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Abstract

A gain graph is a graph whose edges are labelled invertibly by gains from a
group. Switching is a transformation of gain graphs that generalizes conjugation
in a group. A weak chromatic function of gain graphs with gains in a fixed group
satisfies three laws: deletion-contraction for links with neutral gain, invariance under
switching, and nullity on graphs with a neutral loop. The laws are analogous to
those of the chromatic polynomial of an ordinary graph, though they are different
from those usually assumed of gain graphs or matroids. The three laws lead to
the weak chromatic group of gain graphs, which is the universal domain for weak
chromatic functions. We find expressions, valid in that group, for a gain graph in
terms of minors without neutral-gain edges, or with added complete neutral-gain
subgraphs, that generalize the expression of an ordinary chromatic polynomial in
terms of monomials or falling factorials. These expressions imply relations for all
switching-invariant functions of gain graphs, such as chromatic polynomials, that
satisfy the deletion-contraction identity for neutral links and are zero on graphs
with neutral loops. Examples are the total chromatic polynomial of any gain graph,
including its specialization the zero-free chromatic polynomial, and the integral and
modular chromatic functions of an integral gain graph.

We apply our relations to some special integral gain graphs including those
that correspond to the Shi, Linial, and Catalan arrangements, thereby obtaining
new evaluations of and new ways to calculate the zero-free chromatic polynomial
and the integral and modular chromatic functions of these gain graphs, hence the
characteristic polynomials and hypercubical lattice-point counting functions of the
arrangements. The proof involves gain graphs between the Catalan and Shi graphs
whose polynomials are expressed in terms of descending-path vertex partitions of
the graph of (−1)-gain edges.

We also calculate the total chromatic polynomial of any gain graph and especially
of the Catalan, Shi, and Linial gain graphs.

1 Introduction

To calculate the chromatic polynomial χΓ(q) of a simple graph there is a standard method
that comes in two forms. One can delete and contract edges, repeatedly applying the
identity χΓ = χΓ\e − χΓ/e and the reduction χΓ(q) = 0 if Γ has a loop, to reduce the
number of edges to zero. One ends up with a weighted sum of chromatic polynomials of
edgeless graphs, i.e., of monomials qk. Or, one can add missing edges using the opposite
identity, χΓ = χΓ∪e + χΓ/e, until χΓ becomes a sum of polynomials of complete graphs,
i.e., of falling factorials (q)k. We extend these approaches to gain graphs, where the edges
are orientably labelled by elements of a group. The resulting formulas are slightly more
complex than those for simple graphs, but they can be used to compute examples; we show
this with gain graphs related to the Shi, Linial, and Catalan hyperplane arrangements.

In a gain graph, having edges labelled orientably means that reversing the direction
of an edge inverts the label (the gain of the edge). Gain graphs, like ordinary graphs,
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have chromatic polynomials, which for various choices of gain group give the characteris-
tic polynomials of interesting arrangements of hyperplanes. In particular, when the gain
group is Z, the additive group of integers, the edges correspond to integral affinographic
hyperplanes, that is, hyperplanes of the form xj = xi + m for integers m. Arrangements
(finite sets) of hyperplanes of this type, which include the Shi arrangement, the Linial ar-
rangement, and the Catalan arrangement, have gained much interest in recent years. The
fact that the chromatic polynomials of gain graphs satisfy the classic deletion-contraction
reduction formula has important consequences, e.g., a closed-form formula, and also a
method of computation that can significantly simplify computing the polynomials of the
Shi, Linial, and Catalan arrangements.

The deletion-contraction relation for functions can be viewed abstractly at the level
of a Tutte group, which means that we take the free abelian group ZG(G) generated by
all gain graphs with fixed gain group G, and from deletion-contraction we infer algebraic
relations satisfied in a quotient of ZG(G). This gives a group we call the neutral chromatic
group of gain graphs; it is a special type of Tutte group. In particular, the relations reduce
the number of generators. These relations on graphs then, by functional duality, auto-
matically generate the original deletion-contraction relations on chromatic polynomials
and other functions of a similar type that we call weak chromatic functions or, if they are
invariant under switching (defined in the next section), simplification, and isomorphism,
weak chromatic invariants.

Our investigation in [3] of the number of integer lattice points in a hypercube that
avoid all the hyperplanes of an affinographic hyperplane arrangement led us to functions
of integral gain graphs, the integral and modular chromatic functions, that count proper
colorations of the gain graph from the color set {1, . . . , q}, treated as either integers or
modulo q. Like the chromatic polynomial, they satisfy a deletion-contraction identity,
but (in the case of the integral chromatic function) only for links with neutral gain. That
fact is part of what suggested our approach, and evaluating these chromatic functions for
the Catalan, Shi, and Linial arrangements is part of our main results.

A brief outline: The first half of the paper develops the general theory of functions
on gain graphs that satisfy deletion-contraction for neutral links and are zero on gain
graphs with neutral loops, in terms of the neutral chromatic group. It also develops, first
of all, the corresponding theory for ordinary graphs, since that is one way we prove the
gain-graphic reduction formulas. The second half applies the theory to the computation
of chromatic functions of the Catalan, Shi, and Linial gain graphs and a family of graphs
intermediate between the Catalan and Shi graphs. The latter can be computed in terms of
partitions into descending paths of the vertex set of a graph. This half also shows how to
compute the total chromatic polynomial in terms of the zero-free chromatic polynomial;
this in particular gives the chromatic polynomials of the Catalan, Shi, and Linial (and
intermediate) graphs, although since the results are not as interesting as the method we
do not state them.
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2 Basic definitions

For a nonnegative integer k, [k] denotes the set {1, 2, . . . , k}, the empty set if k = 0. The
set of all partitions of [n] is Πn. The falling factorial is (x)m = x(x − 1) · · · (x − m + 1).

Suppose P(E) is the power set of a finite set E, S 7→ S̄ is a closure operator on E,
F is the class of closed sets, and µ is the Möbius function of F. If the empty set is not
closed, then µ(∅, A) is defined to be 0 for all A ∈ F. It is known that:

Lemma 2.1. For each closed set A, µ(∅, A) =
∑

S(−1)|S|, summed over edge sets S
whose closure is A.

Proof. If ∅ is closed, this is [1, Prop. 4.29]. Otherwise,
∑

S̄=A(−1)|S| =
∑

S⊆∅̄
(−1)|S|x =

0x = 0, where x is a sum over some subsets of E\∅̄.

Our usual name for a graph is Γ = (V, E). Its vertex set is V = {v1, v2, . . . , vn}. All
our graphs are finite. Edges in a graph are of two kinds: a link has two distinct endpoints;
a loop has two coinciding endpoints. Multiple edges are permitted. Edges that have the
same endpoints are called parallel. The simplification of a graph is obtained by removing
all but one of each set of parallel edges, including parallel loops. (This differs from the
usual definition, in which loops are deleted also.) The complement of a graph Γ is written
Γc; this is the simple graph whose adjacencies are complementary to those of Γ. The
complete graph with W as its vertex set is KW . For a partition π of V , Kπ denotes a
complete graph whose vertex set is π.

If S ⊆ E, we denote by c(S) the number of connected components of the spanning
subgraph (V, S) (which we usually simply call the “components of S”) and by π(S) the
partition of V into the vertex sets of the various components. The complement of S is
Sc = E\S.

An edge set S in Γ is closed if every edge whose endpoints are joined by a path in S
is itself in S. F(Γ) denotes the lattice of closed sets of Γ.

Contracting Γ by a partition π of V means replacing the vertex set by π and changing
the endpoints v, w of an edge e to the blocks Bv, Bw ∈ π that contain v and w (they may
be equal); we write Γ/π for the resulting graph.

A vertex set is stable if no edge has both endpoints in it. A stable partition of Γ is
a partition of V into stable sets; let Π∗(Γ) be the set of all such partitions. Contracting
a graph by a stable partition π means collapsing each block of π to a vertex and then
simplifying parallel edges; there will be no loops.

A gain graph Φ = (Γ, ϕ) consists of an underlying graph Γ and a function ϕ : E → G

(where G is a group), which is orientable, so that if e denotes an edge oriented in one
direction and e−1 the same edge with the opposite orientation, then ϕ(e−1) = ϕ(e)−1.
The group G is called the gain group and ϕ is called the gain mapping. A neutral edge is
an edge whose gain is the neutral element of the group, that is, 1G, or for additive groups
0. The neutral subgraph of Φ is the subgraph Γ0 := (V, E0) where E0 is the set of neutral
edges.
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We sometimes use the simplified notations eij for an edge with endpoints vi and vj ,
oriented from vi to vj , and geij for such an edge with gain g; that is, ϕ(geij) = g. (Thus
geij is the same edge as g−1eji.)

A second way to describe a gain graph, equivalent to the definition, is as an ordinary
graph Γ, having a set of gains for each oriented edge eij , in such a way that the gains of
eji are the inverses of those of eij . For instance, Kn with additive gains 1,−1 on every
edge is a gain graph that has edges 1eij , and −1eij for every i 6= j. Since this is a gain
graph, 1eij and −1eji are the same edge.

Two gain graphs are isomorphic if there is a graph isomorphism between them that
preserves gains.

