λ1: indeed among the n − k red particles starting from
the lower left side of J, only λ1 are allowed to cross without making a step to the right.
The last n − k − λ1, which are the topmost ones, have to make a step to the right each
time they cross a green particle in order to reach their final destination to the right of
the upper right side of F. The result is that this location is at most k + µ1 + λ1, which
by assumption is less or equal to n. Thus the rightmost green particle, and therefore
all others, exit through the left side. We now recognize region F as the factorial Schur
function sν(x1, . . . , xk|y1, . . . , yn), where ν is the Young diagram, read from bottom to
top, that encodes the green lines at the boundary between F and J. And J is precisely
a MS-puzzle (cf section 6.2), which contributes eν

λ,µ(y1, . . . , yn; z1, . . . , zn). So the right
hand side equals

∑

ν eν
λ,µ(y1, . . . , yn; z1, . . . , zn)sν(x1, . . . , xk|y1, . . . , yn).

Finally, we find the desired equality

sλ(x1, . . . , xk|z1, . . . , zn)sµ(x1, . . . , xk|y1, . . . , yn)

=
∑

ν

eν
λ,µ(y1, . . . , yn; z1, . . . , zn)sν(x1, . . . , xk|y1, . . . , yn)

The summation over ν is only on Young diagrams inside the rectangle k × (n− k), which
is related to the fact that (i) we have only k variables xi and (ii) the sum of widths of µ
and λ satisfies µ1 +λ1 ≤ n−k. If one sets all yi and zi to zero, then the equality becomes

sλ(x1, . . . , xk)sµ(x1, . . . , xk) =
∑

ν

cν
λ,µsν(x1, . . . , xk)

which is the product formula characterizing the usual Littlewood–Richardson coefficients.

6.4 Alternate solution of the Molev–Sagan problem

Interestingly, there is a small variation of the construction of the previous section, which
produces another, not obviously equivalent, solution of the Molev–Sagan problem. Since
it is based on the same principle, we shall only sketch the derivation, based on Figs. 14
and 15.

By inspection, one easily finds that regions A, B, G, H, I are frozen, with lines going
straight as indicated on the figure. Region C is strictly speaking not frozen; in fact,
we recognize an upside-down (180 degree rotated) MS-puzzle, so that its weight is equal
to eλ′

λ,∅(z1, . . . , zn; z1, . . . , zn) where λ′ is the upper left side of C read top to bottom.
This, according to the previous section, is the coefficient of sλ′(x1, . . . , xk|z1, . . . , zn) in
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Figure 14: Alternate graphical solution of the MS problem (n = 5, k = 3).
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Figure 15: An example of tilings contributing to each side of the equality of Fig. 14.
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the expansion of sλ(x1, . . . , xk|z1, . . . , zn)× 1 (note the equality of second alphabets!). So
it is equal to δλ′

λ (and on the picture we have shown the unique λ = λ′ configuration).

The other regions are treated the same way as before. Regions D and E correspond
to sλ(x1, . . . , xk|z1, . . . , zn) and sµ(x1, . . . , xk|y1, . . . , yn). If ν encodes as before the edges
between F and J, then region F corresponds to sν(x1, . . . , xk|y1, . . . , yn), on condition that
λ1 + µ1 ≤ n− k. Finally region J is an upside-down MS-puzzle with the yi in the reverse
order, so that we find the equality

sλ(x1, . . . , xk|z1, . . . , zn)sµ(x1, . . . , xk|y1, . . . , yn)

=
∑

ν

eµ̄
λ,ν̄(yn, . . . , y1; z1, . . . , zn)sν(x1, . . . , xk|y1, . . . , yn)

As a corollary, we find the curious identity:

eν
λ,µ(y1, . . . , yn; z1, . . . , zn) = eµ̄

λ,ν̄(yn, . . . , y1; z1, . . . , zn)

6.5 The Knutson–Tao problem

There is a more basic problem which consists in expanding the product of two factorial
Schur functions with the same two sets of variables as a sum of factorial Schur functions,
and more specifically providing a manifestly positive formulas for the structure coefficients
in the sense of Graham. It was solved in various ways [13, 15, 10], but here we are
particularly interested in the solution in terms of puzzles, as in [10]; this we call the
Knutson–Tao (KT) problem.