The simplification of a gain graph is obtained by removing all but one of each set
of parallel edges, including parallel loops, that have the same gain. (Unlike the usual
definition, we do not mean to remove all loops.)

A circle is a connected 2-regular subgraph, or its edge set. The gain of C = e1e2 · · · el

is ϕ(C) := ϕ(e1)ϕ(e2) · · ·ϕ(el); this is not entirely well defined, but it is well defined
whether the gain is or is not the neutral element of G. An edge set or subgraph is called
balanced if every circle in it has neutral gain.

Switching Φ by a switching function η : V → G means replacing ϕ by ϕη defined by

ϕη(eij) := η−1
i ϕ(eij)ηj,

where ηi := η(vi). We write Φη for the switched gain graph (Γ, ϕη). Switching does not
change balance of any subgraph.

The operation of deleting an edge or a set of edges is obvious, and so is contraction
of a neutral edge set S: we identify each block W ∈ π(S) to a single vertex and delete S
while retaining the gains of the remaining edges. (This is just as with ordinary graphs.)
The contraction is written Φ/S. A neutral-edge minor of Φ is any graph obtained by
deleting and contracting neutral edges; in particular, Φ is a neutral-edge minor of itself.

Contraction of a general balanced edge set is not so obvious. Let S be such a set.
There is a switching function η such that ϕη

∣

∣

S
= 1G [11, Section I.5]; and η is determined

by one value in each component of S. If the endpoints of e are joined by a path P in
S, ϕη(e) is well defined as the value ϕ(P ∪ e), the gain of the circle formed by P and e.
Now, to contract S we first switch so that S has all neutral gains; then we contract S
as a neutral edge set. This contraction is also written Φ/S. It is well defined only up to
switching because of the arbitrary choice of η. However, when contracting a neutral edge
set we always choose η ≡ 1G; then Φ/S is completely well defined.

An edge minor of Φ is a graph obtained by any sequence of deletions and contractions
of any edges; thus, for instance, Φ is an edge minor of itself.

Contracting Φ by a partition π of V means identifying each block of π to a single
vertex without changing the gain of any edge. The notation for this contraction is Φ/π.
(A contraction of Φ by a partition is not an edge minor.)

If W ⊆ V , the subgraph induced by W is written Γ:W or Φ:W . For S ⊆ E, S:W
means the subset of S induced by W .
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3 Chromatic relations on graphs

We begin with weak chromatic functions of ordinary graphs. This introduces the ideas in
the relatively simple context of graphs; we also use the graph case in proofs. The models
are the chromatic polynomial, χΓ(q), and its normalized derivative the beta invariant
β(Γ) := (−1)n(d/dq)χΓ(1). Regarded as a function F of graphs, a weak chromatic function
has three fundamental properties: the deletion-contraction law,

F (Γ) = F (Γ\e) − F (Γ/e) for every link e;

loop nullity,

F (Γ) = 0 if Γ has a loop;

and invariance under simplification,

F (Γ′) = F (Γ) if Γ′ is obtained from Γ by simplification.

Two usually important properties of which we have no need are isomorphism invariance
(with the obvious definition) and multiplicativity (the value of F equals the product of its
values on components; the chromatic polynomial is multiplicative but the beta invariant
is not).

Let G be the class of all graphs. A function F from G to an abelian group is a weak
chromatic function if it satisfies deletion-contraction, invariance under simplification, and
loop nullity. (Chromatic functions are a special type of Tutte function, as defined in [12].
The lack of multiplicativity is why our functions are “weak”; cf. [12].) One can take
a function F with smaller domain, in particular, the set M(Γ0) of all edge minors of a
fixed graph Γ0 (these are the graphs obtained from Γ0 by deleting and contracting edges),
although then Lemma 3.1 is less strong.

The first result shows that loop nullity is what particularly distinguishes chromatic
functions from other functions that satisfy the deletion-contraction property, such as the
number of spanning trees.

Lemma 3.1. Given a function F from all graphs to an abelian group that satisfies
deletion-contraction for all links, loop nullity is equivalent to invariance under simpli-
fication.

Let Γ0 be any graph. Given a function F from M(Γ0) to an abelian group that satisfies
deletion-contraction for all links, loop nullity implies invariance under simplification.

Proof. Assume F has loop nullity. Suppose we contract an edge in a digon {e, f}. The
other edge becomes a loop. By deletion-contraction and loop nullity, F (Γ) = F (Γ\e) −
F (Γ/e) = F (Γ\e) + 0.

Conversely, assume F is invariant under simplification. If Γ′ has a loop f , it is the
contraction of a graph Γ with a digon {e, f} and the preceding reasoning works in reverse.
This reasoning applies if the domain of F contains a graph Γ with the requisite digon;
that is certainly true if the domain is G.
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In other words, one may omit invariance under simplification from the definition of a
weak chromatic function. This is good to know because for some functions it is easier to
establish loop nullity than invariance under simplification.

A weak chromatic function can be treated as a function of vertex-labelled graphs. (A
vertex-labelled (simple) graph has a vertex set and a list of adjacent vertices.) To see
this we need only observe that graphs with loops can be ignored, since they have value
F (Γ) = 0 by definition, and for graphs without loops, the set of vertices and the list of
adjacent pairs determines F (Γ). To prove the latter, consider two simple graphs, Γ1 and
Γ2, with the same vertex set and adjacencies. Let Γ be their union (on the same vertex
set). Both Γ1 and Γ2 are simplifications of Γ, so all three have the same value of F . When
we regard F as defined on vertex-labelled graphs, contraction is simplified contraction;
that is, parallel edges in a contraction Γ/e are automatically simplified.

Now we introduce the algebraic formalism of weak chromatic functions. The chromatic
group for graphs, C, is the free abelian group ZG generated by all graphs, modulo the
relations implied by deletion-contraction, invariance under simplification, and loop nullity.
These relations are:

Γ = (Γ\e) − (Γ/e) for a link e,

Γ′ = Γ if Γ′ is obtained from Γ by simplification,

Γ = 0 if Γ has a loop.

(3.1)

The point of these relations is that any homomorphism from the chromatic group to an
abelian group will be a weak chromatic function of graphs, and any such function of graphs
that has values in an abelian group A is the restriction to G of a (unique) homomorphism
from C to A. These facts follow automatically from the definition of the chromatic group.
Thus, C is the universal abelian group for weak chromatic functions of graphs.

It follows from the definition (the proof is similar to the preceding one for functions)
that two graphs are equal in C if they simplify to the same vertex-labelled graph; that
is, we may treat C as if it were generated by vertex-labelled graphs and contraction as
simplified contraction.

We may replace G by M(Γ); C(Γ) denotes the corresponding chromatic group, i.e.,
ZM(Γ) modulo the relations (3.1). Then C(Γ) is the universal abelian group for weak
chromatic functions defined on the edge minors of Γ.

Now we present the main result about graphs. Let F(Γ0) be the lattice of closed edge
sets of the ordinary graph Γ0, and write µ for its Möbius function. If the empty set is not
closed (that is, if there are loops in Γ0), then µ(∅, S) is defined to be identically 0.

Lemma 3.2. In the chromatic group C(Γ0) of a graph Γ0, for any edge minor Γ of Γ0

we have the relations

Γ =
∑

S∈F(Γ)

µ(∅, S)[(Γ/S)\Sc] =
∑

S⊆E

(−1)|S|[(Γ/S)\Sc]

and
Γ =

∑

π∈Π∗(Γ)

Kπ.
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Proof. The two sums in the first identity are equal by Lemma 2.1 and because (Γ/S)\E =
(Γ/R)\E.

We prove the first identity for graphs Γ without loops by induction on the number of
edges in Γ. Let e be a link in Γ.

Γ = (Γ\e) − (Γ/e)

=
∑

S⊆E\e

(−1)|S|[(Γ/S)\Sc] −
∑

A⊆E\e

(−1)|A|[([Γ/e]/A)\Ac]

=
∑

e/∈S⊆E

(−1)|S|[(Γ/S)\Sc] −
∑

e∈S⊆E

(−1)|S|−1[(Γ/S)\Sc]

=
∑

S⊆E

(−1)|S|[(Γ/S)\Sc],

where in the middle step we replaced A ⊆ E\e by S = A ∪ e.
If Γ has loops, let e be a loop. Then Γ = 0; at the same time

∑

S⊆E

(−1)|S|[(Γ/S)\Sc] =
∑

e∈S⊆E

(−1)|S|[(Γ/S)\Sc] +
∑

e/∈S⊆E

(−1)|S|[(Γ/S)\Sc]

=
∑

e/∈S⊆E

[

(−1)|S|+1[(Γ/S/e)\(S\e)c] + (−1)|S|[(Γ/S)\Sc]
]

,

which equals 0 because for a loop, Γ/S/e = Γ/S\e.
We prove the second identity by induction on the number of edges not in Γ. Each

stable partition of Γ\e is either a stable partition of Γ, or has a block that contains the
endpoints of e. In that case, contracting e gives a stable partition of Γ/e. Thus,

Γ\e = Γ + (Γ/e) =
∑

π∈Π∗(Γ)

Kπ +
∑

π∈Π∗(Γ/e)

Kπ =
∑

π∈Π∗(Γ\e)

Kπ.

Validity of the identities in C(Γ0) implies they are valid in C, since the former maps
homomorphically into the latter by linear extension of the natural embedding M(Γ0) → G.
(We cannot say that this homomorphism of chromatic groups is injective. The relations
in C might conceivably imply relations amongst the minors of Γ0 that are not implied by
the defining relations of C(Γ0). We leave the question of injectivity open since it is not
relevant to our work.)

4 Neutral chromatic functions and relations on gain

graphs

We are interested in functions on gain graphs, with values in some fixed abelian group,
that satisfy close analogs of the chromatic laws for graphs, which in view of Lemma 3.1
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are two: deletion-contraction and loop nullity. The neutral deletion-contraction relation
is the deletion-contraction identity

F (Φ) = F (Φ\e) − F (Φ/e) (4.1)

for the special case where e is a neutral link. Neutral-loop nullity is the identity

F (Φ) = 0 if Φ has a neutral loop.

Neutral deletion-contraction is a limited version of a property that in the literature is
usually required (if at all) of all or nearly all links. We call a function that adheres to
these two properties a weak neutral chromatic function of gain graphs; “weak” because it
need not be multiplicative, “neutral” because only neutral edges must obey the two laws.
(To readers familiar with the half and loose edges of [11]: a loose edge is treated like a
neutral loop.)

A function is invariant under neutral-edge simplification if

F (Φ) = F (Φ′) when Φ′ is obtained from Φ by removing one edge of a neutral digon.

Lemma 4.1. Given a function F of all gain graphs with a fixed gain group that satisfies
deletion-contraction for all neutral links, neutral-loop nullity is equivalent to invariance
under neutral-edge simplification.

The proof is like that of Lemma 3.1 so we omit it.
The neutral chromatic group for G-gain graphs, C0(G), is the free abelian group ZG(G)

generated by the class G(G) of all gain graphs with the gain group G, modulo the relations
implied by deletion-contraction of neutral links and neutral-loop nullity. These relations
are

Φ = (Φ\e) − (Φ/e) for a neutral link e,

Φ = 0 if Φ has a neutral loop.
(4.2)

As with graphs, the purpose of these relations is that any homomorphism from the neutral
chromatic group to an abelian group will be a function of G-gain graphs that satisfies
neutral deletion-contraction and neutral-loop nullity, and every function of G-gain graphs
that satisfies those two properties, and has values in an abelian group A, is the restriction
of a (unique) homomorphism from C0(G) to A. (These facts follow automatically from
the definition of the neutral chromatic group.) Thus, C0(G) is the universal abelian group
for functions satisfying the two properties.

In the neutral chromatic group we get relations between gain graphs, in effect, by
deleting and contracting neutral edges to expand any gain graph in terms of gain graphs
with no neutral edge, while by addition and contraction we express it in terms of gain
graphs whose neutral subgraph is the spanning complete graph 1GKn.

Recall that F(Γ0) is the lattice of closed sets of Γ0 and Π∗(Γ0) is the set of stable
partitions. Let µ0 be the Möbius function of F(Γ0). Recall also that, for a gain graph Φ,
Γ0 is the neutral subgraph of Φ and E0 is the edge set of Γ0.
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Theorem 4.2. In the neutral chromatic group C0(G) we have the relation

Φ =
∑

S∈F(Γ0)

µ0(0, S)[(Φ/S)\E0] =
∑

S⊆E0

(−1)|S|[(Φ/S)\E0].

Theorem 4.3. In the neutral chromatic group C0(G) we have the relation

Φ =
∑

π∈Π∗(Γ0)

[(Φ/π) ∪ 1GKπ].

One can easily give direct proofs of Theorems 4.2 and 4.3 just like those of the two
identities in Lemma 3.2. We omit these proofs in favor of ones that show the theorems
are natural consequences of the relations for ordinary graphs; thus we deduce them by
applying a homomorphism to the relations in Lemma 3.2.

Homomorphic Proof of Theorem 4.2. All vertices and edges are labelled, i.e., identified
by distinct names. The vertices of a contraction are labelled in a particular way: the
contraction by an edge set S has vertex set π(S), the partition of V into the vertex sets
of the connected components of (V, S), and its edge set is the complement Sc of S. If
we contract twice, say by (disjoint) subsets S and S ′, then we label the vertices of the
contraction as if S ∪ S ′ had been contracted in one step.

Now, define a function f : M(Γ0) → G(G) by

f(Γ0/S\T ) := Φ/S\T.

Given an edge minor Γ0/S\T of the neutral subgraph Γ0, even though we cannot recon-
struct S and T separately, we can reconstruct the vertex partition π(S) by looking at
the labels of the vertices of the minor, and we can reconstruct S ∪ T by looking at the
surviving edges of the minor. It follows that f is well defined, because its value on a minor
of Γ0 does not depend on which edges are contracted and which are deleted, as long as
the vertex partition and surviving edge set are the same. (One can write this fact as a
formula: Γ0/S\T = Γ0/π(S)\(S ∪ T ).)

Extend f linearly to a function ZM(Γ0) → ZG(G) and define f̄ : ZM(Γ0) → C0(G)
by composing with the canonical mapping ZG(G) → C0(G). The kernel of f̄ contains
all the expressions G − [(G\e) − (G/e)] for links e of edge minors G ∈ M(Γ0) and all
expressions G for edge minors with loops, because f̄ maps them all to 0 ∈ C0(G) due to
(4.2). Therefore, f̄ induces a homomorphism F : C(Γ0) → C0(G).

Applying F to the first formula of Lemma 3.2, we get

F (Γ0) =
∑

S∈F(Γ0)

µ0(0, S)F ((Φ/S)\E0).

This is the theorem.

Homomorphic Proof of Theorem 4.3. Apply the same F to the second formula of Lemma
3.2.
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If Φ is a gain graph, let Φ0 := Φ ∪ 1GKn, i.e., Φ with all possible neutral links added
in.

Corollary 4.4. In the neutral chromatic group, if Φ has no neutral edges, then

Φ0 =
∑

π∈Πn

µ(0, π)(Φ/π),

where µ is the Möbius function of Πn, and

Φ =
∑

π∈Πn

(Φ/π)0.

Proof. Indeed, the identities follow from Theorems 4.2 and 4.3. In the theorems the graph
of neutral edges of Φ0 is the complete graph. So the flats are exactly the partitions of [n].
Contracting Φ by π introduces no neutral edges so in Theorem 4.2 it is not necessary to
delete them.

5 Weak chromatic invariants of gain graphs

One can strengthen the definition of a weak chromatic function by requiring it to be
invariant under some transformation of the gain graph. Examples:

• Isomorphism invariance: The value of F is the same for isomorphic gain graphs.

• Switching invariance: The value of F is not changed by switching.

• Invariance under simplification: F takes the same value on a gain graph and its
simplification.

A weak chromatic invariant of gain graphs is a function that satisfies the deletion-contrac-
tion formula (4.1) for all links, neutral-loop nullity, and invariance under isomorphism,
switching, and simplification. It is a chromatic invariant if it is also multiplicative on
connected components, i.e.,

F (Φ1 ∪· Φ2) = F (Φ1)F (Φ2). (5.1)

Lemma 5.1. Let F be a function on all gain graphs with a fixed gain group that is
switching invariant and satisfies deletion-contraction for neutral links. Then neutral-
loop nullity is equivalent to invariance under simplification and it implies isomorphism
invariance.

Proof. Suppose F is switching invariant and satisfies deletion-contraction for all neutral
links. Then it satisfies deletion-contraction for all links, because any gain graph Φ can be
switched to give gain 1G to any desired link.
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Suppose F also has neutral-loop nullity. When we contract an edge e in a balanced
digon {e, f}, f becomes a neutral loop because of the switching that precedes contraction.
By deletion-contraction and neutral-loop nullity,

F (Φ) = F (Φ\e) − F (Φ/e) = F (Φ\e) + 0.

Conversely, if Φ′ has a neutral loop f , it is the contraction of a gain graph Φ with a
neutral digon {e, f} and the same reasoning works in reverse.

Now we deduce isomorphism invariance from invariance under simplification. Suppose
we have two isomorphic gain graphs, Φ and Φ′, with different edge sets. We may assume
the edge sets are disjoint and that, under the isomorphism, the vertex bijection is the
identity and e ↔ e′ for edges. Take the union of the two graphs on the same vertex set;
the union contains balanced digons {e, e′}. If we remove e from each pair we get Φ′, but
if we remove e′ we get Φ. The value of F is the same either way.

This treatment omits loops. Balanced loops make F equal to 0. For unbalanced
loops we induct on their number. We can treat Φ as the contraction Ψ/f where Ψ is
a gain graph in which e, f are parallel links and f is neutral, and similarly Φ′ = Ψ′/f ′.
Since F (Ψ) = F (Ψ′) and F (Ψ\e) = F (Ψ′\e′) by induction, F (Φ) = F (Φ′) by deletion-
contraction.

Proposition 5.2. A switching-invariant weak chromatic function of all gain graphs with
a fixed gain group is a weak chromatic invariant.