Clearly, a solution of the MS problem provides a solution of the KT problem by setting
yi = zi, i = 1, . . . , n. Thus, the previous two sections provide two solutions of the KT
problem, which turn out to be different. The most interesting one is the alternate one:
when yi = zi, the upper half of the rhombus J of the right hand side of Fig. 15 becomes
an equivariant puzzle (as in the example shown), with the spectral parameters labelled in
the proper order, and the equality of section 6.4 becomes

sλ(x1, . . . , xk|z1, . . . , zn)sµ(x1, . . . , xk|z1, . . . , zn)

=
∑

ν

cν
µ,λ(z1, . . . , zn)sν(x1, . . . , xk|z1, . . . , zn)

by definition of the cν
µ,λ(z1, . . . , zn), cf section 6.2. This is precisely the formula found in

[10].

A Square-triangle-rhombus tilings

As mentioned in the introduction, it is known that the tiling model introduced in section
2 is related to the square-triangle tiling model. More precisely, the latter is equivalent to
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Figure 16: Tiles of the square-triangle-rhombus tiling model. The colors are purely dec-
orative.

the tiling model without the shaded tiles γ. We describe here the slightly more general
(square-triangle-rhombus) tiling model which includes the shaded tiles (in the spirit of
[2]). Though it is not needed anywhere in this paper, the connection is worth mentioning.

Consider tiles of three types: equilateral triangles, squares and “thin rhombi” with
angles 30 and 150 degrees. All of them have sides of unit length. The square-triangle-
rhombus tiling model consists in filling a region of the plane with these tiles, with an
addition restriction on the allowed rotations of the thin rhombi which is the following.
It is easy to see that all edges can occur in exactly six directions which differ from each
other by multiples of 30 degrees. We may for example assume that they are of the form
15 + 30k degrees, k integer. Thus, there are four possible rotations of triangles, three
rotations of square, and six rotations of thin rhombi among which we select only three as
shown on Fig. 16.

Now consider the following operation on a given tiling configuration: deform it in such
a way that the direction of every edge can only take three values, which is the closest slope
of the form 60k, k integer. One can show that this can be done consistently (as always in
the theory of random and quasi-periodic tilings, these tilings can be seen as projections
of a 2-dimensional surface embedded in a higher dimensional space – here, four – and the
transformation corresponds to changing the direction of projection); furthermore, mark
with a ± the edge which have been rotated ±15 degrees counterclockwise. In this way
the triangles become one of the four tiles α of Fig. 1; similarly, squares become pairs of
tiles of type β; and thin rhombi become pairs of tiles γ. The operation is invertible and
is thus the desired equivalence. As before, if we want to preserve integrability, we must
allow only one of the three types of thin rhombi in any given region.

For example, starting from Fig. 17 one obtains the equivariant puzzle of the right of
Fig. 11. Note that one can read directly the three Young diagrams encoded in the three
sides of the triangle (as was observed in [18] in the non-equivariant case), by completing
the deformed puzzle into a hexagon with sides of lengths k, n − k, k, n − k, k, n − k and
drawing the complement of the puzzle as sets of the three “forbidden” rotations of the
thin rhombi. One must be careful that one recovers this way the three Young diagrams
corresponding to the binary strings read clockwise.

Another interesting observation is that the use of the Yang–Baxter equation (propo-
sition 1) corresponds in this new language to two elementary operations on tilings (cases
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Figure 17: (a) The 6 directions of the generalized square-triangle model and how to
deform them into the 3 directions (in blue) of the regular triangular lattice. (b) Example
of square-triangle-rhombus tiling corresponding to an equivariant puzzle.

(i,ii) and (iii) in the proof), up to reflection and rotation:

=PSfrag replacements

=

and
PSfrag replacements

++ = 0

Note the strong similarity with the migration of [18]; the latter is roughly the special case
of the Yang–Baxter equation where one spectral parameter is set to zero.
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