Proof. By switching we can make any link into a neutral link. Apply Lemma 5.1.

(We could formulate these properties of functions in terms of new chromatic groups,
which are quotients of the weak chromatic group obtained by identifying gain graphs that
are equivalent under a suitable equivalence, like simplification, switching, or isomorphism.
However, that would contribute nothing to our general theory and it seems an overly
complicated way to do the computations in the second half of this paper.)

Example 5.3. Weak chromatic invariants abound, but the most important is surely the
total chromatic polynomial. A multi-zero coloration is a mapping κ : V → (G× [k])∪ [z],
where k and z are nonnegative integers. It is proper if it satisfies none of the following
edge constraints, for any edge eij :

κ(vj) = κ(vi) ∈ [z]

or

κ(vi) = (m, g) ∈ G × [k] and κ(vj) = (m, gϕ(eij)).

When G is finite, the total chromatic polynomial is defined by

χ̃Φ(q, z) = the number of proper multi-zero colorations, (5.2)
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where q = k|G| + z. This function combines the chromatic polynomial,

χΦ(q) = χ̃Φ(q, 1), (5.3)

and the zero-free chromatic polynomial,

χ∗
Φ(q) = χ̃Φ(q, 0), (5.4)

of [10] and [11, Part III]. All three polynomials generalize the chromatic polynomial, for,
regarding an ordinary graph Γ as a gain graph with gains in the trivial group, we see that

χ̃Γ(q, z) = χΓ(q)

(which is independent of z), where χΓ(q) is the usual chromatic polynomial of Γ.
A second definition of the chromatic polynomials, which is algebraic, applies to all gain

graphs, including those with infinite gain group. We define a total chromatic polynomial
for any gain graph by the formula

χ̃Φ(q, z) :=
∑

S⊆E

(−1)|S|qb(S)zc(S)−b(S), (5.5)

where b(S) is the number of components of (V, S) that are balanced, and we define the
chromatic and zero-free chromatic polynomials by means of (5.3) and (5.4).

Proposition 5.4. The total chromatic polynomial is a weak chromatic invariant of gain
graphs. The combinatorial and algebraic definitions, (5.2) and (5.5), agree when both are
defined.

Proof. The first task is to show that the two definitions of the total chromatic polynomial
agree. The combinatorial total chromatic polynomial is the special case of the state
chromatic function χΦ(Q) of [14, Section 2.2] in which the spin set Q = (G × [k]) ∪ [z].
That is, χ̃Φ(k|G|+z, z) = χΦ(Q). This is obvious from comparing the definitions. Indeed,
χ̃Φ(q, z) as defined in (5.2) is precisely the state chromatic function χΦ;Q1,Q2

(k1, k2) of the
example in [14, Section 4.3] with the substitutions q = k1|G| + k2 and z = k2.

Consequently, the combinatorial total chromatic polynomial has all the properties of a
state chromatic function. The chief of these properties is that it agrees with the algebraic
polynomial of (5.5). This fact is [14, Equation (4.3)] combined with Lemma 2.1 and the
observation that the fundamental closure of S has the same numbers of components and
of balanced components as does S [14, p. 144].

The second task is to prove that the algebraic total chromatic polynomial is a chro-
matic invariant. Isomorphism invariance is obvious from the defining equation (5.5).
Switching invariance follows from the fact that b(S) and c(S) are unchanged by switch-
ing. Multiplicativity, Equation (5.1), is easy to prove by the standard method of splitting
the sum over S into a double sum over S ∩ E(Φ1) and S ∩ E(Φ2). Reasoning like that
in the proof of Lemma 3.2 proves neutral-loop nullity. By Proposition 5.2, if χ̃Φ satisfies
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deletion-contraction, (4.1), for every link then it is invariant under simplification and thus
is a chromatic invariant.

Thus, we must prove that χ̃Φ does satisfy deletion-contraction with respect to a link
e. The method is standard—e.g., see the proof of [11, Theorem III.5.1]. We need two
formulas about the contraction Φ/e. Suppose e ∈ S ⊆ E. Clearly, cΦ(S) = cΦ/e(S\e).
[11, Lemma I.4.3] tells us that bΦ(S) = bΦ/e(S\e). Now we calculate:

χ̃Φ(q, z) − χ̃Φ\e(q, z) =
∑

S⊆E
e∈S

(−1)|S|qbΦ(S)zcΦ(S)−bΦ(S)

=
∑

T⊆E\e

(−1)|T |+1qbΦ/e(T )zcΦ/e(T )−bΦ/e(T )

= −χ̃Φ/e(q, z),

where again T := S\e. This proves (4.1).
By Proposition 5.2, therefore, χ̃Φ is a chromatic invariant of gain graphs.

6 Integral gain graphs and integral affinographic hy-

perplanes

An integral gain graph is a gain graph whose gain group is the additive group of integers,
Z. The ordering of the gain group Z singles out a particular switching function ηS: it
is the one whose minimum value on each block of π(S) is zero. We call this the top
switching function. The contraction rule is that one uses the top switching function; thus
the contraction can be uniquely defined, unlike the situation in general.

Contraction of a balanced edge set S in an integral gain graph can be defined quite
explicitly.

First, we define ηS. In each component (Vi, Si) of S, pick a vertex wi and, for v ∈ Vi,
define η(v) := ϕ(Svwi

) for any path Svwi
from v to wi in S. (η is well defined because S

is balanced.) Let vi be a vertex which minimizes η(v) in Vi. Define ηS(v) := ϕ(Svvi
) =

η(v)−η(vi) for v ∈ Vi. Then ηS is the top switching function for S, since ηS(vi) = 0 6 ηS(v)
for all v ∈ Vi.

Next, we switch. In ΦηS , the gain of an edge evw, where v ∈ Vi and w ∈ Vj, is
ϕηS(evw) = −ηS(v) + ϕ(evw) + ηS(w) = ϕ(Sviv) + ϕ(evw) + ϕ(Swvj

) = ϕ(SvivevwSwvj
).

That is, ϕηS(evw) is the gain of a path from vi to vj that lies entirely in S except for evw

if that edge is not in S. (If evw is in S, its switched gain is 0, consistent with the fact that
then vi = vj.)

Finally, we contract S. We can think of this as collapsing all of Vi into the single
vertex vi and deleting the edges of S, while not changing the gain of any edge outside S
from its switched gain ϕηS(evw) = ϕ(SvivevwSwvj

). (If there happens to be an edge vivj ,
it will have the same gain in Φ/S as it did in Φ.)

A kind of invariance that will now become important is:
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• Loop independence: The value of F is not changed by removing nonneutral loops.

Loop independence, when it holds true, permits calculations by means of contraction.
The zero-free chromatic polynomial and both of the next two examples have loop inde-
pendence, which we employ to good effect in Propositions 7.1 and 9.1.

Example 6.1. The integral chromatic function χZ

Φ(q) (from [3]) is the number of proper
colorations of Φ by colors in the set [q], proper meaning subject to the conditions given by
the gains of the edges. This function is a weak chromatic function of integral gain graphs
but it is not invariant under switching, so it is not a weak chromatic invariant. It is loop
independent, because the color of a vertex is never constrained by a loop with nonzero
additive gain.

That the integral chromatic function has neutral-loop nullity is obvious from the def-
inition. To show it satisfies neutral deletion-contraction, consider a proper coloration of
Φ\e, where e is a neutral link, using colors in [q]. If the endpoints of e have different
colors, we have a proper coloration of Φ; if they have the same color, we have a proper
coloration of Φ/e. (This argument is standard in graph coloring, corresponding to the
fact that the neutral subgraph acts like an ordinary graph.)

The reasoning fails if e has non-identity gain, and switching really does change χZ

Φ(q).
Consider Φ with two vertices 1 and 2 and one edge e of nonnegative gain g ∈ [q] in the
orientation from 1 to 2. All such gain graphs are switching equivalent. The rule for a
proper coloration κ is that κ2 6= κ1 + g. Of all the q2 colorations, the number excluded by
this requirement is q − g (or 0 if q − g < 0). Assuming 0 6 g 6 q, χZ

Φ(q) = q(q − 1) + g,
obviously not a switching invariant.

Example 6.2. The modular chromatic function χmod
Φ (q) (also from [3]) is the number of

proper colorations of the vertices by colors in Zq.
The remarks at the end of [3, Section 6] imply that χmod

Φ (q) is a weak chromatic
invariant. The idea is that χmod

Φ (q) = χ∗
Φ (mod q)(q) where Φ (mod q) is Φ with gains modulo

q. Take integral gain graphs Φ and Φ′ such that Φ′ is isomorphic to some switching of
Φ. Then the same is true for Φ (mod q) and Φ′ (mod q) with switching modulo q. Since
χ∗

Φ (mod q)(q) for fixed q is a weak chromatic invariant of gain graphs with gains in Zq,

χmod
Φ (q) is a weak chromatic invariant of integral gain graphs.

The modular chromatic function is loop independent, for the same reason as is the
integral chromatic function.

The modular chromatic function is not too different from the zero-free chromatic
polynomial. Write

max⊙(Φ) := the maximum gain of any circle in Φ.

Lemma 6.3 (see [13, Section 11.4, p. 339]). The modular chromatic function of an integral
gain graph Φ is given by

χmod
Φ (q) = χ∗

Φ(q) for integers q > max⊙(Φ),

but equality fails in general for q = max⊙(Φ).
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Proof. If we take the integral gains modulo q > max⊙(Φ), we do not change the balanced
circles, because no nonzero circle gain is big enough to be reduced to 0. By Equation (5.5)
with z = 0 so the sum may be restricted to balanced edge sets S, we do not change the
zero-free chromatic polynomial. Proper colorations in Zq with modular gains are proper
modular colorations.

If q = max⊙(Φ), at least one unbalanced circle becomes balanced so we do change the
list of balanced edge sets and we cannot expect equality. (We have not tried to decide
whether equality is possible at all.)

This lemma, though disguised by talk about finite fields and the Critical Theorem, is
fundamentally the same method used by Athanasiadis in most of his examples in [2]; see
[3, Section 6].

The affinographic hyperplane arrangement that corresponds to an integral gain graph
Φ is the set A of all hyperplanes in R

n whose equations have the form xj = xi + g for
edges geij in Φ. See [11, Section IV.4] or [3] for more detail about this connection. A
most important point is that the characteristic polynomial of this arrangement, pA(q),
equals the zero-free chromatic polynomial χ∗

Φ(q), by [11, Theorem III.5.2 and Corollary
IV.4.5]. Examples include the well known Shi, Linial, and Catalan arrangements, which
we will define. (In these definitions, Z could be replaced by any ordered abelian group,
or a subgroup of the additive group of any field; for instance, the additive real numbers.)

7 Catalan arrangements and their graphs

We will now apply the preceding results to obtain relations between the special gain
graphs corresponding to the Shi, Linial, and Catalan arrangements. We begin with the
last.

Let Cn = {0,±1}Kn, the complete graph Kn (on vertex set [n]) with gains −1, 0, and
1 on every edge ij; we call this the Catalan graph of order n, because the corresponding
hyperplane arrangement is known as the Catalan arrangement, Cn. Let C ′

n = {±1}Kn,
the complete graph Kn with gains −1 and 1 on every edge ij; we call this the hollow
Catalan graph.

Let c(n, j) be the number of permutations of [n] with j cycles. The Stirling number of
the first kind is s(n, j) = (−1)n−jc(n, j). The Stirling number of the second kind, S(n, j),
is the number of partitions of [n] into j blocks.

Proposition 7.1. Let F be a weak chromatic function of integral gain graphs with the
property of loop independence. Between the Catalan and hollow Catalan graphs we have
the two relations

F (C ′
n) =

n
∑

j=1

S(n, j)F (Cj)

and

F (Cn) =

n
∑

j=1

s(n, j)F (C ′
j).
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Proof. The proof begins with Corollary 4.4, which gives the identities

F (Cn) =
∑

π∈Πn

µ(0, π)F (C ′
n/π),

F (C ′
n) =

∑

π∈Πn

F ((C ′
n/π)0).

By the hypotheses on F , we can simplify the contractions. Contraction by a partition
introduces no new gains, but only loops and multiple edges with the same gains. Mul-
tiple edges simplify without changing F because F is a weak chromatic function. The
loops can be deleted because F is loop independent. Therefore, F (C ′

n/π) = F (C ′
|π|) and

F ((C ′
n/π)0) = F (C|π|). It follows that

F (Cn) =
∑

π∈Πn

µ(0, π)F (C ′
|π|) =

n
∑

j=1

s(n, j)F (C ′
j)

because s(n, j) =
∑

π∈Πn:|π|=j µ(0, π), and

F (C ′
n) =

∑

π∈Πn

F (C|π|) =
n

∑

j=1

S(n, j)F (Cj).

Let rn be the number of regions in the Catalan arrangement Cn and let r′n be the
number of regions of the arrangement corresponding to the hollow Catalan graph C ′

j

(which Stanley calls the semiorder arrangement).

Corollary 7.2. rn =
∑

j c(n, j)r′j.

Proof. The arrangement H[Φ] corresponding to an additive real gain graph of order n
has (−1)nχ∗

Φ(−1) regions [11, Corollary IV.4.5(b)]. Also, (−1)n−js(n, j) is the number of
i-cycle permutations. Applying the weak chromatic invariant χ∗ to the second equation
of Proposition 7.1 and evaluating at q = −1, we get χ∗

Cn
(−1) =

∑

j s(n, j)χ∗
C′

j
(−1). Since

s(n, j) = (−1)n−jc(n, j), the equation follows.

The integral, modular, and zero-free chromatic functions of Cn are very simple to
obtain. The gains 0 correspond to the condition that the colors of the vertices are all
different. The gains −1 and 1 correspond to the condition that the colors of two vertices
are never consecutive. Thus, the modular chromatic function of Cn counts injections
f : V → Zq such that no two values of f are consecutive. We repeat the well known
evaluation [7]. If we shift f so that f(v1) = 0 (thereby collapsing q different injections
together) and delete the successor of each value, we have an injection f̄ : V → Zq−n such
that f̄(v1) = 0, or equivalently, an arbitrary injection f̄ ′ : V \{v1} → {2, . . . , q−n}. There
are (q − n − 1)n−1 of these. It follows that

χmod
Cn

(q) = q(q − n − 1)n−1 for integers q > n
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(and it obviously equals 0 for q < 2n). Similarly, the integral chromatic function is

χZ

Cn
(q) = (q − n)n for integers q > n

(and 0 for q < 2n). The zero-free chromatic polynomial is

χ∗
Cn

(q) = q(q − n − 1)n−1

by Lemma 6.3 (or see [13, Equation (11.1)], where χ∗
Cn

(q) is called χb
[−1,1]Kn

(q)).
To obtain the various chromatic functions of the hollow Catalan graphs C ′

n directly is
not as easy, but they follow from Proposition 7.1. We observed in Example 6.1 that the
integral chromatic function is a weak chromatic function and loop independent; therefore,

χZ

C′

n
(q) =

n
∑

j=1

S(n, j)(q − j)j for q > n.

Since the zero-free chromatic polynomial is a chromatic invariant with loop independence,

χ∗
C′

n
(q) = q

n
∑

j=1

S(n, j)(q − j − 1)j−1.

Then the modular chromatic function follows by Lemma 6.3 and the fact that max⊙(Cn) =
n:

χmod
C′

n
(q) = q

n
∑

j=1

S(n, j)(q − j − 1)j−1 for q > n.

8 Arrangements between Shi and Catalan

The Shi graph of order n is Sn = {0, 1} ~Kn, i.e., the complete graph Kn with gains 0 and
1 on every oriented edge ij with i < j. To have simple notation we take vertex set [n]
and we write all edges ij with the assumption that i < j.

Let G be a spanning subgraph of Kn, that is, it has all n vertices; and define SC(G)

to be the gain graph Sn ∪ {−1} ~G, which consists of the complete graph Kn with gains 0
and 1 on every edge ij, and also gain −1 if ij ∈ E(G). We call SC(G) a graph between
Shi and Catalan. If G is edgeless we have the Shi graph Sn and if G is complete we have
the Catalan graph Cn. We compute chromatic functions of these graphs between Shi and
Catalan.

Let us start with the case where G has a unique edge e0 = i0j0 and compute the
modular chromatic function for large q (that is, the zero-free chromatic polynomial, by
Lemma 6.3). The gains 0 correspond to the condition that the colors must be all different.
The gains 1 on every edge correspond to the condition that if the color of i immediately
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follows the color of j then i < j. Finally, the gain −1 on the edge e0 implies that the color
of i0 cannot immediately follow the color of j0. The number of modular colorations of our
graph can be deduced by taking out of the list of proper q-colorations of Sn the ones for
which the colors of i0 and j0 are consecutive (in decreasing order). The number of these
equals q/(q−1) times the number of proper (q−1)-colorations of Sn−1, since we can simply
remove j0 and its color; more precisely, we normalize the colorations so that i0 has color 0,
thus j0 has color q−1, and then convert by removing j0 and q−1; Sn becomes Sn−1 and Zq

becomes Zq−1. We conclude from the known value χ∗
Sn

(q) = q(q−n)n−1 ([2, 6]; we reprove
this soon) that the modular chromatic function of SC(G) is q[(q−n)n−1− (q−n−1)n−1].

This small example can make one feel the complexity of the computation in the case
of a general graph G. Nevertheless one can produce formulas.

Let G be a graph on vertex set [n]. A descending path in G is a path i1i2 · · · il such
that i1 > i2 > · · · > il. Let pr(G) be the number of ways to partition the vertex set
[n] into r blocks, each of which is the vertex set of a descending path. We call such a
partition a descending path partition of G.

Proposition 8.1. Let G be a simple graph with vertex set [n]. The integral and modular
chromatic functions and the zero-free chromatic polynomial of SC(G) are given by

χZ

SC(G)(q) =

n
∑

r=1

pr(G
c)(q − n + 1)r for q > n − 1,

χmod
SC(G)(q) = q

n
∑

r=1

pr(G
c)(q − n − 1)r−1 for q > n,

χ∗
SC(G)(q) = q

n
∑

r=1

pr(G
c)(q − n − 1)r−1.

For the Shi graph in particular,

χZ

Sn
(q) = (q − n + 1)n for q > n − 1,

χmod
Sn

(q) = q(q − n)n−1 for q > n,

χ∗
Sn

(q) = q(q − n)n−1.

As we mentioned, the formula for χ∗
Sn

(q) is already known from Athanasiadis’, Head-
ley’s, and Postnikov–Stanley’s several computations of the characteristic polynomial of the
Shi arrangement ([2, Theorem 3.3], [6], and [8, Example 9.10.1]), since the two polynomials
are equal, as we remarked in Section 6.

Proof. We count proper colorations, extending the method Athanasiadis used to compute
χmod

Sn
(q) ([2], as reinterpreted in [3, Section 6]).

Our first remarks apply both to integral and modular coloring. The gains on the edges
correspond to relations on the colors of the vertices. The 0-edges prevent coloring two
different vertices with the same color. The 1-edges imply that if two vertices are colored
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with consecutive colors then the larger vertex has the first color. This gives a nice way to
describe permissible colorations in q colors.

Since all colors used are different we know that there are exactly q−n colors not used
(we must assume that n 6 q). Imagine these colors lined up in circular or linear order,
depending on whether we are evaluating χmod or χZ. We now need to arrange the vertices
in the spaces between these unused colors. When we place some vertices in the same space
they are in descending order, so their places are compelled by their labels. Therefore, all
we have to do for the Shi graph, where there are no −1-edges, is to assign each of n
vertices to a space between the q − n unused vertices. This is the classical problem of
placing labelled objects into labelled boxes. There are q − n boxes in the modular case
and q − n + 1 in the integral case. In the modular case, we assign vertex 1 to box 0; the
other n− 1 vertices can be placed arbitrarily. Then after inserting the vertices we have a
circular permutation of q objects, which is isomorphic to Zq in q ways; this accounts for
the extra factor of q in the modular Shi formula.

For a gain graph between Shi and Catalan, the edges with gain −1 correspond to
vertices i < j that can be in the same box only if they are not consecutive amongst the
vertices in the box; i.e., there must be present in the box at least one vertex h satisfying
i < h < j. More precisely, suppose the vertices in the box, in descending order, are
j1, j2, . . . , jl. Then no consecutive pair can be adjacent in G, or, to put it differently,
j1j2 · · · jl must be a path in Gc.

Now we count. We first look at modular coloring. Consider the colors not used to be
null symbols labelled by Zq−n, i.e., these colors are cyclically ordered. To get the number
of proper colorations, we choose a partition of [n] into the vertex sets of r descending
paths, and then we place the r paths, each one with its vertex set in descending order,
into the q − n spaces between the nulls. Due to the cyclic symmetry we can fix the space
before 0 ∈ Zq−n to be the one where we put the path that contains vertex 1. There are
(q − n − 1)r−1 ways to place the other r − 1 paths. Now we have a cyclic arrangement
of q objects, vertices and nulls. This set is isomorphic to Zq in q different ways, each of
which gives a different proper coloration of SC(G). We get for the modular chromatic
polynomial

q
∑

P

(q − n − 1)r−1,

summed over all descending path partitions P of Gc, where r is the number of paths in P.
Our description is meaningful so long as q − n− 1 > 0, since the largest possible number
r is n.

For integral coloring the technique is similar. The nulls are linearly ordered, isomorphic
to [q − n], and there are q − n + 1 boxes, i.e., spaces between and around them. We get
for the integral chromatic polynomial

∑

P

(q − n + 1)r

because the r paths can be placed in any distinct boxes. The computation applies as long
as q − n + 1 > 0.
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We derived the Shi formulas by a direct calculation but it is easy to deduce them from
the general descending-path formulas. Since Gc = Kn, the descending-path-partition
number pr(G

c) is just the number of partitions with r blocks, that is, S(n, r). Then one
can collapse the sums; e.g., for the zero-free chromatic polynomial,

n
∑

r=1

pr(G
c)(q − n − 1)r−1 = (q − n)−1

n
∑

r=1

S(n, r)(q − n)r = (q − n)n−1.

When Gc is the comparability graph Comp(P ) of a partial ordering of [n] that is
compatible with the natural total ordering, i.e., such that i <P j implies i < j (in Z), a
descending path is a chain, so pr(G

c) is the number of ways to partition the set P into r
chains.

We will now limit ourselves to the special case where G is a graph of order k constructed
from a partition of [n]. Let π partition [n] into k blocks X1, . . . , Xk, with the notation
chosen so that ai := min(X1) < a2 := min(X2) < · · · < ak := min(Xk). Thus, X1 contains
1, X2 contains the smallest element not in X1, and so on. The blocks are naturally
partially ordered by letting Xi < Xj if c < d for every c ∈ Xi and d ∈ Xj; in other words,
if bi := maxXi < aj = min Xj. This partial ordering induces a partial order Pπ on [k].
We say Xi and Xj overlap if neither Xi < Xj nor Xi > Xj.

Let Γπ be the interval graph of the intervals [ai, bi] for i ∈ [k]. (See [5] for the many
interesting properties of interval graphs.) Then Γπ has an edge ij just when Xi overlaps
Xj, so its complement is the comparability graph Comp(Pπ). The integral and modular
chromatic functions of the gain graph SC(Γπ) for the partition π can be obtained directly
in terms of Γπ. Let di = di(π) be the lower degree of i in Γπ, i.e., the number of blocks
Xj overlapping Xi and having j < i; note that d1 = 0.

Theorem 8.2. Let π be a partition of [n] into k blocks X1, . . . , Xk, and let SC(Γπ) be the
corresponding gain graph (of order k) between Shi and Catalan. The integral and modular
chromatic functions and the zero-free chromatic polynomial of SC(Γπ) are:

χZ

SC(Γπ)(q) = (q − k + 1)
k

∏

i=2

(q − k + 1 − di) for q > k − 1 + max di,

χmod
SC(Γπ)(q) = q

k
∏

i=2

(q − k − di) for q > k + max di,

χ∗
SC(Γπ)(q) = q

k
∏

i=2

(q − k − di).

Direct Proof. Again we extend the method of Athanasiadis [2] used to compute χ∗
Sn

(q)
[2], but slightly diferently from before.

We first look at modular coloring. To get the number of proper colorations, we choose
the colors of the vertices in increasing order. To color the vertex X1, we have q choices.
For X2 we have q − k choices if X1 and X2 do not overlap (which corresponds to the
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presence of a −1 edge) and only q−k−1 choices otherwise. We go on, and when coloring
Xi we have q − k − di choices (we use the fact that two blocks overlapping with Xi must
overlap each other). We get for the modular chromatic polynomial

q

k
∏

i=2

(q − k − di).

The lower bound on q arises from the fact that q − k − di must never be negative if the
reasoning is to hold good.

For integral coloring the technique is similar. To color X1 we have q − k + 1 choices,
which is the number of boxes. To color Xi we have q − k + 1 − di choices, the number of
boxes minus the number of forbidden boxes. We get for the integral chromatic polynomial

(q − k + 1)

k
∏

i=2

(q − k + 1 − di) =

k
∏

i=1

(q − k + 1 − di).

Deduction from Proposition 8.1. A simplicial vertex ordering in a graph G is a numbering
of the vertices by 1, 2, . . . , k such that, for each r, in the subgraph Gr induced by the
vertices 1, . . . , r the neighborhood of r is a clique (see, for instance, [5]). In G = Γπ it is
easy to see that the natural ordering of [n] is a simplicial vertex ordering and the number
of neighbors of r in Gr is the lower degree dr. A descending path is a chain in Pπ.

We apply Proposition 8.1 inductively, leaving the easy case k = 1 to the reader.
Suppose it is true for Pπ\k. A chain decomposition of Pπ is obtained by taking an r-chain
decomposition of Pπ\k and adjoining k in either of two ways: we can add a new chain {k},
or we can add k to an existing chain i1 > · · · > il, necessarily at the top. This is possible
if and only if k > i1 in Pπ. Since the non-neighbors of k form a clique, they are mutually
incomparable. Thus, each one is in a separate chain. Each must be the top element of its
chain because otherwise the top element would be < k and the non-neighbor would also
be < k by transitivity. It follows that the number of chains to which k can be added is
r − dk. We conclude that

pr(Γ
c
π) = pr−1(Γ

c
π\k) + (r − dk)pr(Γ

c
π\k).

Now we compute the value of the right-hand side of an expression in Proposition 8.1;
we do the integral chromatic function, the others being similar. From the lemma,

χZ

SC(Γπ)(q) =

k
∑

r=1

pr(Γ
c
π)(q − k + 1)r

=
k

∑

r=2

pr−1(Γ
c
π\k)(q − k + 1)r−1(q − k − [r − 2])

+
k−1
∑

r=1

(r − dk)pr(Γ
c
π\k)(q − k + 1)r
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because p0(Γ
c
π\k) = pk(Γ

c
π\k) = 0,

= (q − k + 1 − dk)

k−1
∑

r=1

pr(Γ
c
π\k)(q − k + 1)r

= (q − k + 1 − dk)χ
Z

SC(Γπ\k)(q − 1)

= (q − k + 1 − dk)

k−1
∏

i=1

([q − 1] − [k − 1] + 1 − di)

by induction. This is the desired formula.

9 Linial arrangements

The Linial graph of order n is Ln = 1 ~Kn, i.e., the complete graph Kn with gains 1 on
every oriented edge ij (that is, with i < j). We found the integral chromatic function
of the Linial graph in [3], but here we have a new and different formula that also gives
the modular and zero-free chromatic functions. A corollary is a new formula for the
characteristic polynomial of the Linial hyperplane arrangement, different from (though
not as simple as) that of Athanasiadis [2, Theorem 4.2] (differently proved in [8, Example
9.10.3]).

We expand the Linial gain graph in gain graphs between Shi and Catalan. The
chromatic functions we are calculating are invariant under simplification that does not
remove neutral loops and are not affected by non-neutral loops.

Corollary 9.1. Let F be a weak chromatic function of integral gain graphs which is loop
independent. Then

F (Ln) =
∑

π∈Πn

F (SC(Γπ)).

Proof. A straightforward application of Corollary 4.4 shows that

Ln =
∑

S∈F(Γ0)

Sn/S.

The flat S corresponds to a partition π; it is the union of neutral cliques on the blocks of
π. The edges that remain after contraction are the neutral edges, which connect all the
blocks of π forming a complete neutral subgraph of Sn/S, and the contractions of 1-edges.
Number the blocks by least element and partially order as in the previous section. If i < j,
then there is a 1-edge from Xi to Xj in the contraction. If furthermore Xi < Xj in Pπ,
there is a (−1)-edge in the rising direction. We can simplify multiple edges with the same
gain, by definition of F . We can ignore neutral loops because contracting S leaves none.
Contraction makes a 1-loop at each contraction vertex X ∈ π that has a 1-edge, but these
do not affect the value of F . Therefore, F (Sn/S) = F (SC(Γπ)).
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We get the next result from Theorem 8.2 and Corollary 9.1.

Theorem 9.2. The integral and modular chromatic functions of the Linial gain graph
satisfy

χZ

Ln
(q) =

∑

π∈Πn

(q − k + 1)

k
∏

i=2

(q − k + 1 − di) for q > n − 1,

χmod
Ln

(q) = q
∑

π∈Πn

k
∏

i=2

(q − k − di) for q > n,

χ∗
Ln

(q) = q
∑

π∈Πn

k
∏

i=2

(q − k − di),

respectively, where k = |π| and di is the lower degree di(π).

Proof. We get the lower bound on q in the modular polynomial from Lemma 6.3, since
the circle with maximum gain is 12 · · ·n1, using 1-edges in the upward direction and the
0-edge n1. The gain is (n − 1)1 + 0.

In the integral case the lower bound follows from the obvious necessity that q−|π|+1 >

0 for every partition.

The zero-free chromatic polynomial, by a remark in Section 6, is also the characteristic
polynomial of the Linial arrangement Ln; thus,

pLn(q) = q
∑

π∈Πn

k
∏

i=2

(q − k − di).

This new formula contrasts with that of Athanasiadis:

pLn(q) =
q

2

n
∑

j=0

(

n

j

) (

q − j

2

)n−1

.

Interesting enumerative conclusions might follow from the equality of these two expres-
sions for the Linial polynomial, but that is too complicated to pursue here. At any rate,
our formula has an interesting combinatorial aspect.

Example 9.3. Let n = 6 and π = {13, 25, 46}, so k = 3. Then Γπ has edges 12 and
23 but not 13. We have d1 = 0, d2 = d3 = 1. The formula for integral colorations is
(q−2)(q−3)2, which gives two proper colorations for q = 4. The colorations are given by
the sequences 31o2 and 2o31, where the color corresponds to the position in the sequence,
the numbers denote the vertices, and o denotes an unused color. Thus in the first sequence
vertex 3 is colored 1, vertex 1 has color 2, color 3 is not used, etc. The coloration is built
up by taking q − n = 1 unused color, forming the sequence o, which makes two boxes to
place descending paths in Γpi

c, and placing the descending paths 31 and 2 in the first and
second boxes, respectively.
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We see that different partitions π can give the same terms because the term of a parti-
tion depends only on the lower degrees. We would like to know, for a given nondecreasing
sequence D = (d1 = 0, d2, . . . , dk), the number N1(D) of partitions of [n] which correspond
to this sequence. Knowing these numbers will give us formulas like

χmod
Ln

(q) = q
∑

D

N1(D)

k
∏

i=2

(q − k − di).

(In fact, although each term of this sum depends only on the elements of the sequence
and not on their order, we would be pleased to know also the number N2(D) of naturally
ordered partitions of [n] which correspond to an arbitrary ordered sequence D.)

Define D1(π) to be the increasing lower degree sequence of Γπ, which is the sequence
of lower degrees written in non-decreasing order; and let D2(π) be the sequence of lower
degrees in vertex order, i.e., where di = di(π) = the lower degree of Xi. To recognize these
sequences is not difficult. Call an ascent of a sequence D = (d1, d2, . . . , dk) any position
i ∈ [k − 1] such that di+1 > di. The ascent set is A(D) := {i ∈ [k − 1] : di+1 > di}.

Proposition 9.4. A sequence D = (d1, . . . , dk) is the vertex-order lower degree sequence
D2(π) of the overlap graph Γπ for some π ∈ Πn if and only if

d1 = 0 6 d2, . . . , dk,

di+1 6 di + 1 for every i ∈ [k − 1], and

n > k + the number of ascents of D.

Proof. In the proof let ∼ denote adjacency in Γπ.
First we prove the three conditions are necessary. Let π be any partition of [n] into

k blocks; let D = D2(π). It is clear that D has the first property. For the second, let
j < i 6 k. If Xj overlaps Xi+1 it also overlaps Xi; thus, if j ∼ i + 1 then j ∼ i.
Consequently, di+1 6 di + 1 and equality holds only if ai+1 < bi. The latter implies
bi > ai. We conclude that, in D,

di < di+1 =⇒ |Xi| > 1. (9.1)

Consequently, every ascent of D requires a block of size at least 2; this gives the lower
bound on n.

For sufficiency of the three conditions we assume a sequence D has the three properties
of the proposition. We construct a partition π ∈ ΠnD

that realizes D, where nD :=
k + |A(D)|. (For n > nD we simply add nD +1, . . . , n to the block of π that contains nD.)

Define d0, dk+1 := 0 and put [i, j] := {i, i + 1, . . . , j} if i 6 j. Now, let Xi = {ai, bi}
where

mi := min{j > i : dj+1 6 di},

ti := |A(D) ∩ [i]|,

ai := i + ti−1 − di,
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bi := ai + (mi − i) + |A(D) ∩ [i, mi]|

= mi + tmi
− di.

Finally, let π := {X1, . . . , Xk}. Regardless of whether π is a partition or not, it has an
overlap graph Γπ which is the interval graph of the intervals [ai, bi], and if all the ai are
distinct there is a natural ordering of the vertices of Γπ.

Lemma 9.5. The class π constructed from D satisfies:

(i) π is a partition of [nD].

(ii) Xk is the singleton block {ak = nD − dk}.

(iii) The upper neighborhood of i in Γπ is [i + 1, mi].

(iv) The lower neighbors of i in Γπ are the vertices iδ := max{j ∈ [i − 1] : dj = δ} for
δ = 0, 1, . . . , di − 1.

(v) π has vertex-order lower degree sequence D2(π) = D.

Proof. Note that the ti are weakly increasing. Part (ii) is obvious because mk = k.
We show that a1 < a2 < · · · < ak. This will imply that, if we linearly order the Xi by

least element, the ordering is subscript order. We calculate the increment:

ai+1 − ai = 1 + (ti − ti−1) + (di − di+1) = 1 + ui + (di − di+1).

If i is not an ascent, then di − di+1 > 0 and ui = 0, so ai+1 − ai > 0. If i is an ascent,
then di − di+1 = −1 and ui = 1; again ai+1 − ai > 0.

Now we prove (iii). The first step is an equivalence, in which we assume i < j:

i ∼ j ⇐⇒ aj 6 bi ⇐⇒ j + tj−1 − dj 6 mi + tmi
− di.

If j 6 mi, then dj > di so j + tj−1 − dj < mi + tmi
− di. If j > mi, then tj−1 > tmi

.
Suppose aj 6 bi. Then j − mi 6 (j − mi) + (tj−1 − tmi

6 dj − dmi
6 j − mi. Thus,

the inequalities are all equalities. It follows that dj − dmi
= j − mi, which makes mi an

ascent, but by definition mi can never be an ascent. Note that in both cases, aj = bi is
impossible. Therefore, no bi and aj can be equal if i < j. Neither can bj equal ai, because
bj > aj > ai.

Recall that nD = k+ tk. Let dj be the last member of D that has value 0. Then tj = k
so bj = nD. We prove that all other bi < bj . If i < j, then ti < j so bi < aj 6 bj . If i > j,
then di is positive; therefore, bi = mi + tmi

− di < mi + tmi
6 k + tk = bj .

Since nD is the number of blocks plus the number of doubleton blocks, and we have
shown that none of the a’s and b’s can be equal except when ai = bi, we conclude that π
is a partition of [nD].

It remains to prove (iv), from which (v) follows at once. Let j < i. We know from
(iii) that

j ∼ i ⇐⇒ mj > i ⇐⇒ dj+1, dj+2, . . . , di > dj.

It is easy to see that the last property implies, and is implied by, the property that j = iδ
for some δ, specifically for δ = dj.
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The lemma obviously implies Proposition 9.4.

Proposition 9.6. A sequence D = (d1, . . . , dk) is the increasing lower degree sequence
D1(π) of Γπ for some partition π ∈ Πn if and only if it satisfies

0 = d1 6 d2 6 · · · 6 dk,

di+1 6 di + 1 for every i ∈ [k − 1],

n > k + dk.

Proof. D is a lower degree sequence if and only if some rearrangement of it, D′, satisfies the
conditions of Proposition 9.4. The first two properties follow from those of D′. Neglecting
the exact value of n, we see from Proposition 9.4 that D is a lower degree sequence if
and only if it is itself, without rearrangement, a vertex-order lower degree sequence. The
lower bound on n follows from that fact, because the smallest possible number of ascents
of any rearrangement of D is dk = max di.

10 The total chromatic polynomial

We did not try to evaluate the chromatic polynomial of the Catalan and other graphs,
all the more the total chromatic polynomial, because the results do not appear to be
very nice nor are they known to count anything interesting. However, the total chromatic
polynomial can be computed in terms of the zero-free polynomial, extending the balanced
expansion

χΦ(q) =
∑

W⊆V
W cstable

χ∗
Φ:W (q − 1)

from [11, Theorem III.6.1]. Now we develop this computation to the extent that evaluating
the polynomial for the Catalan, Shi, or Linial graph becomes a mechanical exercise.

Proposition 10.1. Let Φ be a gain graph with underlying graph Γ. The total chromatic
polynomial satisfies the expansion identity

χ̃Φ(q, z) =
∑

W⊆V

χΓ:W c(z)χ∗
Φ:W (q − z).

Lemma 10.2. If Φ1, . . . , Φc are the components of Φ, then

χ̃Φ(q, z) = χ̃Φ1
(q, z) · · · χ̃Φc(q, z).

Proof. This is obvious from the combinatorial definition. The proof from the algebraic
definition is standard (and easy) and is therefore omitted.

Combinatorial Proof of the Proposition. Assume G is finite, k, z are nonnegative integers,
and q = k|G| + z. We count the proper colorations of Φ by the color set

(

[k] × G
)

∪ [z].
We pick a vertex subset W to color by [k] × G, leaving the complement to be colored by
[z]. The number of ways to color W properly is χ∗

Φ:W (q−z). The number of ways to color
W c properly is χΓ:W c(z) because a coloration is proper if and only if no edge has the same
[z]-color at both ends.
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Algebraic Proof. The algebraic proof applies to all gain graphs. If Φ has no links, then
the components are the single vertices with their loops, if any, for which the expansion is
obviously correct. Thus, we may apply induction on the number of links. Assume there
is a link e.

We develop the right-hand side of the expansion identity. We split the sum according
to three cases: e ∈ E:W , e ∈ E:W c, and e not in either induced edge set. In the first
case, χ∗

Φ:W (q − z) = χ∗
(Φ\e):W (q − z) − χ∗

(Φ/e):W (q − z). In the second case, χΓ:W c(z) =

χ(Γ\e):W c(z) − χ(Γ/e):W c(z). Let us write this all out. The right-hand side equals

∑

W⊆V
e∈E:W

χΓ:W c(z)χ∗
(Φ\e):W (q − z) +

∑

W⊆V
e∈E:W c

χ(Γ\e):W c(z)χ∗
Φ:W (q − z)

+
∑

W⊆V
e/∈(E:W )∪(E:W c)

χΓ:W c(z)χ∗
Φ:W (q − z)

−

[

∑

W⊆V
e∈E:W

χΓ:W c(z)χ∗
(Φ/e):W (q − z) +

∑

W⊆V
e∈E:W c

χ(Γ/e):W c(z)χ∗
Φ:W (q − z)

]

The first three terms are precisely those in the expansion of χ̃Φ\e(q, z). As for the remain-
ing two terms, let ve be the vertex of Φ/e that results from contracting e. Then

∑

W⊆V
e∈E:W

χΓ:W c(z)χ∗
(Φ/e):W (q − z) +

∑

W⊆V
e∈E:W c

χ(Γ/e):W c(z)χ∗
Φ:W (q − z)

=
∑

X⊆V (Φ/e)
ve∈E(Φ/e):X

χΓ:Xc(z)χ∗
(Φ/e):X(q − z) +

∑

X⊆V (Φ/e)
ve∈E(Φ/e):Xc

χ(Γ/e):Xc(z)χ∗
Φ:X(q − z)

because a set X ⊆ V (Φ/e) corresponds to a set W = X\{ve} ∪ {v, w} if v, w are the
endpoints of e in Φ, so that e is in either E:W or E:W c. The last two sums are the
expansion of χ̃Φ/e(q, z).

Call Φ complete if every two vertices are adjacent by at least one edge. Recall that n
denotes the order of Φ.

Corollary 10.3. If Φ is complete, let L be the set of vertices that support loops. Then
the total chromatic polynomial expands with falling-factorial coefficients:

χ̃Φ(q, z) =
∑

L⊆W⊆V

(z)n−|W | χ
∗
Φ:W (q − z).

Proof. The factor χΓ:W c(z) equals zero if there is a loop in W c and otherwise it is the
chromatic polynomial of K|W c|.
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Call Φ uniform if all induced subgraphs of the same order are isomorphic. Then we
can write Φm for an induced subgraph of order m; Φn is just Φ. A uniform gain graph
that is not complete has no links at all. If it has any loop, it has the same number of
loops with the same gains at every vertex.

Corollary 10.4. Suppose Φ is connected and uniform and has no loops. Then

χ̃Φ(q, z) = n!
n

∑

j=0

(

z

n − j

)

1

j!
χ∗

Φj
(q − z).

In particular, for the chromatic polynomial we have

χΦ(q) = χ∗
Φn

(q − 1) + nχ∗
Φn−1

(q − z).

If there is an infinite uniform sequence Φ0, Φ1, . . . we can write Corollary 10.4 in terms
of the exponential generating function, XGF(an) :=

∑∞
n=1 antn/n!, as

XGF(χ̃Φn(q, z)) = (1 + t)z XGF(χ∗
Φn

(q − z)). (10.1)

Since the Catalan, Shi, and Linial graphs satisfy the hypotheses of Corollary 10.4 and
the graphs between Catalan and Shi are complete, it is a routine matter to evaluate their
chromatic and total chromatic polynomials by means of Corollary 10.4 or Equation (10.1).
The intermediate graphs SC(G) fall under Corollary 10.4.

11 Final remarks: Extended arrangements; weighted

gain graphs; biased graphs

There are various ways to extend the Linial and Shi arrangements to more hyperplanes;
each one corresponds to an integral gain graph of the form {−l + 1,−l + 2, . . . , m} ~Kn,
where l, m > 0 and m > −l. For the characteristic polynomial the cases l = 0, 1 were
treated by Athanasiadis [2, Section 4], the general case by Postnikov and Stanley [8,
Section 9]. It would certainly be interesting to apply our results to these arrangements.

A weighted integral gain graph (Φ, h) is an integral gain graph Φ together with a
function h : V → Z, called the weight function. By the contraction rule for weights,
when contracting a neutral edge set S the contracted weights are hS(W ) := maxv∈W h(v),
where W is the vertex set of a component of S. For a weighted integral gain graph (Φ, h)
one can define an integral chromatic function χZ

(Φ,h)(q) similar to that of Φ; indeed, our

χZ

Φ(q) is χZ

(Φ,0)(q) (all weights equal 0). If e is a neutral link, then (from [3], reinterpreted

from the equivalent rooted integral gain graphs of that paper)

χZ

(Φ,h)(q) = χZ

(Φ\e,h)(q) − χZ

(Φ/e,he)(q).

This shows there are interesting functions F on other structures than ordinary graphs
and gain graphs—in fact, on arbitrary weighted gain graphs as defined in [4]—to which
the general reductions Theorems 4.2 and 4.3 can apply.
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Another kind of generalization is to biased graphs [11]. The balanced circles in a gain
graph form a linear subclass, which means that if a theta subgraph contains two balanced
circles, then its third circle is balanced. A biased graph is a pair Ω = (Γ, B) where B is any
linear subclass of the circles of Γ. An edge set is called balanced when every circle belongs
to B. Thus, a biased graph is a combinatorial generalization of a gain graph. There are
no distinguished neutral edges in a biased graph, but one can choose any balanced edge
set to play the same role. Thus, a deletion-contraction formula like that of Theorem 4.2
exists. There are also addition-contraction results where one adds edges to a balanced
subgraph, though since it is probably not true that one can extend any balanced subset
to a balanced Kn (this is an open question), there would be no complete generalization
of Theorem 4.3.
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